

	

World Class SystemVerilog & UVM Training

Yikes! Why is My SystemVerilog Still So

Slooooow?

Cliff Cummings
Sunburst Design, Inc.

cliffc@sunburst-design.com
www.sunburst-design.com

John Rose
Cadence Design Systems, Inc.

jlrose@cadence.com
www.cadence.com

Adam Sherer
Cadence Design System, Inc.

asherer@cadence.com
www.cadence.com

ABSTRACT

This paper describes a few notable SystemVerilog coding styles and their impact on simulation performance.
Benchmarks were run using the three major SystemVerilog simulation tools and those benchmarks are reported in
the paper. Some of the most important coding styles discussed in this paper include UVM string processing and
SystemVerilog randomization constraints. Some coding styles showed little or no impact on performance for some
tools while the same coding styles showed large simulation performance impact. This paper is an update to a paper
originally presented by Adam Sherer and his co-authors at DVCon in 2012. The benchmarking described in this
paper is only for coding styles and not for performance differences between vendor tools.

DVCon-2019
San Jose, CA

Voted Best Paper
1st Place

DVCon	2019	

Page 2 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

Table of Contents
I. Introduction 4

Benchmarking Different Coding Styles 4

II. UVM is Software 5

III. SystemVerilog Semantics Support Syntax Skills 10

IV. Memory and Garbage Collection – Neither are Free 12

V. It is Best to Leave Sleeping Processes to Lie 14

VI. UVM Best Practices 17

VII. Verification Best Practices 21

VIII. Acknowledgment 25

References 25

Author & Contact Information 25

DVCon	2019	

Page 3 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

Table of Figures

Figure	1	‐	Example	coding	style	performance	table	 4

Figure	2	‐	Inefficient	get_num	function	‐	3‐D	foreach‐loop	 6

Figure	3‐	Possibly	inefficient	get_num	function	‐	2‐D	foreach‐loop	that	sums	size()	of	all	queues	 7

Figure	4	‐	Efficient	get_num	function	utilizing	separate	counter	variable	"elements"	 8

Figure	5	‐	3‐D	foreach	loop	compared	to	keeping	the	elements	count	 8

Figure	6	‐	2‐D	foreach	loop	with	size()	method	compared	to	keeping	the	elements	count	 9

Figure	7	‐	Conditional	code	example	with	possible	more	efficient	coding	on	the	bottom	 9

Figure	8	‐	Example	using	simple	logic	port	declarations	 10

Figure	9	‐	Example	using	wire‐logic	port	declarations	 10

Figure	10	‐	Benchmark	results	using	logic	ports	‐vs‐	wire‐logic	ports	 11

Figure	11	‐	Examples	of	bit‐blasting	‐vs‐	full‐vector	syntax	 11

Figure	12	‐	Benchmark	results	using	generate	bit‐blasting	‐vs‐	full	vector	operations	 12

Figure	13	‐	Example	of	using	looped	and	non‐looped	class	object	construction	 13

Figure	14	‐	Benchmark	results	using	looped	and	non‐looped	class	object	construction	 13

Figure	15	‐	always_ff	executes	DPI	code	before	testing	txactive	 14

Figure	16	‐	always_ff	tests	txactive	before	calling	DPI	code	 14

Figure	17	‐	DPI	code	tests	active	signal	before	executing	code	 15

Figure	18	‐	Benchmark	results	using	looped	and	non‐looped	class	object	construction	 15

Figure	19	‐	Mixed	static	and	dynamic	processes	with	inefficient	wake‐up	 16

Figure	20	‐	Mixed	static	and	dynamic	processes	recoded	for	efficient	simulation	 17

Figure	21	‐	Benchmark	results	using	behavioral	while‐loops	‐vs‐	standard	FSM	coding	styles	 17

Figure	22	‐	Conditional	messaging	in	UVM	 18

Figure	23	‐	Benchmark	results	using	unconditional	‐vs‐	conditional	UVM	string	processing	 19

Figure	24	‐	Unconditionally	sampling	transaction	and	broadcasting	on	a	UVM	analysis	port	 20

Figure	25	‐	Conditionally	sampling	transaction	and	broadcasting	on	a	UVM	analysis	port	 20

Figure	26	‐	Benchmark	results	of	transaction	sampling	&	broadcasting	with	no	components	 20

Figure	27	‐	Constraint‐based	sorting	of	array	elements	 21

Figure	28	‐	post_randomize()	sorting	of	array	elements	 22

Figure	29	‐	Benchmark	results	showing	penalty	for	"clever"	array‐sorting	constraint	 22

Figure	30	‐	Coding	assertion	with	local	variables	‐vs‐	using	other	assertion	capabilities	 23

Figure	31	‐	Merged	sampling	‐vs‐	separate	sampling	of	covergroups	 24

Figure	32	‐	Benchmark	results	of	covergroup	sampling	in	separate	&	merged	always	blocks	 25

DVCon	2019	

Page 4 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

I. Introduction

In the 2012 edition of this topic we observed that thousands of engineers were cranking out SystemVerilog code

but often found the simulation of that code ran slower than expected. We offered a number of testbench-focused
recommendations for optimizing that code. Since then, millions more lines of code have been generated, simulators
have become faster, but the question engineers raise is often the same with one new word: “Why is my SystemVerilog
still so slow?”

