
THE IEEE VERILOG-2001 SIMULATION TOOL SCOREBOARD

Clifford E. Cummings - Sunburst Design, Inc., Beaverton, OR

POST-DVCon NOTES (Rev 1.2):

The testing of so many simulators and synthesis tools proved to be more than I could do in a
reasonable amount of time, so this paper only focuses on simulators and the title of the paper was
changed to reflect this fact. Perhaps I will get around to testing synthesis tools by the next DVCON.

Verilog-XL was removed from the compliance tables because Cadence does not intend to add
support for Verilog-2001 features to Verilog-XL. See Section 12.0 for more details.

ABSTRACT

Verilog-2001 added many valuable enhancements to the IEEE1364-1995 Verilog Standard, but
when can we safely use them? When the full suite of tools used by your company to do design all support
Verilog-2001 enhancements, your company can safely start taking advantage of the enhancements.

This paper details a number Verilog-2001 coding examples and indicates which simulation tools
support the enhancement. This paper is not intended to run performance benchmarks against the different
simulation vendors and indeed does not include performance data. This paper is intended to inform the
Verilog design and synthesis community which Verilog-2001 enhancements have been implemented by
the various vendors so that the end-user can scan the list of vendors for implemented enhancements to
determine when their company can start coding with the enhanced Verilog-2001 coding styles.

This paper includes multiple "scorecards" (tables) to show which simulation vendors support the
important Verilog-2001 enhancements. The latest version of tools from major EDA vendors are
represented on the "scorecards."

1.0 Introduction
The IEEE Verilog-2001 Standard introduced a number of enhancements intended to make

designs more concise and more powerful. Stuart Sutherland has published a book on Verilog-2001
enhancements and ordered those enhancements by number. This paper re-orders the enhancements,
according to user requested priorities and RTL-coding partitions, but I do cross reference the
enhancements discussed in this paper with the enhancement numbers as reported in Sutherland's book for
easy correlation.

At the time that this paper went to publication, I was not done testing as much as I had wanted.
This paper will continue to be updated and readers are encouraged to go to the Sunburst Design web
page referenced at the end of this paper to download copies of this paper with updated information.

DVCon 2003 2 The IEEE Verilog-2001
Rev 1.2 - Last Update - 04/08/2003 Simulation Tool Scoreboard

2.0 Test Suite and Tool Versions
Simulation tools that were tested with the beta version of the Sunburst Design Basic Verilog-

2001 Compliance Commercial Test Suite, included (abbreviations used in the tables):
[SR#] Sutherland Reference # - Verilog 2001
VCS - Synopsys, VCS version 7.0
SS - Synopsys SystemSim version 2.1.1 (the Superlog simulator)
MTI - Model Technology ModelSim version 5.7
NC - Cadence NC-Verilog version 4.2 (beta)
SIL - Simucad Silos version 2002.100
VXL - Cadence Verilog-XL - will not support Verilog-2001. See Section 12.0.

2.1 KEY - Table abbreviations
Some abbreviations were used in the tables shown in this paper. The following abbreviations were

used in the compliance data tables.
X - Feature is supported
- - Feature not supported - syntax error reported
IG - Syntax was ignored - feature not supported
MSG - Tool recognized the syntax but gave a message indicating that the feature is not yet supported.

3.0 Top Five Enhancements
At the International Verilog Conference (IVC) in 1996, a "Birds Of a Feather" panel session was

held where panelists and audience members submitted enhancement ideas and the entire group voted for
the top-five enhancements that they wanted added to the Verilog language.

Although numerous enhancements were ultimately considered and many enhancements added to
the Verilog 2001 Standard, the top-five requested enhancements were:

#1 - Verilog generate statement
#2 - Multi-dimensional arrays
#3 - Better Verilog file I/O
#4 - Re-entrant tasks
#5 - Better configuration control

3.1 #1 Generate Statements
Verilog generate statements are divided into three main groups: the generate for-loop, the

generate if-else statement and the generate case statement. In conversations with vendors, the flexibility
of the Verilog generate for-loops seems to be proving the most difficult aspect to implement of this
requested enhancement.

