
DAC 2008 SystemVerilog Implicit Ports Enhancements
Rev 1.1 Accelerate System Design & Verification

1

World Class Verilog & SystemVerilog Training

SystemVerilog Implicit Port Enhancements
Accelerate System Design & Verification

Clifford E. Cummings
Sunburst Design, Inc.

cliffc@sunburst-design.com

ABSTRACT
The IEEE Std 1800-2005 SystemVerilog Standard added new
implicit port instantiation enhancements that help accelerate top-
level composition of large ASIC & FPGA Designs. This paper
details the new .* and .name implicit port instantiation
capabilities, the rules related to the use of these new
enhancements, and how these enhancements offer concise RTL
coding styles while enforcing stronger port-type checking.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design Aids
– automatic synthesis, hardware description languages,
simulation, verification.

General Terms
Design, Verification, Documentation, Reliability, Languages.

Keywords
SystemVerilog, instantiation, implicit ports, .*, .name, Verilog
EMACS mode, Verilog.

1. INTRODUCTION
For large ASIC and FPGA designs, the top-level design module
or modules are 10's of pages of 100's of instantiations using
10,000's of named port connections.

The top-level design has very little value to design engineers.

There are so many port and signal names in a top-level module
that it is nearly impossible to follow the intended design structure
simply by looking at all the text. The only value of this top-level
design is to establish connectivity for EDA tools. Since there is so

little value in this top- level module, why should design engineers
spend so much time piecing together a top-level design? Why
can't we ask the tools to make the connection for us? That is the
idea behind .* implicit port connections.

2. SAMPLE DESIGN
The IEEE Std 1800-2005[5], section 18.11, includes multiple
instantiation examples of an alu_accum design modeled using
Verilog[4] and SystemVerilog instantiation methods. Included in
this paper is a slightly modified version of that same design (see
Figure 1). In this design, the alu block has unconnected zero
and ones output pins. The alu_accum model also has an
unconnected zero output pin that is not connected to the
unconnected alu zero output. This was done just to add an
interesting scenario to the design.

3. PORT CONNECTION STYLES
In this section, the alu_accum model will be coded four
different ways: (1) using positional port connections, (2) using
named port connections, (3) using SystemVerilog .* implicit port
connections, and (4) using SystemVerilog .name implicit port
connections. The styles are compared for advantages,
disadvantages, coding effort and efficiency.

3.1 Verilog positional port connections
Verilog has always permitted positional port connections. The
Verilog code for the positional port connections for the
alu_accum block diagram is shown in Example 1.

module alu_accum1 (
 output [15:0] dataout,
 output zero,
 input [7:0] ain, bin,
 input [2:0] opcode,
 input clk, rst_n);
 logic [7:0] alu_out;

 alu alu (alu_out, , , ain, bin,
 opcode);

This DAC paper was an invited paper and is an abridged
version of a SNUG 2007 - 28-page paper by the same title

available on the www.sunburst-design.com web page.

DAC 2008 SystemVerilog Implicit Ports Enhancements
Rev 1.1 Accelerate System Design & Verification

2

 accum accum (dataout[7:0], alu_out,
 clk, rst_n);
 xtend xtend (dataout[15:8], alu_out[7],
 clk, rst_n);
endmodule

Example 1 - alu_accum model built using positional port
connections

3.2 Verilog named port connections
Verilog has always permitted named port connections (also called
explicit port connections). Any engineer who has ever assembled
a top-level netlist for a large ASIC or FPGA is familiar with the
tedious pattern of instantiating ports of the form:

mymodule u1 (.data(data), .address(address),
 BORING(BORING));

The top-level module description for a large ASIC or FPGA
design may be 10-20 pages of tediously instantiated modules
forming a collection of port names and net names that offer little
value to the author or reviewer of the code. With net names
potentially dispersed onto multiple pages of code, it is difficult for
any engineer to comprehend the structure of such a design.

Most engineers agree that large top-level ASIC or FPGA netlists
offer very little value aside from connecting modules together to
simulate or synthesize. They are painful to assemble, painful to
debug and sometimes painful to maintain when lower-level
module port lists are modified, requiring top-level netlist
modifications.

The problem with large top-level netlists is that there is too much
information captured and the information is spread out over too
many pages to allow easy visualization of the design structure.
For all practical purposes, the top-level design becomes a sea of

names and gates. The information is all there but it is in a largely
unusable form!