Generally speaking, all SystemVerilog simulators are faster in 2019 than they were in 2012. UVM testbench code,

randomization, assertions, and design execution have all become faster as the underlying engines become more
efficient. While more efficient engines are necessary, it is not sufficient to address the compute requirements of
modern verification environments. That leaves engineers with only a few options they can use to improve simulation
efficiency: add compute power, get more performance from their simulator vendors, construct more effective
verification environments, and improve the code they feed into the first three. Ouch. Cloud and datacenter expansion
are answers for compute power access but that requires financial investment. Squeezing the simulator vendor will at
most yield modest gains. More effective verification environments can have larger benefits ranging from new
technologies like formal analysis to refactoring algorithms. It is this last point – refactoring then can raise a “yikes”
from engineers because it sounds like a lot of work for the same output. But as we examine this topic, we can discover
approaches that can speed execution multiple times by training engineers to use some new best-practices.

Benchmarking Different Coding Styles

Note from Cliff Cummings: It is one thing to claim that certain coding styles are more/less efficient and another to
back the claims with actual data. My Cadence co-authors have made claims about specific coding styles and I
wanted to verify those claims; hence, I have run benchmarks as described below.

The recommended coding styles in this paper were all submitted by my Cadence co-authors and may have shown
greater improvements in their 2012 paper, but in this paper, I found it surprising that a few of the recommended
coding styles actually made the Cadence simulations slightly worse, which indicates that the Cadence simulator
itself has overcome some deficiencies that might have been present in 2012. Bottom line is that the reader should not
assume that all improvements were best for Cadence, and not even my Cadence co-authors know the benchmark
results for the Cadence simulator.

The coding styles described by my Cadence co-authors were tested using the three major SystemVerilog simulators
and are reported in this paper. My Cadence co-authors have not seen the raw benchmark data and were not given
access to competitor simulators. Where I have included performance data in the paper, I have not identified which
simulator gave which performance numbers. I always listed the relative performances from least improvement
measured to most improvement measured, which means that each simulator was sometimes "Simulator A,"
"Simulator B" and "Simulator C" as shown in Figure 1.

Figure 1 - Example coding style performance table

Each simulator had at least 3 benchmarks where they had the best benchmark times, at least 1 benchmark where
they had the worst benchmark times, and at least 3 benchmarks where recommended coding styles caused the
greatest improvement.

The benchmark examples were run five times on each simulator and the run times were averaged and then compared
to the other styles used in the benchmark. Each benchmark directory has a CNT_file that defines the loop count used
in each benchmark. Count values were anywhere from 1,000 loops for larger, memory intensive benchmarks to
100,000,000 for smaller benchmarks that would complete quickly. To test each benchmark setup, I would frequently
use a starting count of 100 to make sure the simulations ran without errors. The benchmark scripts are simple (if not
stupid) Makefiles, which were easy to assemble and test.

DVCon	2019	

Page 5 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

You will not be told which simulator was A, B or C for each benchmark. You will not be shown the actual
simulation times for each benchmark. The intent of this paper is to alert engineers of coding styles that may or may
not be inefficient for a specific simulator and coding styles that are definitely very inefficient for all simulators.

It is NOT the intent of this paper to prove that one simulator is faster or better than another, and we really do NOT
want you to judge a simulator based on a single-feature, coding-style benchmark!!

If readers want to know the relative efficiency/inefficiency for specific coding styles as executed on their preferred
simulator, the reader can download the benchmark files and scripts and run the simulations themselves. The
benchmark code can be found on the web page http://www.sunburst-design.com/benchmark_code/DVCon2019/

II. UVM is Software

Like it or not, UVM is software. As such, engineers working with UVM need to become familiar with known-good

software practices. As stated in the introduction, simulators are continuously optimized to improve performance. To
do so, vendors typically look at coding patterns then tune the simulator to recognize these patterns for faster execution.
For commonly used code, like the UVM reference library, this manifests itself in faster simulation for most projects.
For project-specific coding styles or application-specific coding styles, the simulation improvements may completely
miss some projects. With that said, there are inefficient coding styles that are more difficult for the simulators to
recognize and need to be adjusted with software-knowledgeable coding practices.

Frequent function/task calls add overhead and may mask algorithmic order issues. Each function/task has to set-up

the call, push data references and/or complete data copies to the call stack and process any specified return. When
they are called in a loop, the performance cost is paid each time through the loop. For simple calls, the compiler may
in-line the function/task to avoid the stack frame manipulation, but complex calls are typically not in-lined because
they bloat the simulation code, which can lead to cache misses creating an entirely different performance issue.
Moreover, the body of the function/task may itself contain loops and/or additional calls. These can increase the order
of the algorithm especially as the application scales.

The example in Figure 2 calculates the number of elements in an MDA (Multi-Dimensional Array) of queues using

a 3-dimensional foreach-loop by iterating over the array and counting elements. The algorithm is slow because it
counts every element every time. It would be more efficient to use the queue's size() method as shown in Figure
3, but the most efficient approach is shown in Figure 4 where a separate count (elements) variable is maintained.
While the runtime difference between the separate counter and the built-in function may be small for a small MDA,
it may be hard to predict how the code will be used so the best practice would be to code for efficiency.

class container;
 // 2-dimensional dynamic array of queues of trans_obj handles
 trans_obj mda_q [][][$];
 int rows, cols; // default values are 0

 function void set_queues(int row, int col);
 rows = row;
 cols = col;
 mda_q = new[row]; // ILLEGAL: mda_q = new[row][col];
 // foreach loop used to initialize column sizes
 foreach(mda_q[row]) mda_q[row] = new[col];
 endfunction

 function void rand_init(int row, int col, int q_depth);
 trans_obj tr = new();
 int q_rand_depth;

 for (int i=0; i<(row-1); i++) begin
 for (int j=0; j<(col-1); j++) begin

DVCon	2019	

Page 6 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

 // randomize q-depth for each queue
 q_rand_depth = $urandom_range(q_depth-1);
 for (int k=0; k<(q_rand_depth-1); k++) begin
 void'(tr.randomize());
 add(tr, i, j); // add to queue at [i][j]
 end
 end
 end
 endfunction