As shown in Table 1, vendors have started to implement the generate statements but as of this
publication, none of the vendors had supported nested generate for-loops. Future testing will also
examine generate for-loops with non-contiguous incrementing and decrementing.

3.2 Array of Instance
It should be noted that most contiguous generate for-loops could be more easily coded using the

Array of Instance construct that was added to Verilog-1995 and is now well supported by vendors.
Engineers should think first about the array of instance and then fall back to a generate for-loop. For

DVCon 2003 3 The IEEE Verilog-2001
Rev 1.2 - Last Update - 04/08/2003 Simulation Tool Scoreboard

instantiating a simple contiguous set of I/O pads, the array of instance is better supported and far simpler
than an equivalent generate for-loop.

Table 1 - Verilog-2001 - The Top Five Requested Enhancements

[SR#] Top-Five Requested Enhancements VCS SS MTI NC SIL

Verilog-1995 Array of Instance X X X X X
[36] (1) generate for-loop X X X - ??
[36] (1) nested generate for-loop - - - - -
[36] (1) generate if-else X X X - X
[36] (1) generate if-else-if X X X - BUG

[36] (1) generate case X X X - X
[15-17] (2) multi-dimensional arrays X X X - -
[16] (2) 2-D array of reals - X X - -
[30-31] (3) enhanced file I/O X X X X X
[30] (3) file I/O opening files for modification X X X - X
[7] (4) automatic tasks X X MSG X -

(4) recursive functions (Verilog-1995) X X X X -
[8] (4) recursive automatic functions X X MSG X -
[37] (5) Verilog configuration files - - - - -
?? - The generate for-loop is almost useless without multi-dimensional arrays

3.3 #2 Multi-Dimensional Arrays
Verilog-2001 permits the declaration and use of multidimensional arrays. Former Verilog-1995

restrictions that only allowed two dimensional arrays, and then only word access into the arrays, have
been removed. The Sunburst suite tested 2-D arrays with word, part-select and bit access as well as 3-D
arrays also with word, part-select and bit access. The suite also tested for 2-D declarations of real values.

3.4 #3 Enhanced File I/O
Verilog-2001 offers much more powerful file I/O and string manipulation capability over Verilog-

1995. As of this date, the Sunburst suite is incomplete in testing all of the numerous new file I/O
capabilities, but the suite will be expanded and used to do additional testing of vendor tools. The suite did
open and close files using every new read, write and append mode, and did some other file I/O testing.
Although the file I/O capabilities are now native to many simulation tools, users can still download a
nearly identical set of capabilities using PLI routines from Chris Spear's web site, referenced at the end of
this paper. Many of the Verilog-2001 file I/O enhancements were patterned after Chris' pre-existing file
I/O PLI routines.

3.5 #4 Reentrant Tasks and Functions
Verilog-1995 tasks and functions use static variables, which means that a task with delays that is

called a second time before the first invocation is finished, will share common-static variable, usually with
undesirable results. Verilog-2001 allows users to add the keyword "automatic" to Verilog tasks and
functions to force the automatic versions to dynamically allocated variables for each task or function call.

Some simulators have started to support automatic tasks and functions, while other simulators
like ModelSim do not support this functionality yet but give a cute message that "this Verilog-2001
feature is not yet supported."

DVCon 2003 4 The IEEE Verilog-2001
Rev 1.2 - Last Update - 04/08/2003 Simulation Tool Scoreboard

In the testing that I did with recursive function calls, I noted that some vendors even partially
support recursive function calls in Verilog-1995 while others do not.

3.6 #5 Verilog Configuration Files
Verilog-2001 configuration files are intended to give the user better control of binding files to

instances in a design during simulation (to replace the ugly and non-standard `uselib directive) while
also offering a language method for selecting library directories (to replace the command line switches -y
and +libext) as well as library files (to replace the -v command line switch). Verilog configuration files
add new keywords such as library, config-endconfig, design, default, liblist and instance.

