

World Class SystemVerilog & UVM Training

Using UVM Virtual Sequencers & Virtual Sequences

Clifford E. Cummings
Sunburst Design, Inc.

1639 E 1320 S
Provo, UT 84606

cliffc@sunburst-design.com

Janick Bergeron
Synopsys Inc

2025 NW Cornelius Pass Road
Hillsboro, OR

Janick.Bergeron@synopsys.com

ABSTRACT

This paper will clarify important concepts and usage techniques related to virtual sequencers and virtual
sequences that are not well documented in existing UVM reference materials. This paper will also detail
the m_sequencer and p_sequencer handles and the macros and methods that are used with these han-
dles. The objective of this paper is to simplify the understanding of virtual sequencers, virtual sequences
and how they work.

DVCon	2016	

Page 2 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

Table of Contents
1. Introduction 4

2. When do you need a virtual sequencer? 4

3. Why "virtual" sequencer/sequence 5

4. So why are virtual sequencers and virtual sequences "virtual?" 5

5. Three virtual sequencer modes: 5

6. How are virtual sequencers implemented? 6

6.1 Simplified virtual sequencer implementation 7

7. Sequence Details 7

8. What is the m_sequencer handle? 8

9. What is the p_sequencer handle? 8

10. What is the `uvm_declare_p_sequencer(SEQUENCER) macro? 8

11. Example virtual sequencer testbench 10

12. Virtual sequence base classes. 10

13. Example vseq_base 11

14. Creating virtual sequences 11

15. Calling sequences from virtual sequences 13

16. Starting virtual sequences 14

17. The environment sets the handles in the virtual sequencer 16

17.1 Simplified environment implementation 17

18. m_sequencer handle creation - details 18

19. Summary 18

20. Acknowledgements 18

21. Errata and Changes 18

21.1 Revision 1.1 (September 2019) - What Changed? 18

22. References: 19

23. Author & Contact Information 19

Appendix 1 m_sequencer handle creation - details 20

Appendix 2 UVM virtual sequencer /sequence example code 21

Table of Figures

Figure	1	‐	When	is	a	virtual	sequencer	required?	 4

Figure	2	‐	`uvm_declare_p_sequencer	macro	definition	 9

Figure	3	‐	`uvm_declare_p_sequencer:	casts	m_sequencer	to	p_sequencer	 9

Figure	4	‐	Example	virtual	sequencer	/	sequence	block	diagram	 10

Figure	5	‐	start()	task	method	definition	 20

Figure	6	‐	protected	uvm_sequencer_base	m_sequencer	declaration	and	set_sequencer()	method	 20

DVCon	2016	

Page 3 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

Table of Examples

Example	1	‐	Sample	virtual	sequencer	code	 6

Example	2	‐	Simplified	virtual	sequencer	code	 7

Example	3	‐	Virtual	sequence	base	class	example	called	vseq_base	 11

Example	4	‐	v_seq1	‐	extended	from	vseq_base	‐	uses	`uvm_do_on()	macros	 12

Example	5	‐	v_seq2	‐	extended	from	vseq_base	‐	uses	sequence.randomize()	and	sequence.start()	
methods	 13

Example	6	‐	ahb_pkt.sv	‐	pseudo	AHB	packet	code	 13

Example	7	‐	ahb_seq1.sv	‐	AHB	sequence	code	called	by	virtual	sequences	 14

Example	8	‐	eth_pkt.sv	‐	pseudo	Ethernet	packet	code	 14

Example	9	‐	eth_seq1.sv	‐	Ethernet	sequence	code	called	by	virtual	sequences	 14

Example	10	‐	test_base.sv	‐	declares	and	builds	the	environment	and	prints	the	testbench	structure
	 15

Example	11	‐	test1.sv	‐	declares	a	v_seq1	vseq	handle	and	calls	vseq.start(e.v_sqr)	 16

Example	12	‐	test2.sv	‐	declares	a	v_seq2	vseq	handle	and	calls	vseq.start(e.v_sqr)	 16

Example	13	‐	env.sv	‐	Environment	with	virtual	sequencer	 17

Example	14	‐	env.sv	‐	Simplified	environment	code	 18

Example	15	‐	ahb_if.sv	code	 21

Example	16	‐	dut.sv	code	 21

Example	17	‐	eth_if.sv	 22

Example	18	‐	run.f	code	 22

Example	19	‐	tb_ahb_agent.sv	code	 23

Example	20	‐	tb_ahb_driver.sv	code	 23

Example	21	‐	tb_ahb_sequencer.sv	code	 23

Example	22	‐	tb_eth_agent.sv	code	 24

Example	23	‐	tb_eth_driver.sv	code	 25

Example	24	‐	tb_eth_sequencer.sv	code	 25

Example	25	‐	tb_pkg.sv	code	 26

Example	26	‐	top.sv	code	 27

DVCon	2016	

Page 4 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

1.	Introduction	

What are virtual sequencers and virtuals sequences and when should they be used?

Tests that require coordinated generation of stimulus using multiple driving agents need to use virtual se-
quences.

This paper will clarify important concepts and usage techniques related to virtual sequencers and virtual
sequences that are not well documented in existing UVM reference materials. This paper will also detail
the m_sequencer and p_sequencer handles and the macros and methods that are used with these han-
dles. The objective of this paper is to simplify the understanding of virtual sequencers, virtual sequences
and how they work.

2.	When	do	you	need	a	virtual	sequencer?	

Figure 1 shows when virtual sequencers are required.

Figure	1	‐	When	is	a	virtual	sequencer	required?	

If you only have a single driving agent, you do not need a virtual sequencer.

If you have multiple driving agents but no stimulus coordination is required, you do not need a virtual se-
quencer.

If you have multiple driving agents and stimulus coordination IS required, you need a virtual sequencer.

DVCon	2016	

Page 5 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

It should be noted that if a testbench with multiple agents and non-coordinated stimulus is ever extended
in the future to require coordinated stimulus, then the environment will require updates to include one or
more virtual sequencers. Those updates, performed later in the project, could be quite painful as opposed
to building in a virtual sequencer from the beginning and taking advantage of the virtual sequencer when
needed. Engineers might want to make a habit of adding the virtual sequencer in most of their UVM
testbenches.