 //---
 // returns total number of trans_obj handles from
 // 2-dimensional dynamic array of queued handles
 //---
 function int get_num();
 foreach(mda_q[i,j,k]) get_num++;
 endfunction

 function void add (trans_obj obj, int row, int col);
 // checks for legality not shown
 mda_q[row][col].push_back(obj);
 endfunction

 // If number of trans_obj handles is not 0, remove
 // and return the first queued trans_obj handle
 function trans_obj get_first(int row, int col);
 if (mda_q[row][col].size()) begin
 get_first = mda_q[row][col].pop_front();
 end
 endfunction
endclass

Figure 2 - Inefficient get_num function - 3-D foreach-loop

class container;
 // 2-dimensional dynamic array of queues of trans_obj handles
 trans_obj mda_q [][][$];
 int rows, cols; // default values are 0

 function void set_queues(int row, int col);
 rows = row;
 cols = col;
 mda_q = new[row]; // ILLEGAL: mda_q = new[row][col];
 // foreach loop used to initialize column sizes
 foreach(mda_q[row]) mda_q[row] = new[col];

 endfunction

 function void rand_init(int row, int col, int q_depth);
 trans_obj tr = new();
 int q_rand_depth;

 for (int i=0; i<(row-1); i++) begin
 for (int j=0; j<(col-1); j++) begin
 // randomize q-depth for each queue
 q_rand_depth = $urandom_range(q_depth-1);
 for (int k=0; k<(q_rand_depth-1); k++) begin
 void'(tr.randomize());
 add(tr, i, j); // add to queue at [i][j]

DVCon	2019	

Page 7 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

 end
 end
 end
 endfunction

 //---
 // returns total number of trans_obj handles from
 // 2-dimensional dynamic array of queued handles
 //---
 function int get_num();
 foreach(mda_q[i,j]) get_num += mda_q[i][j].size();
 endfunction

 function void add (trans_obj obj, int row, int col);
 // checks for legality not shown
 mda_q[row][col].push_back(obj);

 endfunction

 // If number of trans_obj handles is not 0, remove
 // and return the first queued trans_obj handle
 function trans_obj get_first(int row, int col);
 if (mda_q[row][col].size()) begin
 get_first = mda_q[row][col].pop_front();

 end
 endfunction
endclass

Figure 3- Possibly inefficient get_num function - 2-D foreach-loop that sums size() of all queues

class container;
 // 2-dimensional dynamic array of queues of trans_obj handles
 trans_obj mda_q [][][$];
 int rows, cols; // default values are 0
 int elements; // default values is 0

 function void set_queues(int row, int col);
 rows = row;
 cols = col;
 mda_q = new[row]; // ILLEGAL: mda_q = new[row][col];
 // foreach loop used to initialize column sizes
 foreach(mda_q[row]) mda_q[row] = new[col];
 elements = 0;
 endfunction

 function void rand_init(int row, int col, int q_depth);
 trans_obj tr = new();
 int q_rand_depth;

 for (int i=0; i<(row-1); i++) begin
 for (int j=0; j<(col-1); j++) begin
 // randomize q-depth for each queue
 q_rand_depth = $urandom_range(q_depth-1);
 for (int k=0; k<(q_rand_depth-1); k++) begin
 void'(tr.randomize());
 add(tr, i, j); // add to queue at [i][j]
 end
 end

DVCon	2019	

Page 8 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

 end
 endfunction

 //---
 // returns total number of trans_obj handles from
 // 2-dimensional dynamic array of queued handles
 //---
 function int get_num();
 return elements;
 endfunction

 function void add (trans_obj obj, int row, int col);
 // checks for legality not shown
 mda_q[row][col].push_back(obj);
 ++elements;
 endfunction

 // If number of trans_obj handles is not 0, remove
 // and return the first queued trans_obj handle
 function trans_obj get_first(int row, int col);
 if(mda_q[row][col].size()) begin
 get_first = mda_q[row][col].pop_front();
 --elements;
 end
 endfunction
endclass

Figure 4 - Efficient get_num function utilizing separate counter variable "elements"

Benchmark measurement - How slow is the 3-D foreach loop compared to keeping the elements count?

Figure 5 - 3-D foreach loop compared to keeping the elements count

Depending on the simulator used, deep foreach nesting can have a negative performance impact.

Benchmark measurement - How slow is the 2-D foreach loop with size() method compared to keeping the
elements count?

DVCon	2019	

Page 9 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

Figure 6 - 2-D foreach loop with size() method compared to keeping the elements count

This benchmark did not show a huge difference in performance as noted across the different simulators.

Benchmark Directory: BENCHM1

There are other general coding approaches, some of which were identified in the 2012 paper [1]. For example,

minimize string manipulation wherever possible. Also removing loop invariants – code inside a loop that is not
affected by the loop iterations – will speed simulation especially if the loop count is high. This may not be apparent
to the loop author if the loop limit is variable as the limit may be much higher in scaled usage. A complement to this
point is moving code that is only used in conditional statements, such as if or case, inside the conditional especially
if the conditional is unlikely to be true or the calculation is only needed in one branch. If the code is in the testbench,
then the compiler will likely make this adjustment for you. But if the code is in the DUT, or has any delay condition,
the compiler may not be able to make the optimization because another process may update the rhs (right-hand side)
of the expression.

Benchmark measurement - How slow are the temp assignments outside of the loop compared to making the
assignments directly inside of the loop?

Figure 7 - Conditional code example with possible more efficient coding on the bottom

Not a huge difference in performance was noted but the result is simulator-dependent.