Unfortunately, none of the vendors tested supports any of the features of this valuable design-
control enhancement.

4.0 The ANSI-Port Enhancements
ANSI style port enhancements provide a concise, non-redundant way to make port declarations in

Verilog-2001. The most useful and powerful form of ANSI style ports is making port directions, data
types and port names all in the same declaration and all vendors seem to support this correctly with one
notable exception. Some vendors seem to have problems when port directions are separated from explicit
wire declarations. Although the latter is the less important part of the enhancements, it is nonetheless
annoying.

ANSI style parameters, vital to supporting parameterized reusable or re-sizable models is
somewhat poorly supported or subject to bugs. Equally important is the ability to redefine parameters on
an instance by instance basis, and support for the new named parameter passing capability is also
somewhat shaky from some vendors.

Cleaning up ANSI style module ports and parameters should be a priority for every vendor.
Under the category of credit where credit is due, ModelSim passed all of the ANSI port tests in the
Sunburst Design Basic Verilog-2001 Compliance Test Suite. Kudos to the ModelSim team for getting it
right!

Vendors have mixed records of success when it comes to extending ANSI styles to tasks,
functions, User Defined Primitives (UDPs), etc., but again, these are not as commonly needed as the
ANSI style ports. ANSI support for tasks and functions is still relatively important but should be
implemented.

Table 2 - Verilog-2001 - ANSI-Port Enhancements

[SR#] ANSI Port Enhancements VCS SS MTI NC SIL
[1] Combined port-data type declarations X X X X X
[1] Combined port-data types - explicit wires X BUG X X BUG

[2] ANSI style module ports X X X X X
[3] ANSI style parameters - BUG X X X
[27] Named parameter redefinition X X X X X
[6] ANSI style task/function ports X X X X X
[4] ANSI style UDP ports - - X - X
[26] Real & integer parameters - X X - -
[26] Sized parameters IG IG X IG IG

DVCon 2003 5 The IEEE Verilog-2001
Rev 1.2 - Last Update - 04/08/2003 Simulation Tool Scoreboard

5.0 The Fundamental RTL Enhancements
There is another subset of Verilog-2001 enhancements that is important to RTL coders and that

should not be too hard to implement, this is the fundamental RTL enhancement subset.

5.1 Comma-Separated Sensitivity Lists
In VHDL, the signals in a process sensitivity list are separated by commas. In Verilog the signals

are separated by the "or" keyword. This means that a Verilog sensitivity list is generally more verbose
than an equivalent VHDL sensitivity list. I personally found this to be offensive! We added comma-
separated sensitivity lists to Verilog and this really should be the simplest of enhancements to implement,
but one vendor flagged the comma as an error when placed into a sensitivity list with posedges and
negedges and another vendor did not support it at all! This should be fixed post haste!

5.2 The @* Combinational Sensitivity List
Even better than the comma separated sensitivity list is the very concise @* combinational

sensitivity list. The @* basically was added to mean, if the synthesis tool wants it, then so does the
simulator! Note that although, @(*) is also currently a legal form of this sensitivity list, there is some
consideration being made by the Verilog standards groups to remove support for this form. The problem
is that (* is also the opening delimiter for the new Verilog-2001 attributes, and tool vendors have
complained about the difficulty in distinguishing between the two. I personally would support removal of
the @(*) style, and if your company writes any in-house tools, adopting a coding standard that prohibits
@(*) will probably make your tool-creation job easier.

Guideline: Use @* for combinational sensitivity lists and do not use @(*)
Some vendors are doing a good job of supporting the @* feature while one vendor has

implemented the SystemVerilog always_comb statement, which is currently a slight super-set of the @*
capability. It would be nice to have the @* capability implemented universally by all vendors.

5.3 Implicit Internal 1-bit Wire Declarations
Verilog-2001 no longer requires that 1-bit internal wires be declared that are driven from

continuous assignments. They should come into existence automatically. This was a non-orthogonal wart
on the Verilog-1995 language. Unfortunately, most vendors still have not fixed this for Verilog-2001.