The named port connections version of the Verilog code for the
alu_accum block diagram is shown in Example 2.

module alu_accum2 (
 output [15:0] dataout,
 output zero,
 input [7:0] ain, bin,
 input [2:0] opcode,
 input clk, rst_n);

 logic [7:0] alu_out;

 alu alu (.alu_out(alu_out), .zero(),
 .ones(), .ain(ain),
 .bin(bin), .opcode(opcode));

 accum accum (.dataout(dataout[7:0]),
 .datain(alu_out),
 .clk(clk), .rst_n(rst_n));

 xtend xtend (.dout(dataout[15:8]),
 .din(alu_out[7]),
 .clk(clk), .rst_n(rst_n));
endmodule

Example 2 - alu_accum model built using named port
connections

3.3 The .* implicit port connection
enhancement
SystemVerilog introduces the ability to do .* implicit port
connections. Whenever the port name and size matches the
connecting net or bus name and size, the port name can be

Figure 1 - alu_accum Block Diagram

DAC 2008 SystemVerilog Implicit Ports Enhancements
Rev 1.1 Accelerate System Design & Verification

3

omitted and .* will make the connection automatically as shown
in Example 3.

module alu_accum3 (
 output [15:0] dataout,
 output zero,
 input [7:0] ain, bin,
 input [2:0] opcode,
 input clk, rst_n);

 logic [7:0] alu_out;

 alu alu (.zero(), .ones(), .*);

 accum accum (.dataout(dataout[7:0]),
 .datain(alu_out), .*);

 xtend xtend (.dout(dataout[15:8]),
 .din(alu_out[7]), .*);
endmodule

Example 3 - - alu_accum model built using .* implicit port
connections

3.4 The .name implicit port connection
enhancement
SystemVerilog also introduces the ability to do .name implicit
port connections. Just like the .* implicit port connection style,
whenever the port name and size matches the connecting net or
bus name and size, the port name can be listed just once with a
leading period as shown in Example 4.

module alu_accum4 (
 output [15:0] dataout,
 output zero,
 input [7:0] ain, bin,
 input [2:0] opcode,
 input clk, rst_n);

 logic [7:0] alu_out;

 alu alu (.alu_out, .zero(), .ones(),
 .ain, .bin, .opcode);

 accum accum (.dataout(dataout[7:0]),
 .datain(alu_out), .clk, .rst_n);

 xtend xtend (.dout(dataout[15:8]),
 .din(alu_out[7]), .clk, .rst_n);
endmodule

Example 4 - alu_accum model built using .name implicit port
connections

4. .* ADVANTAGES
There are two strong advantages to using .* implicit port
connections over Verilog positional or named port connections:
(1) more concise designs, and (2) strong port type checking.
These are two excellent reasons to use then new .* implicit port
connections.

4.1 .* usage
According to IEEE Std 1800-2005, the .* may only be listed once
per instantiation and may be placed anywhere in the instantiated
port list.

Legal: .* at the beginning of the port list.

accum accum (.*, .dataout(dataout[7:0]),
 .datain(alu_out));

Legal: .* in the middle of the port list.

accum accum (.dataout(dataout[7:0]), .*,
 .datain(alu_out));

Recommended: .* at the end of the port list.

accum accum (.dataout(dataout[7:0]),
 .datain(alu_out), .*);

Illegal: .* in the port list twice.

accum accum (.*, .dataout(dataout[7:0]),
 .datain(alu_out), .*);

To take advantage of the EMACS mode port collapsing and
expansion, the .* must be placed last in the instantiated port list.

4.2 .* and .name rules
When instantiating modules using .* or .name implicit ports, the
following rules apply:

(1) It is illegal to mix positional ports with new SystemVerilog
.* or .name implicit port connections.

alu alu (alu_out, , , .*); // ILLEGAL

In the above example, the first three ports are listed by position
and the remaining ports are connected using SystemVerilog .*
implicit ports. This is not legal in SystemVerilog.

// ILLEGAL
accum accum (dataout[7:0], alu_out, .*);

In the above example, the first two ports are listed by position and
the remaining ports are connected using SystemVerilog .name
implicit ports. This is not legal in SystemVerilog.

This restriction is not surprising. The new SystemVerilog implicit
port styles are alternate forms of named port connections and it
has never been legal in Verilog to mix positional ports with
named ports in the same instantiation.

// ILLEGAL Verilog-2001 instantiation
xtend xtend (dataout[15:8], alu_out[7], clk,
 .rst_n(rst_n));

In the above example, the first three ports are listed by position
and the last port is connected using a Verilog-2001 named port
connection. This is not legal in Verilog or SystemVerilog.