Benchmark Directory: BENCHM2

DVCon	2019	

Page 10 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

III. SystemVerilog Semantics Support Syntax Skills

SystemVerilog syntax knowledge is enough to get you coding, but semantics will help you do it efficiently. The

semantics cover information beyond the syntax including defaults, simulator function specified by the standard, simple
coding masking time-expensive execution, and more. Performance issues associated with semantics are rarely
manifest in simulator profiles making them difficult to discover unless you can recognize coding issues associated
with syntax semantics. This does not discount the value of profilers, but it does imply that good coding and profiling
work together to achieve performance.

Let’s take a look at the logic type. Introduced in SystemVerilog, the logic type can have either wire or

variable storage and that storage type is determined from context by the simulator if it is not explicitly declared. This
matters to simulation because wires can be collapsed to be the same object for higher simulation speed whereas
variables cannot. Since the semantic for logic type is to default to variable storage in all cases except for the inputs
or inouts of a design unit, you may have a properly executing simulation that mysteriously runs more slowly than you
would expect. Some simulators provide some profiling and optimization support for this issue, but it is a best practice
to code as explicitly as possible to avoid side-effects such as slower performance. Figure 8 shows a coding example
where A6.y, A6.X1.y, and A6.X1.T1.y are distinct and where the highlighted declarations might not allow
them to be collapsed to a single object. Note that wire is implicit on the input port so the declaration is not needed
to assure that the a signals are collapsed together. However, it is not implicit on the output and might need to be
declared in order for the simulator to collapse the y signals together.

module A6 (output logic [7:0] y, input logic [7:0] a, b);
 A6_1 X1 (.y(y), .a(a), .b(b));
endmodule

module A6_1 (output logic [7:0] y, input logic [7:0] a, b);
 A6_2 T1 (.y(y), .a(a), .b(b));
endmodule

module A6_2 (output logic [7:0] y, input logic [7:0] a, b);
 logic [7:0] tmp;

 assign y = tmp;

 always_comb tmp = a & b;
endmodule

Figure 8 - Example using simple logic port declarations

It may be easier for designers to simply add wire to each port declaration to enable faster simulation speed as
shown in Figure 9.

module A6 (output wire logic [7:0] y, input wire logic [7:0] a, b);
 A6_1 X1 (.y(y), .a(a), .b(b));
endmodule

module A6_1 (output wire logic [7:0] y, input wire logic [7:0] a, b);
 A6_2 T1 (.y(y), .a(a), .b(b));
endmodule

module A6_2 (output wire logic [7:0] y, input wire logic [7:0] a, b);
 logic [7:0] tmp;

 assign y = tmp;

 always_comb tmp = a & b;
endmodule

Figure 9 - Example using wire-logic port declarations

DVCon	2019	

Page 11 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

Benchmark measurement - How slow are logic -vs- wire-logic ports in simulation?

Figure 10 - Benchmark results using logic ports -vs- wire-logic ports

One simulator had a minor penalty for logic ports, but wire - logic ports are cumbersome, confusing and in
general not worth the extra coding effort.

Benchmark Directory: BENCHM3

Another important semantic is that the simulator will typically operate faster on a full vector than individual bits.
This coding style is known as bit-blasting and the syntax for it is straight forward; looping over the bits of a vector for
example. In Figure 11, the inefficient example uses a generate statement that creates a static hierarchy. While the
simulator may be able to optimize a simple example within a local process like this one, complex examples with
optimization across a hierarchy are often a source of hidden performance issues.

Figure 11 - Examples of bit-blasting -vs- full-vector syntax

Benchmark measurement - How much slower are inefficient bit-blasting operations?

DVCon	2019	

Page 12 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

Figure 12 - Benchmark results using generate bit-blasting -vs- full vector operations

Inefficient bit-vector operations can have a severe performance penalty but the penalty was very simulator
dependent for this example.

Benchmark Directory: BENCHM4

A third example of performance due to semantics is pass by reference versus pass by value. Without the general

concept of a pointer and/or without the impact from algorithmic scaling, SystemVerilog coders might ignore the cost
of passing by value. Engineers should see the ref construct in their code wherever a function only needs read access
to any large data objects, such as struct with hundreds of fields or QDAs (Queues, Dynamic arrays, Associative
arrays) with hundreds of elements, but does not write back to it. Just keep in mind that all parameters in an argument
list that follow the ref construct will pass by reference unless you explicitly use input, output or inout.

The semantics of dynamic data structures (QDAs) are also sources of common performance issues that are generally

true of SystemVerilog and most languages that have these types. An easy one to recognize is the use of static arrays
instead of dynamic arrays wherever possible. Even if there is a small amount of variability to the length of the array,
it is better to specify a slightly larger static array rather than take on the overhead of the dynamic array (memory
footprint and garbage collection time). Another common performance mistake is to use dynamic arrays where a queue
is better and vice versa. Since dynamic arrays are best for look-up and random insertion/deletion operations and queues
are best for front or back operations with automatic resizing, the simulators have different internal representations to
optimize each group of operations. Comparing access between queues and associative arrays, an arbitrary indexing
for an object in a queue is O(1) but it is O(logn) for associative arrays.

IV. Memory and Garbage Collection – Neither are Free

We focused on the general semantics of dynamic types in the previous section, but the memory and garbage

collection aspects of those types warrant a separate section. Inefficient memory can lead to significant cache misses,
heap management overhead, and garbage collection overhead, all of which can be difficult to discover through
profiling.