5.4 `default_nettype none
Verilog-2001 also added a compiler directive to force engineers to declare all variables, including

1-bit wires and port wires for those misguided souls who think that more declarations equates to better
design practices (actually you have now doubled the number of places where you can introduce a typo
into your code but now a typo in a declaration will cause an error to show up on your good RTL code -
hopefully you will spot the error in the declaration instead of severely altering RTL code before realizing
the RTL code really was good the whole time). Only one vendor has correctly implemented this "feature"
but I am not encouraging other vendors to spend much effort on this "enhancement" until the good stuff
has been implemented.

5.5 X & Z Extension Past 32 Bits
Making an assignment of `bz or `bx in Verilog-1995 to a left-hand-side (LHS) variable that is

larger than 32 bits causes only the 32 LSBs to be assigned the X and Z values. This is fixed in Verilog-
2001 but only one vendor has made the change.

DVCon 2003 6 The IEEE Verilog-2001
Rev 1.2 - Last Update - 04/08/2003 Simulation Tool Scoreboard

5.6 Variable Declaration Assignments
Verilog-2001 permits variables to be declared with and initial value. The initial value is assigned

as if it were in an initial block so there is no guarantee that the initial value will be assigned first, and this
coding style is generally not a good idea for synthesizable RTL coding (the real hardware may not be
capable of initializing to the selected value, causing a mismatch between pre- and post-synthesis
simulations).

Some vendors have implemented this feature, some still flag it as an error and one vendor just
ignores the initializations. Although useful, this is not a "must-have" enhancement.

5.7 Enhanced Conditional Compilation
Verilog-2001 adds the `ifndef and `elsif conditional compilation compiler directives to the set

that already includes `ifdef, `else, `endif. Again, all vendors with one notable exception have
implemented this very useful enhancement.

5.8 Standardized Random!
Courtesy of Cadence, the Verilog-2001 Standard now includes the exact code used to generate

random numbers so that a user can get the exact same random numbers using any Verilog simulator.
Testing shows that all simulators have implemented the same $random system function. The Verilog-
2001 standard also standardized the less frequently used random distribution functions and all vendors
have similarly implemented these functions except one. The latter functions are not frequently used by
RTL coders and are not as important to fix as other enhancements.

Table 3 - Verilog-2001 - Fundamental RTL Enhancements

[SR#] VCS SS MTI NC SIL
[10] Comma-separated - combinational logic X X X X X
[10] Comma-separated - sequential logic X X X X X
[11] @* combinational sensitivity list X X X X X
[25] Single attributes X - - - -
[25] Multiple attributes - - - - -
[12] Implicit internal 1-bit wires - - X X X
[13] `default nettype none - - BUG X -
[23] X & Z extension past 32 bits - - - X -
[5] Variable declaration assignments X IG X X -
[34] Enhanced conditional compilation X X X X -
[26] Standard random number generation X X X X X
[26] Standard distribution number generation BUG X X X BUG

DVCon 2003 7 The IEEE Verilog-2001
Rev 1.2 - Last Update - 04/08/2003 Simulation Tool Scoreboard

6.0 Signed Arithmetic and Power Operator
Signed arithmetic was a much requested enhancement to the Verilog-2001 language. Although all

vendors have addressed signed arithmetic, a couple of the implementations have a few notable bugs. A
rule of thumb to remember when working with Verilog signed arithmetic is that all operands and the
destination must all be signed variables, otherwise you generally end up with an unsigned result.

The power operator has also been implemented by a subset of the simulation tool vendors.

Table 4 - Verilog-2001 - Signed Arithmetic & Power Operator Enhancements

[SR#] VCS SS MTI NC SIL
[18-22] Signed arithmetic X X BUG X -
[24] Power operator X X X - -

7.0 IP Block Enhancements
Two enhancements added to the Verilog language to assist in the development of robust

Intellectual Property (IP) blocks are the localparam and the constant function.

7.1 localparam
The new localparam keyword makes it possible to declare parameters that cannot be changed by

defparam or other parameter redefinition techniques. The localparam will generally be calculated from
other parameters that are passed to a module.