(2) It is legal to mix SystemVerilog .* or .name implicit port
connections with Verilog named port connections. As a
matter of fact, it is required to mix SystemVerilog .* or

DAC 2008 SystemVerilog Implicit Ports Enhancements
Rev 1.1 Accelerate System Design & Verification

4

.name implicit port connections with named ports if rules 3 -
6 apply (see below).

The following rules apply if the individual module instantiation
includes SystemVerilog .* or .name implicit port connections.

(3) If a port name does not match a connecting net name, then
Verilog named port connections must be used.

xtend xtend (.dout(dataout[15:8]),
 .din(alu_out[7]), .*);

In the above example, two ports are connected to buses that have
different names. In this same example, the upper 8 bits of a 16-bit
dataout bus is connected to an 8-bit dout port and the MSB of
an 8-bit alu_out bus is connected to a 1-bit din input.

(4) If a port size is smaller than a connecting bus size, then
Verilog named port connections must be used to show which
bits of the connecting bus are connected to the port. Port
sizes and connecting nets or buses must match.

accum accum (.dataout(dataout[7:0]),
 .datain(alu_out), .*);

In the above example, the lower 8 bits of a 16-bit dataout bus
are connected to an 8-bit dataout port. Although the names
matched, the sizes did not match so a named port connection was
required. In this same example an 8-bit alu_out bus is
connected to an 8-bit port with a different name (datain).

(5) If a port size is larger than a connecting bus or net size, then
Verilog named port connections must be used and a
concatenated bus of matching size (using constants, nets and
or buses) must be connected to the port. Port sizes and
connecting nets or buses must match.

mymod1 u1 (.din({4'b0,nibble}), .*);

In the above example, a 4-bit nibble bus is connected to an 8-
bit din port so the 4 MSBs are connected to 0's through the use
of a concatenation of 4'b0 and the 4-bit nibble bus.

(6) All unconnected ports must be shown as named empty port
connections. Empty ports cannot be omitted, unlike in
Verilog-2001 instantiations.

alu alu (.zero(), .ones(), .*);

In the preceding example, the zero and ones ports are left
unconnected so they must be explicitly listed.

(7) All internal 1-bit nets must be declared. In Verilog-2001
designs, undeclared identifiers automatically turned into 1-
bit wires. For SystemVerilog, 1-bit nets connected to .* or
.name implicit ports must be declared. Empty ports cannot
be omitted, unlike in Verilog-2001 instantiations.

(8) According to IEEE Std 1800-2005, it is legal to mix
SystemVerilog .* and .name implicit port connections in the
same instantiation. The need to do this is rare and is only
required when SystemVerilog packages are used to make
declarations.

4.3 Comparing Verilog-2001 to
SystemVerilog .* implicit ports
The comparisons between Verilog-1995/2001 positional or named
port connections to SystemVerilog .* implicit port connections
are shown in the following table.

Table 1 - Verilog port connections compared to SV implicit
port connections

Verilog-2001 Port
Connections

SystemVerilog .* Ports

If the port size does not match
the connecting net or bus

• port-size mismatch
WARNING

• simulations run without
modification (this is almost
always an error)

If the port size does not match
the connecting net or bus

• port-size mismatch ERROR

• sizes must be corrected
before simulations will run

Omitting ports from the
instantiated module

• LEGAL !! - no warning

• simulations run without
modification and treat the
unlisted port as an
unconnected port

Omitting ports from the
instantiated module

• ERROR

• must list all unconnected
ports before simulations will
run

Undeclared 1-bit wires in top
module

• LEGAL !! - no warning

• implicitly creates 1-bit wires

Undeclared 1-bit wires in top
module

• ERROR

• all implicitly connected ports
require an upper-level net
declaration, including 1-bit
wires

What does this mean? It means that using .* implicit ports permits
the creation of more concise top-level designs with stronger port
type checking. This is a win-win enhancement!

So why not add the additional checking to Verilog-2001 ports?
The stronger port type checking cannot be added to Verilog-2001
style port connections for reasons of backward compatibility. The
stronger port type checking would break too many existing
designs.

4.4 Abstraction and fear
Many engineers are very enthusiastic about .* (myself included)
while others are terribly afraid of the abbreviated syntax because
they cannot see the port lists of instantiated modules.

When SystemVerilog .* implicit port connections were first
introduced to engineers, about half of the engineers I taught
enthusiastically embraced the use of .* implicit ports while the
other half expressed fear related to debugging a design where the
port names were not visible. For this reason, a large number of
engineers elected to use .name implicit port connections instead
of the more concise .* implicit ports. I was frustrated that I could

DAC 2008 SystemVerilog Implicit Ports Enhancements
Rev 1.1 Accelerate System Design & Verification

5

not convince more engineers to use the simple, elegant and more
concise .* implicit ports.