Copying dynamic objects, especially deep copies, should be minimized. One approach mentioned earlier is to use

the ref construct in function calls, but another critical approach is to leave deep copies to the consumer of the
objects wherever possible. Another approach is to reuse objects instead of continuously creating new objects when
an object is required. This may be done with a single object or with a pool of objects. This is certainly a situation
where the coder needs to understand how the code will be used as it is far too easy to create objects with simple
new()methods. While the example in Figure 13 is focused on the single object example for brevity in this paper,
one can envision a class with separate methods to create and destroy objects. The create method would check a
dynamic object containing previously used objects and only new()-create one if the pool is empty. Similarly, the

DVCon	2019	

Page 13 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

destroy method should push the object into the pool rather than simply dereferencing it for garbage collection. And,
yes, semantics here imply that a queue is the proper dynamic object for the pool.

Figure 13 - Example of using looped and non-looped class object construction

Benchmark measurement - How much slower is looped construction (and destruction) or objects -vs- single
construction and reuse?

Figure 14 - Benchmark results using looped and non-looped class object construction

It should be obvious that class object construction and destruction has a price. Use good judgement when
constructing class object.

Benchmark Directory: BENCHM5

Implicit heap management is another way to avoid hidden performance issues. Classes are heap objects and carry

a fair amount of overhead. Wherever possible struct[s] should be used instead – either inside the class or instead
of the class. For example, if the main purpose of the class is to be a container of heterogeneous data types, then a
struct is a better choice. A scoreboard is a good example. It is more efficient to code a struct as data element
within the class that manipulates the scoreboard instead of accessing it in a separate class because that separate class
will require heap management and potentially engage garbage collection but the simple struct will not.

Putting interface-heavy functionality into the interface rather than in classes is also more simulation efficient with

the added benefit of being more reusable, because the functionality is associated with the interface itself, and interfaces
can be synthesizable but classes are not.

DVCon	2019	

Page 14 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

V. It is Best to Leave Sleeping Processes to Lie

SystemVerilog simulators are event driven – the more events they run at a given time point, the slower they go.

The implication, to paraphrase an old adage, is to let sleeping processes lie and not wake them unnecessarily.
Sometimes the wake-up may occur in unexpected circumstance.

A very common process in SystemVerilog is the always block with a single sensitive signal, such as the clock.

This static process is highly optimized in all simulators, but side-effects from dynamic tasks or functions such as DPI
(or any external) functions, virtual class tasks/functions, and virtual interface tasks/functions may disable the
optimization. Some of these may be handled by a given simulator, but these side-effects can be arbitrarily complex,
so the optimization cannot be maintained in all cases. In Figure 15, the DPI call was first executed outside the
conditional, while in Figure 16 the DPI call is only executed if the txactive signal is high. The DPI code shown in
Figure 17 is passed the txactive signal and become the active signal that is again tested inside of the C-code.
Because of this, the simulator will need to run the always process on every posedge clk because it cannot see
any side-effect coming from the DPI function. By moving the DPI call inside the conditional, the simulator might
optimize the process wake up to posedge clk and txactive reducing the number of times the process executes.

import "DPI-C" function void dpi_tic(logic active, int count);

module BENM9A (input logic txactive, clk);
 int counter; // default value is 0

 initial $display("%m");

 always_ff @(posedge clk) begin
 //move DPI code into condition if it is conditional
 dpi_tic(txactive, counter);
 if (txactive)
 counter <= counter+1;
 end
endmodule

Figure 15 - always_ff executes DPI code before testing txactive

import "DPI-C" function void dpi_tic(logic active, int count);

module BENM9B (input logic txactive, clk);
 int counter; // default value is 0

 initial $display("%m");

 always_ff @(posedge clk)
 if (txactive) begin
 //move DPI code into condition if it is conditional
 dpi_tic(txactive, counter);
 counter <= counter+1;
 end
endmodule

Figure 16 - always_ff tests txactive before calling DPI code

// DPI code
#include <stdio.h>
#include <svdpi.h>

void dpi_tic(int active, int count)

DVCon	2019	

Page 15 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

{
 if(active)
 {
 if((count%100000) == 0) {
 printf("DPI tic %d\n", count);
 }
 }
}

Figure 17 - DPI code tests active signal before executing code

Benchmark measurement - How much slower is unconditional execution of the DPI function in this example?

Figure 18 - Benchmark results using looped and non-looped class object construction

In this DPI-call example, there was not a huge difference and one simulator actually ran faster executing the DPI
function while another ran slower. This might be due to DPI optimizations by one simulation vendor as opposed to
actually executing the DPI code unconditionally. Even though the benchmark simulation did not show the expected
performance difference, the results might be different when executing tasks, functions, virtual methods and nested
combinations of the various methods.

Benchmark Directory: BENCHM6

It is possible to combine both static and dynamic process wake-up issues masking wake-up performance issues. For
example, code can be written such that execution begins by triggering a static process, but if that leads to code triggered
based on execution flow, the subsequent processes can be dynamic. Figure 19 contains an example of a state machine
coded with while statements. This style will lead to the intended hardware behavior, but the simulator will wake-
up the statement machine on every posedge clk regardless of the state variable. While the simulator may be able
to optimize this simple coding example, the coding can be arbitrarily complex, so it cannot be optimized in all cases.
However, recoding using a recommended FSM coding style, as shown in Figure 20, will lead to both proper
synthesized hardware and efficient simulation.

module BEN11A (
 output logic [31:0] counter,
 input logic req, ack,
 input logic clk, rst_n);

 enum logic [2:0] {
 IDLE,
 S1,
 S2,
 S3,
 S4,
 XXX} state;

 initial @(negedge rst_n) begin
 forever begin: fsm
 state = IDLE;