One example would be to calculate the memory depth of a RAM device based on the size of the
address bus. Allowing a user to modify both the address bus size and the memory depth could lead to
incompatible parameter values. Vendors have been slow to implement this useful enhancement.

7.2 Constant Functions
A constant function is a function that is run at compile time to calculate values that will be used to

size portions of a design or to assign logical values to parameters based on other parameter values.
One example would be to calculate the ceiling of the log base-2 of a number, such as calculating

the number of address bits that are required to address an odd-sized memory.
Although a very useful enhancement, this is going to be a hard enhancement to implement and

may take some time to show up in a vendor's tool. This enhancement is very important to IP developers
who are trying to create complex parameterizable models.

Table 5 - Verilog-2001 - IP Block Enhancements

[SR#] VCS SS MTI NC SIL
[28] localparam - X BUG - -
[9] Constant functions - - - - -

DVCon 2003 8 The IEEE Verilog-2001
Rev 1.2 - Last Update - 04/08/2003 Simulation Tool Scoreboard

8.0 Miscellaneous Nice Enhancements
Other nice enhancements that were added to Verilog-2001 include enhanced +command option

testing, constant part-select indexing and a standardized SDF $sdf_annotate command.

8.1 Enhanced +Command Option Testing
Verilog-1995 had the ability to recognize +command options using the $test$plusargs system

function to initiate specific desired simulation activity. Veilog-2001 adds the ability to read the values of
the +command options using the $value$plusargs system function. Implementation by vendors ranges
from sporadic to buggy.

One interesting note is that verification teams often like to use the +all user-define plusarg to tell
a compiled regression suite to run all tests. When I tried this with NC-Verilog, I discovered that NC-
Verilog already has +all reserved for a tool-specific command (ouch!)

8.2 Constant Part-Select Indexing
Verilog does not permit variable part-select indexing in a for-loop, even if the part-select really is

a fixed width. Most Verilog users avoid this problem by using a shift operator to get the desired bits
moved to the correct position for assignment. Verilog-2001 adds +: and -: tokens that permit a fixed
width to be specified on the right-hand side of the token. A couple of vendors have implemented this
enhancement and one vendor has implemented it with bugs.

Table 6 - Verilog-2001 - Miscellaneous Enhancements

[SR#] VCS SS MTI NC SIL
[33] $value$plusargs BUG - X (+all) -
[14] Constant part-selects +: -: X X X - -

8.3 Standard $sdf_annotate
Although not tested in the current compliance suite, most vendors have recognized the standard

$sdf_annotate command for years. Now it is just official.

9.0 Non-Tested Enhancements
There are other Verilog-2001 enhancements that have not yet been tested by the Sunburst suite,

these include: the line-file compiler directive (Sutherland #35), a series of enhancements added to increase
the accuracy of Verilog ASIC models and timing (Sutherland 38-41), Extensions to VCD files, enhanced
PLA system tasks and enhanced PLI support for Verilog-2001 (Sutherland 43-45).

Tests for these enhancements may be added at a later date, but these are enhancements that
should be driven and verified by ASIC library modelers and Verilog tool vendors.

10.0 Conclusions
In the first revision of this paper, I found it disappointing to find that there was no Verilog-2001

subset that was reliably supported by all vendors. In revision 1.2, I found that ANSI-style module ports
and both comma-separated and @* sensitivity lists are now supported by the simulation vendors I tested.
If your company uses a certain subset of the tools shown in this paper, you should be able to identify
Verilog-2001 features that are fairly safe to use now.

One thing that vendors have told me time and time again, is that they prioritize their development
efforts based on their users feedback. After looking at these tables, perhaps you and your company can

DVCon 2003 9 The IEEE Verilog-2001
Rev 1.2 - Last Update - 04/08/2003 Simulation Tool Scoreboard

do some serious pounding on your favorite vendor to get certain important features implemented by all of
your chosen vendors.