3.	Why	"virtual"	sequencer/sequence	

SystemVerilog has virtual classes, virtual methods and virtual interfaces and all three require the "virtual"
keyword.

UVM has virtual sequencers and virtual sequences but neither one requires the "virtual" keyword. There
are no uvm_virtual_sequencer or uvm_virtual_sequence base classes in UVM. All sequencers
and virtual sequencers are derivatives of the uvm_sequencer class and all sequences and virtual sequences
are derivatives of the uvm_sequence class.

4.	So	why	are	virtual	sequencers	and	virtual	sequences	"virtual?"	

Three attributes of a virtual sequencer are:

 It controls other sequencers.
 It is not attached to a driver.
 It does not process items itself.

A virtual sequencer is not connected to a driver. Instead of executing
individual sequence items on a driver via a sequencer port, it executes
sub-sequences and sequence items on sequencers via handles to sub-
sequencer targets. The UVM User guide[3] sometimes refers to the
subsequencers as "driver-sequencers." A virtual sequencer is "virtual"
because typically an engineer is not really running sequences on this
sequencer, the sequences are being run on the subsequencers via han-
dles defined in the virtual sequencer.

A virtual sequence can run multiple transaction types on multiple real
sequencers. The virtual sequence is typically just coordinating execu-
tion of the other sequences on the appropriate subsequencers.

5.	Three	virtual	sequencer	modes:	

The UVM User Guide describes three ways a user can use virtual sequences to interact with subsequenc-
ers: (1) "Business as usual" (also known as parallel traffic generation), (2) Disable subsequencers, and (3)
Use grab() and ungrab().

The UVM User Guide claims that "most users disable the subsequencers and invoke sequences only from
the virtual sequence," but our experience and the experience of many verification colleagues is that the
most popular virtual sequencer mode is parallel traffic generation, also known as "business as usual." This
is the mode that is described in this paper.

DVCon	2016	

Page 6 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

6.	How	are	virtual	sequencers	implemented?	

A virtual sequencer is little more than a component providing a locus and scope to configure virtual se-
quences and provide handles to the subsequencers that will be required by virtual sequences.

The code for a virtual sequencer is rather simple. The subsequencer handles declared in the virtual se-
quencer will be specified, via the configuration database, after all components are built (after the
build_phase()) and are typically set by the environment in the connect_phase().

Consider the virtual sequencer code in Example 1.

class vsequencer extends uvm_sequencer;
 `uvm_component_utils(vsequencer)
 tb_ahb_sequencer ahb_sqr;
 tb_eth_sequencer eth_sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void end_of_elaboration_phase(uvm_phase phase);
 super.end_of_elaboration_phase(phase);
 if (!uvm_config_db#(tb_ahb_sequencer)::get(this, "", "ahb_sqr", ahb_sqr))
 `uvm_fatal("VSQR/CFG/NOAHB", "No ahb_sqr specified for this instance");

 if (!uvm_config_db#(tb_eth_sequencer)::get(this, "", "eth_sqr", eth_sqr))
 `uvm_fatal("VSQR/CFG/NOETH", "No eth_sqr specified for this instance");

 endfunction
endclass

Example	1	‐	Sample	virtual	sequencer	code	

Example 1 is a typical structure for a virtual sequencer. The user-selected name for this example is vse-
quencer. Virtual sequencers are extended from uvm_sequencer, NOT uvm_virtual_sequencer
(which does not exist). Unlike normal sequencers, the virtual sequencer of Example 1 is not user-parame-
terized to a transaction type because this sequencer will be able to execute multiple transaction types. Ex-
tending a virtual sequencer from the uvm_sequencer base class without any parameters means that the
virtual sequencer will use the default parameterized values of uvm_sequence_item.

The virtual sequencer declares subsequencer handles. In Example 1, the subsequencer handles are called
ahb_sqr and eth_sqr respectively. These two subsequencer handles will be assigned from values spec-
ified in the configuration database during the end_of_elaboration_phase().

Unlike Transaction Level Model (TLM) connections that are used to connect most components in a UVM
testbench, the subsequencer handles are not set using a TLM connect() method, but are specified by the
environment using the configuration database. It is then the job of the virtual sequencer to extract those
handles from the configuration database and assign them to the two handles declared in the virtual se-
quencer. The actual subsequencers will be created in the build_phase(). Therefore, their handles will
only be available to be put in the configuration database by the environment in its connect_phase().
Thus, the virtual sequencer will have to retrieve them in the next phase: end_of_elabora-
tion_phase().

DVCon	2016	

Page 7 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

Finally, the vsequencer example includes the typical new() constructor that is common to all UVM
components.

It can be seen from this example, that the vsequencer is just a container for the handles to subsequenc-
ers and other configuration parameters. The virtual sequences assume the virtual sequencer has been
properly configured before the virtual sequences execute in the run_phase(). They can then access
these configuration parameters in the virtual sequencer via their p_sequencer handle.

6.1	Simplified	virtual	sequencer	implementation	

The authors have also used a simplified version of the virtual sequencer. The simplified version does not
retrieve the subsequencer handles from the uvm_config_db and therefore does not need the
end_of_elaboration_phase() method.

In the simplified version of the vsequencer, shown in Example 2, the subsequencer handles are still de-
clared but instead of the virtual sequencer retrieving the handles from the uvm_config_db, it will be the
job of the environment to copy the subsequencer handles from the instantiated agents to the handles de-
clared in this vsequencer.

class vsequencer extends uvm_sequencer;
 `uvm_component_utils(vsequencer)
 tb_ahb_sequencer ahb_sqr;
 tb_eth_sequencer eth_sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction
endclass

Example	2	‐	Simplified	virtual	sequencer	code	

The env used with the simplified vsequencer is shown in Section 17.1 .