I questioned how was I going to get more engineers excited about
using the new .* implicit ports over using .name implicit ports.

5. VERILOG EMACS MODE PORT
EXPANSION
At the urging of my colleague and friend, Erich Whitney[3], I
approached Wilson Snyder to see if he could offer support for .*
implicit ports in his Verilog EMACS mode[7]. Wilson's EMACS
mode already supported the insertion of /*AUTOINST*/, which
offered support for the exact same capability that we wanted with
.*. The request was made to Wilson in early November, 2005 and
the first version of the EMACS mode with .* implicit port-
expansion support was ready by the end of the same month.

5.1 EMACS basic setup
There were two main issues that had to be addressed to make .*
support within EMACS a reality: (1) automated port expansion
and collapsing of implicit ports, and (2) finding all the files of the
instantiated modules so they could be used to match and check the
port expansions. The second requirement could be most easily
satisfied if the Verilog EMACS mode could recognize common
Verilog command line options and simple Verilog command files.

If all of the design files are in the same directory, the EMACS
mode can expand and collapse the ports automatically with no
additional information provided to the EMACS Verilog mode.

The EMACS command sequence to expand all the ports for
debugging is ctl-c ctl-a (often abbreviated as (C-cC-a) by EMACS
users).

Note: the EMACS mode cannot expand and collapse .name
implicit ports.

When the alu_accum3 module of Example 3 is edited using the
new EMACS Verilog mode, and when the .* implicit ports are
expanded by issuing the command-key sequence (C-cC-a), the
design is expanded as shown in Example 5

module alu_accum3 (
 output [15:0] dataout,
 output zero,
 input [7:0] ain, bin,
 input [2:0] opcode,
 input clk, rst_n);

 logic [7:0] alu_out;

 alu alu (
 .zero(), .ones(), .*,
 // Outputs
 .alu_out (alu_out[7:0]), //Implicit .*
 // Inputs
 .ain (ain[7:0]), //Implicit .*
 .bin (bin[7:0]), //Implicit .*
 .opcode (opcode[2:0])); //Implicit .*

 accum accum (
 .dataout(dataout[7:0]),
 .datain(alu_out), .*,

 // Inputs
 .clk (clk), //Implicit .*
 .rst_n (rst_n)); //Implicit .*

 xtend xtend (
 .dout(dataout[15:8]),
 .din(alu_out[7]), .*,
 // Inputs
 .clk (clk), //Implicit .*
 .rst_n (rst_n)); //Implicit .*
endmodule
Example 5 - alu_accum3 design with EMACS expanded ports

After debugging the alu_accum3 module and when there is no
more need to see all of the additional named ports, the expanded
ports can be easily collapsed. The EMACS command sequence to
collapse all of the ports is: (C-cC-k)

module alu_accum3 (
 output [15:0] dataout,
 output zero,
 input [7:0] ain, bin,
 input [2:0] opcode,
 input clk, rst_n);

 logic [7:0] alu_out;

 alu alu (.zero(), .ones(), .*);

 accum accum (.dataout(dataout[7:0]),
 .datain(alu_out), .*);

 xtend xtend (.dout(dataout[15:8]),
 .din(alu_out[7]), .*);
endmodule

Example 6 - alu_accum3 design with ports collapsed by
EMACS

Note that the EMACS mode will automatically collapse the ports
when the EMACS editor buffer is saved.

5.2 EMACS mode file-trailer comments
In reality, it is rare to find all of the necessary files for a large
design in a single directory. Most Verilog power-users use
command files with command options to designate the locations
of all of the design files. Assuming that the command file is
named run.f and that the command file is in the same directory
as the top-level file that uses .* implicit ports, then it is a simple
matter to add the following four lines of comment-code to the
bottom of the top-level design module after the endmodule
statement:

// Local Variables:
// mode: Verilog
// verilog-library-flags:("-f run.f")
// End:

With this EMACS directive explicitly placed at the bottom of the
top-level design, the EMACS Verilog mode will now search all of
the necessary design files to match and expand all of the ports for
the top-level instantiations.

DAC 2008 SystemVerilog Implicit Ports Enhancements
Rev 1.1 Accelerate System Design & Verification

6

The expansion and collapsing of ports is done for all instances in
the active module scope, which makes it easy to debug the design.
When the debugging task is complete executing the command
sequence (C-cC-k), or saving the design buffer will automatically
collapse all of the expanded ports to save the very concise .*
version of the design.