Make your requests known. The more you pester your vendor the quicker the vendor will
dedicate resources to the request. If your vendor says they are going to support the new Accellera
SystemVerilog enhancements, ask them when they intend to support the Verilog-2001 enhancements!

11.0 Acknowledgements and Apologies
I would like to thank the many people from engineering, marketing and sales at Synopsys, Model

Technology, Cadence, Simucad and Mentor for lending their simulation tools to make this evaluation
possible.

12.0 About Cadence's Verilog-XL
For rev1.1 of this paper, I tested and reported compliance data related to Verilog-XL, version 4.2 beta. I
was surprised to discover that Verilog-XL failed almost every single Verilog-2001 compliance test.
Concerned that I would be reporting this situation to hundreds of engineers, I asked Cadence for a
comment. Michael Munsey[7], NC-Verilog Product Marketing Manager for Cadence emailed that
Cadence has,

"no plans either now or in the future to enhance Verilog-XL with Verilog-2001 extensions.
There are no plans to end of life it either ... we still actively support it. Verilog-XL is still used
by a majority of Cadence customers for legacy designs and gate level regression runs. Our
customers who require Verilog 2001 features are all NC-Verilog customers." (Italicized text
added).

Since Cadence has no plans to add Verilog-2001 features to Verilog-XL, Verilog-XL was
removed from the tables in this paper and will not be tested again.

Conclusion - do not use Verilog-XL for any new design work. Either use NC-Verilog or another
Verilog-2001 compliant Verilog simulator.

Revision 1.2 (April 2003) - What Changed?
For the reasons stated in Section 12.0, Verilog-XL was removed from the tables.
I was chided by VCS marketing for not using the latest version of the VCS simulator in the

original paper. Feeling bad, I went to the Synopsys Electronic Software Transfer site and discovered that
the latest version was not listed (now I didn't feel so bad!) VCS 7.0 was released but had not been added
to the Synopsys EST web site (that situation has been corrected); nevertheless, I did acquire VCS version
7.0 and tested it for this revision of the paper. VCS 7.0 did add support for a number of important
Verilog-2001 enhancements and they are reflected in the paper.

I also was able to test Simucad's SILOS 2002.10 version, which has implemented some of the
Verilog-2001 enhancements as shown in the tables.

13.0 References
[1] Clifford E. Cummings, "Verilog-2001 Behavioral and Synthesis Enhancements," Delivered at HDLCON-2001

but missed publication in the Proceedings, March 2001. Available at www.sunburst-design.com/papers

[2] Donald Thomas, and Philip Moorby, The Verilog Hardware Description Language, Fourth Edition, Kluwer
Academic Publishers, 1998

DVCon 2003 10 The IEEE Verilog-2001
Rev 1.2 - Last Update - 04/08/2003 Simulation Tool Scoreboard

[3] IEEE Standard Hardware Description Language Based on the Verilog Hardware Description Language, IEEE
Computer Society, IEEE, New York, NY, IEEE Std 1364-1995

[4] IEEE Standard Verilog Hardware Description Language, IEEE Computer Society, IEEE, New York, NY,
IEEE Std 1364-2001,

[5] Stuart Sutherland, "Verilog 2001 - A Guide to the New Features of the Verilog Hardware Description
Language," Kluwer Academic Publishers, 2002.

[6] www.chris.spear.net

[7] Michael Munsey - personal communication

Author & Contact Information
Cliff Cummings is President of Sunburst Design, Inc., a company that specializes in Verilog,

Verilog synthesis and SystemVerilog training. Mr. Cummings is an independent consultant and trainer
with 21 years of ASIC, FPGA, system design and verification experience and 11 years of Verilog,
synthesis and methodology training experience.

Mr. Cummings has co-authored four Verilog books: the 1995 and 2001 IEEE Verilog Standards,
the 2002 IEEE Verilog RTL Synthesis Standard and the 2002 Accellera SystemVerilog Standard. Mr.
Cummings is the only Verilog trainer to co-develop all four of these standards.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.
E-mail Address: cliffc@sunburst-design.com

An updated version of this paper can be downloaded from the web site:
www.sunburst-design.com/papers