The vsequencer of Example 1 has the advantage that it extracts its subsequencer handles that would be
stored in the uvm_config_db, which might make the Example 1 vsequencer easier to reuse in differ-
ent hierarchies, while the vsequencer in Example 2 is indeed simpler and it is not difficult for the envi-
ronment to copy the subsequencer handles directly into the simple vsequencer.

Cliff typically uses this simplified version of the vsequencer and avoids adding the additional
end_of_elaboration_phase() method.

7.	Sequence	Details	

Sequences are run on a sequencer and are parameterized to the transaction type that is processed by that
sequencer.

Sequences are started on a sequencer using the built-in sequence start() method or by using the
`uvm_do() macros.

DVCon	2016	

Page 8 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

Every sequence has a handle to the sequencer that is running that sequence. That handle is called the
m_sequencer handle.

8.	What	is	the	m_sequencer	handle?	

All sequences are started on sequencers: tr_seq.start(env.vsqr). The `uvm_do macros also exe-
cute this command. After starting a sequence on a sequencer, the m_sequencer handle for the sequence
is set to env.vsqr. The m_sequencer handle is just a handle in every sequence that points to the se-
quencer that is running that sequence and it was set when the start() method was passed the handle of
the sequencer (env.vsqr in this case).

Just like any other sequence, when a virtual sequence is started on a virtual sequencer, using either the
start() method or the `uvm_do macros, the virtual sequence will automatically have an m_sequencer
handle that correctly points to the virtual sequencer.

9.	What	is	the	p_sequencer	handle?	

Frequently asked questions include:

 What is the p_sequencer?
 How is the p_sequencer different from the m_sequencer?

All sequences have an m_sequencer handle but sequences do not automatically have a p_sequencer
handle. Furthermore, the m_sequencer variable is an internal implementation variable that is poorly
documented and should not be used directly by verification engineers. It is an artifact of the SystemVeri-
log language, which lacks C++'s concept of “friend” classes that this variable is public. Any variable or
method with the “m_” prefix should similarly not be used directly.

p_sequencer is not automatically declared and set, but can be declared and set by using the `uvm_de-
clare_p_sequencer macro. As will be shown later in this paper, the `uvm_declare_p_sequencer
macro and p_sequencer handle are user-conveniences.

Technically, the p_sequencer handle is never required but when used with the `uvm_declare_p_se-
quencer macro, it is automatically (1) declared, (2) set and (3) checked when a virtual sequence is
started, and properly points to the virtual sequencer that is running the virtual sequence.

More about the p_sequencer handle and its usage is described below.

10.	What	is	the	`uvm_declare_p_sequencer(SEQUENCER)	macro?	

The `uvm_declare_p_sequencer macro code is defined in the src/macros/sequence_de-
fine.svh file and is rather simple code:

1 `define uvm_declare_p_sequencer(SEQUENCER) \
2 SEQUENCER p_sequencer;\
3 virtual function void m_set_p_sequencer();\
4 super.m_set_p_sequencer(); \
5 if(!$cast(p_sequencer, m_sequencer)) \
6 `uvm_fatal("DCLPSQ", \

DVCon	2016	

Page 9 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

7 $sformatf("%m %s Error casting p_sequencer, please verify that this
7a sequence/sequence item is intended to execute on this type of sequencer",
8 get_full_name())) \
9 endfunction

Figure	2	‐	`uvm_declare_p_sequencer	macro	definition	

The `uvm_declare_p_sequencer(SEQUENCER) macro executes two useful steps:
(1) The macro declares a p_sequencer handle of the SEQUENCER type.
(2) The macro then $casts the m_sequencer handle to the p_sequencer handle and checks to make
sure the sequencer executing this sequence is of the appropriate type.

A closer look at this macro and what it does is instructive. This macro is typically placed in a sequence
base class that will be extended to create all of the sequences that use the designated sequencer, virtual or
not.

On line 1, the user calls this macro and passes the type of the sequencer that will be used by the se-
quences. For virtual sequences, this is the class name of the designated virtual sequencer they will execute
on.

On line 2, the designated sequencer is declared with the handle name p_sequencer. For the remainder
of the code in this macro and everywhere else in the user-defined virtual sequence base and extended vir-
tual sequence classes, the virtual sequencer will be referenced by the name p_sequencer. From this
point forward, there is no need to reference the name of the virtual sequencer that is being used, the user
can simply reference the p_sequencer (virtual sequencer) handle. This is simply a convenience, not a
requirement.

On line 3 is the start of a virtual void function declaration that continues through line 9. The void
function is called m_set_p_sequencer and this function is called whenever a sequence start()
method is called on one of the virtual sequences or when a `uvm_do_on() macro is used to start a virtual
sequence.

Line 4 ensures that if the virtual sequence is an extension of another virtual sequence, the base virtual se-
quence will also execute its own m_set_p_sequencer method.

Line 5 casts the internal m_sequencer handle, which should be the handle of the virtual sequencer to the
local p_sequencer handle declared on line 2. The if-test checks to see if the $cast operation failed
(!$cast(...)) and if the $cast did fail, the fatal message on lines 6-8 will terminate the UVM simula-
tion and report a consistent message that there was a problem casting to the specified virtual sequencer
type, i.e. the sequence is executing on a sequencer of the wrong type. The if-test, $cast operation and
corresponding consistent error message are also shown in Figure 3.

5 if(!$cast(p_sequencer, m_sequencer)) \
6 `uvm_fatal("DCLPSQ", \
7 $sformatf("%m %s Error casting p_sequencer, please verify that this
7a sequence/sequence item is intended to execute on this type of sequencer",
8 get_full_name())) \
(NOTE: the $sformatf() command is one long string on one line of code, lines 7 & 7a, in the macro).

Figure	3	‐	`uvm_declare_p_sequencer:	casts	m_sequencer	to	p_sequencer	

DVCon	2016	

Page 10 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

11.	Example	virtual	sequencer	testbench	

Trying to describe virtual sequencer testbench construction and operation without a block diagram re-
quires a great deal of concentration on the part of the reader, so example files to run virtual sequences on
the virtual sequencer testbench of Figure 4 will be described in this paper. Any files required to run this
simulation that are not described in the body of this paper have been added to Appendix 2 at the end of
this paper.