DVCon	2019	

Page 16 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

 counter = '0;
 @(posedge rst_n);
 @(posedge clk); // Stay in IDLE until the next clk

 forever begin
 while (!req) @(posedge clk); // Stay in IDLE
 state = S1;
 @(posedge clk); // S1
 while (!ack) @(posedge clk); // Stay in S1
 state = S2;
 counter = counter + 1; // S2
 @(posedge clk); // S2 for just one clk
 if (req) begin
 state = S3;
 @(posedge clk); // S3
 while (req)@(posedge clk); // Stay in S3
 end
 state = S4;
 @(posedge clk); // S4
 while (ack) @(posedge clk); // Stay in S4
 state = IDLE;
 @(posedge clk); // IDLE
 end
 end
 end

 always @(negedge rst_n) begin
 disable fsm;
 end
endmodule

Figure 19 - Mixed static and dynamic processes with inefficient wake-up

module BEN11B (
 output logic [31:0] counter,
 input logic req, ack,
 input logic clk, rst_n);

 enum logic [2:0] {
 IDLE,
 S1,
 S2,
 S3,
 S4,
 XXX} state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= IDLE;
 else state <= next;

 always_comb begin
 next = XXX;
 case(state)
 IDLE: if(req) next = S1;
 else next = IDLE;
 S1: if(ack) next = S2;
 else next = S1;
 S2: if(!req) next = S4;
 else next = S3;

DVCon	2019	

Page 17 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

 S3: if(!req) next = S4;
 else next = S3;
 S4: if(!ack) next = IDLE;
 else next = S4;
 default: next = XXX;
 endcase
 end

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) counter <= '0;
 else begin
 case (next)
 IDLE, S1, S3, S4: ; // No counter change
 S2 : counter <= counter + 1;
 default: counter <= XXX;
 endcase
 end
endmodule

Figure 20 - Mixed static and dynamic processes recoded for efficient simulation

Benchmark measurement - Surprisingly, the standard FSM coding style was SLOWER that the while-loop style.

Figure 21 - Benchmark results using behavioral while-loops -vs- standard FSM coding styles

Despite the fact that this benchmark showed that the standard FSM coding style might be slower than the while -
loop behavioral implementation, correct FSM coding styles are more important that this benchmarked simulation
performance.

Benchmark Directory: BENCHM7

VI. UVM Best Practices

Not surprising, all of the principles discussed so far apply to UVM. Wherever possible, deep-copy, pass by value,

process wake-up associated with UVM should be minimized.
A common approach in UVM is to code message writing to interesting parts of the verification environment. A

simple optimization is to guard the messaging using the uvm_report_enabled() function. In Figure 22, the
messaging is triggered if the verbosity level is set at or above UVM_HIGH. And if the messaging needs to be written
frequently, the UVM tree printer or even the line printer should be used to get meaningful information while keeping
the messaging overhead to a minimum.

`include "CNT_file"
class mem_print_test;
 int mem [47:0];

DVCon	2019	

Page 18 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

 virtual clk_if vif;

 function new(virtual clk_if nif);
 vif = nif;
 endfunction

 task run();
 set_data(32'h0000_0000);
 repeat (`CNT/10) get_data();
 set_data(32'h1111_1111);
 repeat (`CNT/10) get_data();
 set_data(32'h2222_2222);
 repeat (`CNT/10) get_data();
 set_data(32'h3333_3333);
 repeat (`CNT/10) get_data();
 set_data(32'h4444_4444);
 repeat (`CNT/10) get_data();
 set_data(32'h5555_5555);
 repeat (`CNT/10) get_data();
 set_data(32'h6666_6666);
 repeat (`CNT/10) get_data();
 set_data(32'h7777_7777);
 repeat (`CNT/10) get_data();
 set_data(32'h8888_8888);
 repeat (`CNT/10) get_data();
 set_data(32'h9999_9999);
 repeat (`CNT/10) get_data();
 endtask

 function void set_data(int data, bit random='0);
 if (random)
 for (int i=0; i<48; i++) mem[i] = $urandom;
 else
 mem = '{default:data};
 endfunction

 function void get_data();
 string memlayout;
 `ifdef FAST
 // Only do expensive string processing for >= UVM_HIGH verbosity
 if(uvm_report_enabled(UVM_HIGH, UVM_INFO, "MEMDATA")) begin
 `endif
 // Format the memory layout into a string
 memlayout = " {\n";
 foreach(mem[i])
 memlayout = $sformatf("%s mem[%0d]:%8h",
 memlayout, i, mem[i]);
 memlayout = {memlayout, " }\n"};
 `ifdef FAST
 end
 `endif
 `uvm_info("MEMDATA", memlayout, UVM_HIGH)
 endfunction
endclass

Figure 22 - Conditional messaging in UVM

Benchmark measurement - How much slower is this UVM simulation using unconditional string processing?

DVCon	2019	

Page 19 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

Figure 23 - Benchmark results using unconditional -vs- conditional UVM string processing

The unconditional array string processing even when the processed string was not printed was huge, exacting a
penalty of 3,000-10,000 time slower than conditional string processing. Care should be taken as it relates to UVM
string processing.

Benchmark Directory: BENCHM8

Another source on unnecessary execution is associated with TLM analysis ports. Since these are often used as a
callback mechanism, monitors, collectors, or other components package data and then write the data to all of the
consumers that are attached to the analysis port. As such, the monitor will often do all the transaction sampling and
broadcasting, but there is no requirement that an analysis port be connected to any other components so the sampled
transaction may not be used. In fact, the connection can be environment dependent.