5.3 .* Adoption
As noted earlier, about one half of he engineers that I used to train
would not use .* because they were afraid that .* designs would
be difficult to debug. Now that I can use the EMACS Verilog
mode to demonstrate an easy way to expand and collapse ports to
help debug designs, I no longer hear objections to using the .*
implicit ports.

5.4 EMACS -vs- vi
I am a vi and vim user and have not seriously used EMACS in
over 10 years. The intent of this paper is not to convince you that
you should abandon all other editors and exclusively use
EMACS. Even though I continue to primarily use vi and vim for
almost all file editing, when I need to do automated port
expansion for design debug, I now open the .* version of the
design using Wilson's EMACS mode and with a couple of
keystrokes I can easily expand the ports for debugging purposes,
and then collapse the ports for storage and normal use.

6. CONCLUSIONS
Early experimentation using the .* implicit port connections
indicates that the amount of code required to build large top-level
ASIC and FPGA designs can be reduced by 40-70% and that the
more concise designs are debugged much quicker due to the
strong port checking enforced by the .* implicit port rules.

It should be noted that a recent clarification by the SystemVerilog
Standards Group has ruled that the .name implicit port
connections do not require listing of unconnected ports. Although
the original intent was to enforce listing of unconnected ports
using the .name implicit port style, the IEEE 1800-2005 Standard
was somewhat ambiguous on this point and later attempts to add
clarification notes to enforce the restriction were rejected because
vendors had already permitted users to omit the unconnected ports
and the clarification would have imposed a potential backward
compatibility issue for some users. For this reason, I now consider
this to be another good reason to adopt .* implicit ports over the
.name implicit port style (stronger port checking using .*).

Wilson Snyder's enhancements to the Verilog EMACS mode
makes it easy to expand and collapse ports when debugging is
necessary, so there is no compelling reason not to employ the
new, more concise, and more strongly checked .* implicit port
connection style.

Also note that the Verilog EMACS mode cannot expand and
collapse the .name implicit port connection style.

7. ACKNOWLEDGMENTS
Supreme kudos to Wilson Snyder for implementing .* port
expansion and collapsing in the EMACS Verilog mode. Also a

special thanks to Heath Chambers for reviewing and
recommending improvements to this paper.

8. REFERENCES
[1] Clifford E. Cummings, “SystemVerilog Implicit Port

Enhancements Accelerate System Design & Verification,”
SNUG (Synopsys Users Group) September 2007 (Boston,
MA), September 2007. Also available at
http://www.sunburst-design.com/papers

[2] Clifford E. Cummings, “SystemVerilog Implicit Port
Connections - Simulation & Synthesis,” DesignCon 2005
(Santa Clara, CA), February 2005. Also available at
http://www.sunburst-design.com/papers

[3] Erich Whitney, personal communication.

[4] "IEEE Standard Verilog Hardware Description Language,"
IEEE Computer Society, IEEE, New York, NY, IEEE Std
1364-2001

[5] "IEEE Standard For SystemVerilog - Unified Hardware
Design, Specification and Verification Language," IEEE
Computer Society, IEEE, NY, NY, IEEE Std 1800-2005

[6] SystemVerilog 3.1a Language Reference Manual,
Accellera’s Extensions to Verilog, Accellera Organization,
Inc., Napa, CA, 2004. Available at www.eda.org/sv

[7] Veripool web site: http://www.veripool.com

9. Author & Contact Information
Cliff Cummings, President of Sunburst Design, Inc., is an
independent EDA consultant and trainer with 26 years of ASIC,
FPGA and system design experience and 16 years of
SystemVerilog, synthesis and methodology training experience.

Mr. Cummings has presented more than 80 SystemVerilog
seminars and training classes in the past five years and was the
featured speaker at the world-wide SystemVerilog NOW!
seminars.

Mr. Cummings has participated on every IEEE & Accellera
SystemVerilog, SystemVerilog Synthesis, SystemVerilog
committee, and has presented more than 40 papers on
SystemVerilog & SystemVerilog related design, synthesis and
verification techniques.

Mr. Cummings holds a BSEE from Brigham Young University
and an MSEE from Oregon State University.

Sunburst Design, Inc. offers World Class Verilog &
SystemVerilog training courses. For more information, visit the
www.sunburst-design.com web site.

Email address: cliffc@sunburst-design.com

An updated version of this paper can be downloaded from the
web site: www.sunburst-design.com/papers

 (Last updated November 21, 2008)