Figure	4	‐	Example	virtual	sequencer	/	sequence	block	diagram	

The virtual sequencer for this testbench was shown in Example 1. All other testbench files will be de-
scribed in the remainder of this paper.

12.	Virtual	sequence	base	classes.	

All virtual sequences need access to the subsequencer handles defined in the virtual sequencer. To gain
access to the subsequencer handles, virtual sequences need to use the `uvm_declare_p_sequencer
macro to declare and set the p_sequencer variable so the subsequencer handles are readily accessible.

Since every virtual sequence needs to execute these steps, it is recommended to put this code into a virtual
sequence base class (vseq_base) and then create all virtual sequences by extending the vseq_base
class.

DVCon	2016	

Page 11 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

13.	Example	vseq_base	

For the virtual sequencer shown in Example 1, we can use the vseq_base definition shown in Example
3.

class vseq_base extends uvm_sequence;
 `uvm_object_utils(vseq_base)
 `uvm_declare_p_sequencer(vsequencer)

 function new(string name="vseq_base");
 super.new(name);
 endfunction

 tb_ahb_sequencer ahb_sqr;
 tb_eth_sequencer eth_sqr;

 virtual task body();
 ahb_sqr = p_sequencer.ahb_sqr;
 eth_sqr = p_sequencer.eth_sqr;
 endtask
endclass

Example	3	‐	Virtual	sequence	base	class	example	called	vseq_base	

The vseq_base class uses the `uvm_declare_p_sequencer(vsequencer) macro to declare a
p_sequencer handle of the vsequencer type. The vseq_base then declares ahb_sqr and eth_sqr
handles of the same types that were declared in the virtual sequencer shown in Example 1. The
vseq_base then copies the virtual sequencer (p_sequencer) ahb_sqr and eth_sqr handles to the lo-
cal ahb_sqr and eth_sqr handles. The vseq_base class used the p_sequencer handle (which should
have been properly assigned by the `uvm_declare_p_sequencer macro) to copy the handles from the
virtual sequencer to this virtual sequence base class. Using the `uvm_declare_p_sequencer macro, it
was not necessary for the vseq_base class to check the type of the vsequencer class since the macro
setup a void function to perform that check.

Note that the vseq_base class assumes that the handles were already set in the virtual sequencer. It is the
job of the environment to ensure that the subsequencer handles are properly set.

14.	Creating	virtual	sequences	

Once the virtual sequence base class has been created, it is possible to create virtual sequences that are an
extension of the virtual sequence base class. Every virtual sequence that is extended from the virtual base
class inherits the subsequencer handles of the correct type, and already properly assigned.

Consider the two virtual sequence examples shown in Example 4 and Example 5. These sequences are
examples of virtual sequences that are extensions of the base virtual sequence shown in Example 3.

There are two accepted methods for executing sequences in UVM: (1) use the `uvm_do macros, which
are generally considered to be the easiest to use but may also be less simulation efficient (because the sub-
sequences are always allocated and randomized before being executed) and more difficult to understand if
the user ever expands the `uvm_do macro code, and (2) use explicit allocation, and direct assignments or

DVCon	2016	

Page 12 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

calls to randomize() before using the start() method to execute the sequences on the chosen subse-
quencer, which is generally considered to require more user-coding effort but that are straightforward and
allow the creation and execution of more directed sequences.

The Example 4 virtual sequence uses the `uvm_do macros to run a virtual sequence to randomly generate
pseudo-AHB packets followed by two sequences of pseudo-Ethernet packets and concludes with another
sequence of pseudo-AHB packets. The code for the pseudo-ethernet and AHB transactions, along with the
Ethernet and AHB sequences, and the test that runs v_seq1 will be shown later.

class v_seq1 extends vseq_base;
 `uvm_object_utils(v_seq1)

 function new(string name="v_seq1");
 super.new(name);
 endfunction

 virtual task body();
 ahb_seq1 ahb_seq;
 eth_seq1 eth_pkts;
 //---
 super.body();
 `uvm_info("v_seq1", "Executing sequence", UVM_HIGH)
 `uvm_do_on(ahb_seq, ahb_sqr)
 `uvm_do_on(eth_pkts, eth_sqr)
 `uvm_do_on(eth_pkts, eth_sqr)
 `uvm_do_on(ahb_seq, ahb_sqr)
 `uvm_info("v_seq1", "Sequence complete", UVM_HIGH)
 endtask
endclass

Example	4	‐	v_seq1	‐	extended	from	vseq_base	‐	uses	`uvm_do_on()	macros	

The Example 5 virtual sequence uses calls to the randomize() and start() methods to run a virtual
sequence to randomly generate pseudo-AHB packets followed by two sequences of pseudo-Ethernet
packets and concludes with another sequence of pseudo-AHB packets. The code for the pseudo-ethernet
and AHB packets, along with the Ethernet and AHB sequences, and the test that runs v_seq2 will be
shown later.

class v_seq2 extends vseq_base;
 `uvm_object_utils(v_seq2)

 function new(string name="v_seq2");
 super.new(name);
 endfunction

 virtual task body();
 ahb_seq1 ahb_seq = ahb_seq1::type_id::create("ahb_seq");
 eth_seq1 eth_seq = eth_seq1::type_id::create("eth_seq");
 //---
 super.body();
 `uvm_info("v_seq2", "Executing sequence", UVM_HIGH)
 if(!ahb_seq.randomize()) `uvm_error("RAND","FAILED");
 ahb_seq.start(ahb_sqr);
 if(!eth_seq.randomize()) `uvm_error("RAND","FAILED");
 eth_seq.start(eth_sqr);

DVCon	2016	

Page 13 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

 if(!eth_seq.randomize()) `uvm_error("RAND","FAILED");
 eth_seq.start(eth_sqr);
 if(!ahb_seq.randomize()) `uvm_error("RAND","FAILED");
 ahb_seq.start(ahb_sqr);
 `uvm_info("v_seq2", "Sequence complete", UVM_HIGH)
 endtask
endclass

Example	5	‐	v_seq2	‐	extended	from	vseq_base	‐	uses	sequence.randomize()	and	sequence.start()	methods	

15.	Calling	sequences	from	virtual	sequences	

One important feature of virtual sequences is that they can run existing sequences without modification.
The user can create a library of sequences that are used to test individual subblocks and then use the same
sequences in a coordinated virtual sequence to test multiple subblocks using the original subblock se-
quence libraries. There is no need to re-code or modify the subblock sequences.