Figure 24 shows the unconditional monitoring and broadcasting of transactions on the analysis port, while Figure
25 uses a conditional test to see if anything is connected to the analysis port before sampling and broadcasting a
transaction.

class tb_monitor extends uvm_monitor;
 `uvm_component_utils(tb_monitor)

 virtual dut_if vif;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 uvm_analysis_port #(trans1) ap = new("ap", this);

 // Unconditionally broadcast UVM analysis port transactions
 task run_phase(uvm_phase phase);
 forever collect();
 endtask

 task collect();
 trans1 tr = trans1::type_id::create("tr");
 get_txn_from_interface(tr);
 ap.write(tr);
 endtask

DVCon	2019	

Page 20 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

 task get_txn_from_interface(trans1 tr);
 tr.data1 = vif.data1;
 tr.data2 = vif.data2;
 @vif.cb1;
 endtask
endclass

Figure 24 - Unconditionally sampling transaction and broadcasting on a UVM analysis port

class tb_monitor extends uvm_monitor;
 `uvm_component_utils(tb_monitor)

 virtual dut_if vif;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 uvm_analysis_port #(trans1) ap = new("ap", this);

 // Conditionally broadcast UVM analysis port transactions
 task run_phase(uvm_phase phase);
 if(ap.size()) forever collect();
 endtask

 task collect();
 trans1 tr = trans1::type_id::create("tr");
 get_txn_from_interface(tr);
 ap.write(tr);
 endtask

 task get_txn_from_interface(trans1 tr);
 tr.data1 = vif.data1;
 tr.data2 = vif.data2;
 @vif.cb1;
 endtask
endclass

Figure 25 - Conditionally sampling transaction and broadcasting on a UVM analysis port

Benchmark measurement - How much slower is unconditional UVM transaction sampling analysis port
broadcasting -vs- NOT sampling and broadcasting if the analysis port is unconnected to other components?

Figure 26 - Benchmark results of transaction sampling & broadcasting with no components

DVCon	2019	

Page 21 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

Turning off unused analysis port path sampling and broadcasting can significantly improve simulation performance.
Verification IP (VIP) developers should take note and turn off transaction sampling and broadcasting if the VIP agent
is not connected to any other components.

Benchmark Directory: BENCHM9

There are some additional best practices that can help reduce the risk of unexpected overhead. If objections need to

be frequently raised and lowered for objects deep in the hierarchy, the overhead can become prohibitive, so the use of
global objection handling may be warranted. Configurations can also lead to unexpected overhead if the complexity
of the types causes the expansion of the fields to hundreds or thousands of elements. In this case a configuration
container should be used. A final point of guidance is to never use wildcards for field names unless absolutely
necessary because of the unanticipated algorithmic order issues. A simple name lookup is of log(n) order, but the
wildcards invoke the regular expression execution causing additional overhead.

VII. Verification Best Practices

 This section probably warrants a paper unto itself. As such, we will focus on a few critical recommendations

associated with randomization, assertions, and coverage execution. The authors agree that this just scratches the
surface on this topic, but these simple recommendations can be broadly applied so they fit within the context of this
paper.

SystemVerilog provides multiple ways to randomize variables so it’s important to understand the advantages of

each to maximize performance. $urandom adds thread stability to the older Verilog standard $random and remains
the fastest way to do randomization of single, independent variables which are randomized often. More complex
constraint-based randomization is often used in UVM environments and is subject to a lot of optimization work in
each simulator. However, there are practices that can help each engine solve constraints faster. Using solve order to
break up or simplify constraint solving and using pre_randomize/post_randomize for sequential solving can
speed-up simulation but you do need to be careful to avoid creating invalid solutions. Echoing recommendations made
earlier in this paper regarding arrays, coders should be careful to avoid coupling such variables where possible.
Figures 15 and 16 bring some of these concepts together. In Figure 27, the loop sets up a constraint on each array
element based on its neighbor resulting in a list of 16-256 (randomized) integers with 32-bit variables that have to be
solved simultaneously. Modifying the code to use post_randomize() and an array sort() method as shown
in Figure 28 can improve runtime performance up to 1000x.

class txn15;
 rand int addr;
 rand logic [15:0] payload[$];
 rand bit [2:0] del;

 constraint size_ct { payload.size() inside { [16:256]}; }

 constraint sort_ct {
 foreach (payload[i]) {
 // i must be greater than 0
 if(i) payload[i] >= payload[i-1];
 }
 }

 function void show_payload();
 `uvm_info("FIG15", $sformatf("payload=%p", payload), UVM_MEDIUM)
 endfunction
endclass

Figure 27 - Constraint-based sorting of array elements

class txn16;
 rand int addr;

DVCon	2019	

Page 22 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

 rand logic [15:0] payload[$];
 rand bit [2:0] del;

 constraint size_ct { payload.size() inside { [16:256]}; }

 function void post_randomize();
 payload.sort();
 endfunction

 function void show_payload();
 `uvm_info("FIG16", $sformatf("payload=%p", payload), UVM_MEDIUM)
 endfunction
endclass

Figure 28 - post_randomize() sorting of array elements

Benchmark measurement - How much slower is constraint-based array sorting -vs- post_randomize() use of
the array sort() method?

Figure 29 - Benchmark results showing penalty for "clever" array-sorting constraint

As shown in Figure 29, randomization constraints techniques can hinder simulation performance the 1,000's of
percent. Be aware of the penalties you might incur from "clever" constraint techniques.

Benchmark Directory: BENCHM10

Assertions are also commonly used in UVM environments and subject to a lot of optimization in simulators. As

with randomization, a set of best practices can help boost performance. In general, we want to balance the well-known
value of assertions with efficient simulation. Minimizing the number of attempts by configuring the enabling
condition to trigger only on the first cycle of the enabling condition, using single-cycle assertions wherever possible,
and using single-clock assertions – even if that means splitting the assertion into two separate assertions – all result in
improved performance. While local variables may be needed to manipulate data inside sequences and properties, they
add overhead during simulation.