Consider the pseudo AHB packet code shown Example 6. This is a "pseudo-AHB packet" because it only
contains two non-standard AHB fields and an example DUT will recognize when these fields have been
sent to the DUT and print that information to the screen for examination.

class ahb_pkt extends uvm_sequence_item;
 `uvm_object_utils(ahb_pkt)
 rand bit [31:0] addr;
 rand bit [63:0] data;

 function new(string name="ahb_pkt");
 super.new(name);
 endfunction

 virtual function string convert2string();
 return $sformatf("addr=%8h, data=%16h", addr, data);
 endfunction
endclass

Example	6	‐	ahb_pkt.sv	‐	pseudo	AHB	packet	code	

Consider the AHB sequence code shown Example 7. This simple AHB sequence randomly generates 2-5
AHB packets. The virtual sequences in Example 4 and Example 5 send this randomly generated set of
AHB packets to the ahb_sqr handle declared in the vsequencer component.

class ahb_seq1 extends uvm_sequence #(ahb_pkt);
 `uvm_object_utils(ahb_seq1);

 rand int cnt;
 constraint c1 {cnt inside {[2:5]};}

 function new(string name = "ahb_seq1");
 super.new(name);
 endfunction

 virtual task body();
 ahb_pkt ahb_pkt1;
 `uvm_info("AHBcnt", $sformatf("** Loop cnt=%0d **", cnt), UVM_MEDIUM)
 repeat(cnt) `uvm_do(ahb_pkt1)

DVCon	2016	

Page 14 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

 endtask
endclass

Example	7	‐	ahb_seq1.sv	‐	AHB	sequence	code	called	by	virtual	sequences	

Consider the pseudo Ethernet packet code shown Example 8. This is a "pseudo-Ethernet packet" because
it only contains two non-standard Ethernet fields and an example DUT will recognize when these fields
have been sent to the DUT and print that information to the screen for examination.

class eth_pkt extends uvm_sequence_item;
 `uvm_object_utils(eth_pkt)
 rand bit [47:0] src;
 rand bit [47:0] dst;

 function new(string name="eth_pkt");
 super.new(name);
 endfunction

 function string convert2string();
 return $sformatf("src=%12h, dst=%12h", src, dst);
 endfunction
endclass

Example	8	‐	eth_pkt.sv	‐	pseudo	Ethernet	packet	code	

Consider the Ethernet sequence code shown Example 9. This simple Ethernet sequence randomly gener-
ates 2-4 Ethernet packets. The virtual sequences in Example 4 and Example 5 send this randomly gener-
ated set of Ethernet packets to the eth_sqr handle declared in the vsequencer component.

class eth_seq1 extends uvm_sequence #(eth_pkt);
 `uvm_object_utils(eth_seq1);

 rand int cnt;
 constraint c1 {cnt inside {[2:4]};}

 function new(string name = "eth_seq1");
 super.new(name);
 endfunction

 virtual task body();
 eth_pkt eth_pkt1 = eth_pkt::type_id::create("eth_pkt1");
 `uvm_info("ETHcnt", $sformatf("** Loop cnt=%0d **", cnt), UVM_MEDIUM)
 repeat(cnt) begin
 start_item(eth_pkt1);
 if(!eth_pkt1.randomize()) `uvm_error("RAND", "FAILED")
 finish_item(eth_pkt1);
 end
 endtask
endclass

Example	9	‐	eth_seq1.sv	‐	Ethernet	sequence	code	called	by	virtual	sequences	

16.	Starting	virtual	sequences	

In general, virtual sequences are started from a test using the sequence start() method. The
`uvm_do_on macro cannot be called from a test component. The `uvm_do_on macro is only called from

DVCon	2016	

Page 15 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

derivatives of sequences. This was a bit tricky to determine but even if a `uvm_do_on is called from a
test on a valid virtual sequencer handle, the `uvm_do_on macro calls methods that are defined in the
uvm_sequence_base class located in the uvm/src/seq/uvm_sequence_base.svh file. The re-
quired methods are create_item(), start_item() and finish_item() and none of these methods
are available in the uvm_test base class or any other uvm_component class or derivative.

It is a good idea to create a test_base class with common declarations and methods that will be used by
every other test in the verification suite. The test_base class shown in Example 10, declares the envi-
ronment handle and creates the environment in the build_phase(). These actions will not need to be
repeated in tests that extend this test_base class. This test_base also includes a start_of_simu-
lation_phase() to print the testbench structure and factory contents before the simulation executes in
the run_phase(). It is useful to print the testbench structure and factory contents in the
start_of_simulation_phase() because troubles most often appear in the run_phase() so these
pre-run printouts can help diagnose if any components were incorrectly constructed or if some of the
testbench classes were omitted from the factory.

`timescale 1ns/1ns
class test_base extends uvm_test;
 `uvm_component_utils(test_base)

 env e;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 e = env::type_id::create("e", this);
 endfunction

 function void start_of_simulation_phase(uvm_phase phase);
 super.start_of_simulation_phase(phase);
 if (uvm_report_enabled(UVM_HIGH)) begin
 this.print();
 factory.print();
 end
 endfunction
endclass

Example	10	‐	test_base.sv	‐	declares	and	builds	the	environment	and	prints	the	testbench	structure	

Once a test_base class is coded, each of the tests can extend the test_base to create the individual
tests. Example 11 shows the test1 class definition that is extended from the test_base class. The
test1 example defines the run_phase() for this test, which declares the first virtual sequence (
v_seq1) handle vseq and creates the vseq object. The test then calls the raise_objection()
method, prints a message, calls the start() method on the vseq sequence and passes the environment-
virtual sequencer path (e.v_sqr) to the start() method. Once the virtual sequence has completed, the
test prints one more message and then calls the drop_objection() method and finish.

DVCon	2016	

Page 16 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

`timescale 1ns/1ns
class test1 extends test_base;
 `uvm_component_utils(test1)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 v_seq1 vseq = v_seq1::type_id::create("vseq");
 uvm_test_done.raise_objection(this);
 `uvm_info("test1 run", "Starting test", UVM_MEDIUM)
 vseq.start(e.v_sqr);
 `uvm_info("test1 run", "Ending test", UVM_MEDIUM)
 uvm_test_done.drop_objection(this);
 endtask
endclass

Example	11	‐	test1.sv	‐	declares	a	v_seq1	vseq	handle	and	calls	vseq.start(e.v_sqr)	

The test2 code in Example 12 does the same thing as the test1 code of Example 11 except that the
test2 code declares the vseq handle to be the second virtual sequence type, v_seq2.

`timescale 1ns/1ns
class test2 extends test_base;
 `uvm_component_utils(test2)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 v_seq2 vseq = v_seq2::type_id::create("vseq");
 uvm_test_done.raise_objection(this);
 `uvm_info("test2 run", "Starting test", UVM_MEDIUM)
 vseq.start(e.v_sqr);
 `uvm_info("test2 run", "Ending test", UVM_MEDIUM)
 uvm_test_done.drop_objection(this);
 endtask
endclass

Example	12	‐	test2.sv	‐	declares	a	v_seq2	vseq	handle	and	calls	vseq.start(e.v_sqr)	

17.	The	environment	sets	the	handles	in	the	virtual	sequencer	

The environment code shown in Example 13 is pretty typical environment code with the exceptions that it
declares a virtual sequencer handle (vsequencer v_sqr), builds the virtual sequencer, and stores the
Ethernet (eth_agnt) and AHB (ahb_agnt) sequencer handles (sqr and sqr) in the configuration data-
base . As was discussed in the section "How are virtual sequencers implemented?" the virtual sequencer
handles are stored in the configuration database by the environment in the connect_phase() for re-
trieval by the virtual sequencer in the end_of_elaboration() phase as opposed to using TLM connec-
tions that connect most testbench components.

DVCon	2016	

Page 17 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

class env extends uvm_env;
 `uvm_component_utils(env)

 tb_eth_agent eth_agnt;
 tb_ahb_agent ahb_agnt;
 vsequencer v_sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 eth_agnt = tb_eth_agent::type_id::create("eth_agnt", this);
 ahb_agnt = tb_ahb_agent::type_id::create("ahb_agnt", this);
 v_sqr = vsequencer::type_id::create("v_sqr" , this);
 endfunction

 function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 uvm_config_db#(tb_ahb_sequencer)::set(this,"*","ahb_sqr",ahb_agnt.sqr);
 uvm_config_db#(tb_eth_sequencer)::set(this,"*","eth_sqr",eth_agnt.sqr);
 endfunction
endclass

Example	13	‐	env.sv	‐	Environment	with	virtual	sequencer	

17.1	Simplified	environment	implementation	

The authors have also used a simplified version of the virtual sequencer as describe in Section 6.1 . The
simplified version does not retrieve the subsequencer handles from the uvm_config_db and therefore
does not need the end_of_elaboration_phase() code.

In the simplified version of the vsequencer, shown in Example 2, the subsequencer handles are still de-
clared but instead of the virtual sequencer retrieving the handles from the uvm_config_db, the environ-
ment copies the subsequencer handles from the instantiated agents to the handles declared in this vse-
quencer as shown in the connect_phase() of the env shown in Example 14.

class env extends uvm_env;
 `uvm_component_utils(env)

 tb_eth_agent eth_agnt;
 tb_ahb_agent ahb_agnt;
 vsequencer v_sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 eth_agnt = tb_eth_agent::type_id::create("eth_agnt", this);
 ahb_agnt = tb_ahb_agent::type_id::create("ahb_agnt", this);
 v_sqr = vsequencer::type_id::create("v_sqr" , this);
 endfunction

DVCon	2016	

Page 18 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

 function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 v_sqr.ahb_sqr = ahb_agnt.sqr);
 v_sqr.eth_sqr = eth_agnt.sqr);
 endfunction
endclass

Example	14	‐	env.sv	‐	Simplified	environment	code	

Cliff typically uses this simplified version of the vsequencer and env to avoid adding the additional
end_of_elaboration_phase() method to the vsequencer.

18.	m_sequencer	handle	creation	‐	details	

For those readers who want to know the details about how the m_sequencer handle is created inside of
UVM, see Appendix 1.

19.	Summary	

This paper describes the necessary steps to create a working virtual sequencer environment and explains
the purpose of m_sequencer and p_sequencer handles and the `uvm_declare_p_sequencer
macro. These are topics that are often confusing to new and experienced UVM verification engineers.

This paper also includes all the code necessary to test the example described in this paper.

20.	Acknowledgements	

The authors would like to thank the following colleagues: JL Gray who helped Cliff put together the first
version of the Virtual Sequence / Sequencer example shown in this paper many years ago. Mark Litterick
of Verilab for helping to refine some of the techniques used in this example especially related to the use
of the p_sequencer handle and `uvm_declare_p_sequencer macro. Heath Chambers who has
helped correct these materials for use in UVM training. Multiple Verilab engineers who responded to
Cliff's survey years ago regarding their preferred virtual sequencer usage mode. Logie Ramachandran for
providing valuable feedback and suggestions for this paper.

21.	Errata	and	Changes	

Readers are encouraged to send email to Cliff Cummings (cliffc@sunburst-design.com) any time they
find potential mistakes or if they would like to suggest improvements.

21.1	Revision	1.1	(September	2019)	‐	What	Changed?	

Cliff prefers to code the vsequencer without the end_of_elaboration_phase() as shown in Exam-
ple 2. The simplified version of the virtual sequencer uses the vsequencer shown in Example 2 and the
accompanying env code shown in Example 14, which copies the agent handles to the corresponding han-
dles declared in the vsequencer.

DVCon	2016	

Page 19 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

22.	References:		

[1] "IEEE	Standard	For	SystemVerilog	‐	Unified	Hardware	Design,	Specification	and	Verification	Lan‐
guage,"	IEEE	Computer	Society	and	the	IEEE	Standards	Association	Corporate	Advisory	Group,	
IEEE,	New	York,	NY,	IEEE	Std	1800™‐2012	

[2] Universal	Verification	Methodology	(UVM)	1.2	Class	Reference,	June	2014,	Accellera	

[3] Universal	Verification	Methodology	(UVM)	1.1	User's	Guide,	May	2011,	Accellera	

23.	Author	&	Contact	Information	

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and trainer with
37 years of ASIC, FPGA and system design experience and 27 years of SystemVerilog, synthesis and
methodology training experience.

Mr. Cummings has presented more than 100 SystemVerilog seminars and training classes in the past 16
years and was the featured speaker at the world-wide SystemVerilog NOW! seminars.

Mr. Cummings participated on every IEEE & Accellera SystemVerilog, SystemVerilog Synthesis, Sys-
temVerilog committee from 1994-2012, and has presented more than 50 papers on SystemVerilog & Sys-
temVerilog related design, synthesis and verification techniques.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State Univer-
sity.

Sunburst Design, Inc. offers World Class Verilog & SystemVerilog training courses. For more infor-
mation, visit the www.sunburst-design.com web site.
Email address: cliffc@sunburst-design.com

Last Updated: September 2019

DVCon	2016	

Page 20 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

Appendix	1 m_sequencer	handle	creation	‐	details	

If you trust that the m_sequencer handle is properly created in the UVM Base Class Library (BCL) and
if you don't care how the m_sequencer handle is created, then you do not need to read this section. This
section is included for those who wish to understand the details of how UVM creates the m_sequencer
handle.

Finding the correct UVM base class routines to create the m_sequencer handle is a bit tricky. Assuming
the use of a sequence called tr_seq that is started on the e (environment) agnt1 (agent) sqr (se-
quencer), here is how the m_sequencer handle is created:

(1) All sequences are started on sequencers: tr_seq.start(e.agnt1.sqr);

(2) uvm_sequence inherits the start() method from the uvm_sequence_base class.

(3) The inherited start() task is defined as shown in Figure 5.

 virtual task start (uvm_sequencer_base sequencer,
 uvm_sequence_base parent_sequence = null,
 int this_priority = -1,
 bit call_pre_post = 1);
 set_item_context(parent_sequence, sequencer);

Figure	5	‐	start()	task	method	definition	

Typically only the sequencer handle is passed to the start() method and then uvm_sequence_base
calls set_item_context(null, e.agnt1.sqr);

(4) The set_item_context() method is defined in the uvm_sequence_item class, which is inherited
by the uvm_sequence_base and uvm_sequence classes.

(5) The set_item_context() method calls the set_sequencer(e.agnt1.sqr) method.

(6) The set_sequencer() method is defined in the uvm_sequence_item class (inherited by uvm_se-
quence_base and uvm_sequence).

(7) The set_sequencer() method sets the m_sequencer handle, declared to be a protected
uvm_sequencer_base handle in the uvm_sequence_item class.

protected uvm_sequencer_base m_sequencer;
…
virtual function void set_sequencer(uvm_sequencer_base sequencer);
 m_sequencer = sequencer;
 m_set_p_sequencer();
endfunction

Figure	6	‐	protected	uvm_sequencer_base	m_sequencer	declaration	and	set_sequencer()	method	

To summarize, the tr_seq.start() method passes a sequencer handle to the set_item_context()
method, which passes the handle to the set_sequencer() method, which sets the m_sequencer han-
dle. The m_sequencer handle is a handle to the sequencer that is running this sequence (tr_seq in this
example). The m_sequencer handle can be retrieved by calling the get_sequencer() method.

DVCon	2016	

Page 21 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

Appendix	2 UVM	virtual	sequencer	/sequence	example	code	

The code that corresponds to the virtual sequencer testbench shown in Figure 4 is included in this appen-
dix. Each of the files for this example are listed in alphabetical order in the appendix subsections.

interface ahb_if;
 logic [31:0] ahb_addr;
 logic [63:0] ahb_data;
endinterface

Example	15	‐	ahb_if.sv	code	

This code is shown in Example 6 - ahb_pkt.sv - pseudo AHB packet code

This code is shown in Example 7 - ahb_seq1.sv - AHB sequence code called by virtual sequences

module dut (
 input logic [31:0] ahb_addr,
 input logic [63:0] ahb_data,
 input logic [47:0] eth_src,
 input logic [47:0] eth_dst);

 import uvm_pkg::*;
 `include "uvm_macros.svh"

 always @* begin
 `uvm_info("DUT AHB", $sformatf("ahb_addr=%8h ahb_data=%16h",
 ahb_addr, ahb_data), UVM_MEDIUM);
 end

 always @* begin
 `uvm_info("DUT ETH", $sformatf("eth_src =%12h eth_dst =%12h",
 eth_src, eth_dst), UVM_MEDIUM);
 end
endmodule

Example	16	‐	dut.sv	code	

This code is shown in Example 13 - env.sv - Environment with virtual sequencer

interface eth_if;
 logic [47:0] eth_src;
 logic [47:0] eth_dst;

DVCon	2016	

Page 22 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

endinterface

Example	17	‐	eth_if.sv	

This code is shown in Example 8 - eth_pkt.sv - pseudo Ethernet packet code

This code is shown in Example 9 - eth_seq1.sv - Ethernet sequence code called by virtual sequences

tb_pkg.sv
top.sv
dut.sv
ahb_if.sv
eth_if.sv

Example	18	‐	run.f	code	

class tb_ahb_agent extends uvm_agent;
 `uvm_component_utils(tb_ahb_agent)

 virtual ahb_if vif;

 tb_ahb_driver drv;
 tb_ahb_sequencer sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 virtual function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 // Instantiate driver and sequencer for AHB agent
 drv = tb_ahb_driver::type_id::create("drv", this);
 sqr = tb_ahb_sequencer::type_id::create("sqr", this);
 get_vif();
 endfunction

 virtual function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 drv.seq_item_port.connect(sqr.seq_item_export);
 drv.vif = vif;
 endfunction

 function void get_vif;
 if(!uvm_config_db#(virtual ahb_if)::get(this,"","ahb_vif",vif))
 `uvm_fatal("NOVIF",{"virtual interface must be set for:",
 get_full_name(),".vif"})
 endfunction
endclass

DVCon	2016	

Page 23 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

Example	19	‐	tb_ahb_agent.sv	code	

class tb_ahb_driver extends uvm_driver #(ahb_pkt);
 `uvm_component_utils(tb_ahb_driver)

 virtual ahb_if vif;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 ahb_pkt apkt;
 forever begin
 seq_item_port.get_next_item(apkt);
 drive_item(apkt);
 seq_item_port.item_done();
 end
 endtask

 task drive_item(ahb_pkt tr);
 `uvm_info("ahb_driver-run", "Driving AHB transaction...", UVM_HIGH)
 #134;
 vif.ahb_addr= tr.addr;
 vif.ahb_data= tr.data;
 `uvm_info("ahb_driver-run", "Finished AHB transaction...", UVM_HIGH)
 endtask
endclass

Example	20	‐	tb_ahb_driver.sv	code	

class tb_ahb_sequencer extends uvm_sequencer #(ahb_pkt);
 `uvm_component_utils(tb_ahb_sequencer)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction
endclass

Example	21	‐	tb_ahb_sequencer.sv	code	

DVCon	2016	

Page 24 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

class tb_eth_agent extends uvm_agent;
 `uvm_component_utils(tb_eth_agent)

 virtual eth_if vif;

 tb_eth_driver drv;
 tb_eth_sequencer sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 // Instantiate driver and sequencer for ethernet agent
 drv = tb_eth_driver::type_id::create("drv", this);
 sqr = tb_eth_sequencer::type_id::create("sqr", this);
 get_vif();
 endfunction

 function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 drv.seq_item_port.connect(sqr.seq_item_export);
 drv.vif = vif;
 endfunction

 function void get_vif;
 if(!uvm_config_db#(virtual eth_if)::get(this,"","eth_vif",vif))
 `uvm_fatal("NOVIF",{"virtual interface must be set for:",
 get_full_name(),".vif"})
 endfunction
endclass

Example	22	‐	tb_eth_agent.sv	code	

DVCon	2016	

Page 25 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

class tb_eth_driver extends uvm_driver #(eth_pkt);
 `uvm_component_utils(tb_eth_driver)

 virtual eth_if vif;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 eth_pkt epkt;
 forever begin
 seq_item_port.get_next_item(epkt);
 drive_item(epkt);
 seq_item_port.item_done();
 end
 endtask

 task drive_item(eth_pkt tr);
 `uvm_info("eth_driver-run", "Driving ETH transaction...", UVM_HIGH)
 #90;
 vif.eth_src = tr.src;
 vif.eth_dst = tr.dst;
 `uvm_info("eth_driver-run", "Finished ETH transaction...", UVM_HIGH)
 endtask
endclass

Example	23	‐	tb_eth_driver.sv	code	

class tb_eth_sequencer extends uvm_sequencer #(eth_pkt);
 `uvm_component_utils(tb_eth_sequencer)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction
endclass

Example	24	‐	tb_eth_sequencer.sv	code	

DVCon	2016	

Page 26 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

package tb_pkg;
 import uvm_pkg::*;
 `include "uvm_macros.svh"

 `include "eth_pkt.sv"
 `include "ahb_pkt.sv"
 `include "ahb_transaction.sv"

 `include "eth_seq1.sv"
 `include "ahb_seq1.sv"

 `include "tb_eth_driver.sv"
 `include "tb_eth_sequencer.sv"
 `include "tb_eth_agent.sv"

 `include "tb_ahb_driver.sv"
 `include "tb_ahb_sequencer.sv"
 `include "tb_ahb_agent.sv"

 `include "vsequencer.sv"

 `include "vseq_base.sv"
 `include "v_seq1.sv"
 `include "v_seq2.sv"

 `include "env.sv"

 `include "test_base.sv"
 `include "test1.sv"
 `include "test2.sv"
endpackage

Example	25	‐	tb_pkg.sv	code	

This code is shown in Example 11 - test1.sv - declares a v_seq1 vseq handle and calls vseq.start(e.v_sqr)

This code is shown in Example 12 - test2.sv - declares a v_seq2 vseq handle and calls vseq.start(e.v_sqr)

This code is shown in Example 10 - test_base.sv - declares and builds the environment and prints the
testbench structure

DVCon	2016	

Page 27 Using UVM Virtual Sequencers
Rev 1.1 and Sequences

`timescale 1ns/1ns
`include "uvm_macros.svh"

// Example of virtual sequences controlling two sub-sequencers...
// one for Ethernet and one for AHB
module top;
 import uvm_pkg::*;
 import tb_pkg::*;

 dut dut (.ahb_addr(ahb_if.ahb_addr), .ahb_data(ahb_if.ahb_data),
 .eth_src (eth_if.eth_src), .eth_dst (eth_if.eth_dst));

 ahb_if ahb_if ();
 eth_if eth_if ();

 initial begin
 uvm_config_db#(virtual ahb_if)::set(null, "*", "ahb_vif", ahb_if);
 uvm_config_db#(virtual eth_if)::set(null, "*", "eth_vif", eth_if);
 run_test();
 end
endmodule

Example	26	‐	top.sv	code	

This code is shown in Example 4 - v_seq1 - extended from vseq_base - uses `uvm_do_on() macros

This code is shown in Example 5 - v_seq2 - extended from vseq_base - uses sequence.randomize() and
sequence.start() methods

This code is shown in Example 3 - Virtual sequence base class example called vseq_base

This code is shown in Example 1 - Sample virtual sequencer code