DVCon	2019	

Page 23 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

Figure 30The example at the top of Figure 30 shows an assertion coded using a local variable such that when a goes
high, a local value of b is saved and then used at the end of the assertion. The example at the bottom of Figure 30
simply uses the $past() assertion capability to state that the b-value from two cycles ago should be checked at the
end of the assertion.

Benchmark measurement - How much slower is using local variables -vs- other assertion techniques?

Figure 30 - Coding assertion with local variables -vs- using other assertion capabilities

The use of local variables seems to be very-vendor dependent. Some vendors may have optimized local variable
while others may have optimized other assertion methods. Ask your vendor for recommendations regarding the use
of local variables with their SystemVerilog simulator.

Benchmark Directory: BENCHM11

Coverage is a third common element of verification environments. When setting up the coverage bins, choose
vectored or auto bins to maximize performance as scalar and fixed-size bins create additional simulation overhead and
are more difficult to debug. Per the mantra of this paper, fewer coverage events will deliver faster simulation. This
starts by sampling coverage using a specific event trigger rather than a generic event such as a system clock. Coverage
sampling events can be further reduced by having covergroup[s] share common expressions. A third method to
reduce sampling events is to merge sample process that use the same event as shown in Figure 18.

module top;
 bit [31:0] addr1, addr2;
 bit [15:0] data;
 bit collect_cov;
 bit valid; // triggering event

 logic clk;
 `include "CNT_file"

 covergroup cg1;
 adr1: coverpoint addr2 {
 bins a[4] = {[0:$]};
 }
 endgroup

 covergroup cg2;
 adr2: coverpoint addr2 {
 bins b[4] = {[0:$]};
 }
 endgroup

DVCon	2019	

Page 24 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

 covergroup cg3;
 dat1: coverpoint data {
 bins d[4] = {[0:$]};
 }
 endgroup

 clkgen i1 (.clk(clk));

 cg1 c1 = new();
 cg2 c2 = new();
 cg3 c3 = new();

 initial begin
 forever @(posedge clk) begin
 addr1 = $urandom;
 addr2 = $urandom;
 data = $urandom;
 {collect_cov, valid} = $urandom_range(0,3);
 end
 end

 initial begin
 repeat(`CNT) @(posedge clk);
 $finish;
 end

 `ifdef MERGED

 // Sampling merged to a single event
 always @(posedge valid iff collect_cov) begin
 c1.sample();
 c2.sample();
 c3.sample();
 end

 `else

 always @(posedge valid iff collect_cov)
 c1.sample();

 always @(posedge valid iff collect_cov)
 c2.sample();

 always @(posedge valid iff collect_cov)
 c3.sample();

 `endif
endmodule

Figure 31 - Merged sampling -vs- separate sampling of covergroups

Benchmark measurement - How much slower is sampling of covergroup[s] in separate always blocks -vs-
sampling in the same always block?

DVCon	2019	

Page 25 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

Figure 32 - Benchmark results of covergroup sampling in separate & merged always blocks

The sampling of covergroup [s] in separate -vs- merged always blocks did not show a large performance
difference and the results, although small, were simulation vendor dependent.

Benchmark Directory: BENCHM12

VIII. Acknowledgment

UVM/SystemVerilog environments have grown in size and complexity since we looked at SystemVerilog

performance in 2012. With that growth, the cost of slow execution has also grown. This paper provided code examples
and guidelines to make every simulation faster and reduce those “yikes” moments verification engineers have when
they run their regressions.

References

[1] “Yikes! Why is my SystemVerilog so Slooooow?” Frank Kampf, Justin Sprague, Adam Sherer, DVCon U.S. Proceedings 2012.
[2] IEEE Std 1800-2012, IEEE Standard for SystemVerilog -- Unified Hardware Design, Specification, and Verification Language. by IEEE, 3

Park Avenue, New York, NY 10016-5997, USA.
[3] Assertion Writing Guide, Product Version 14.2, January 2015, Chapter 8 - "Maximizing Assertion Performance", by Cadence Design

Systems, Inc., 2655 Seely Avenue, San Jose, CA 65134, USA.
[4] “App Note Spotlight: Streamline Your SystemVerilog Code, Part I,” by John Rose. Blog post by Tyler Sherer 19 March 2018. Cadence

Functional Verification Blogs. Retrieve from http://community.cadence.com/cadence_blogs_8/b/fv/posts/app-note-spotlight-streamline-
your-systemverilog-code-part-i.

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and trainer with 37 years of
ASIC, FPGA and system design experience and 27 years of SystemVerilog, synthesis and methodology training
experience.
Mr. Cummings has presented more than 100 SystemVerilog seminars and training classes in the past 16 years and
was the featured speaker at the world-wide SystemVerilog NOW! seminars.
Mr. Cummings participated on every IEEE & Accellera SystemVerilog, SystemVerilog Synthesis, SystemVerilog
committee from 1994-2012, and has presented more than 50 papers on SystemVerilog & SystemVerilog related
design, synthesis and verification techniques.
Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State University.
Sunburst Design, Inc. offers World Class Verilog & SystemVerilog training courses. For more information, visit the
www.sunburst-design.com web site.
Email address: cliffc@sunburst-design.com

DVCon	2019	

Page 26 Yikes! Why is My SystemVerilog
Rev 1.0 Still So Slooooow?

John Rose, Product Engineering Architect, Cadence Design Systems, Inc., has worked in the EDA industry for the
past 24 years and prior to that was an ASIC designer using Verilog HDL with Synthesis. Mr. Rose spent three years
as a design and verification consultant designing a wide range of chips from image processors to encryption/
decryption chips for peripheral controllers.
Mr. Rose was involved in the development of a C based verification library, TestBuilder, that morphed into a
SystemC based verification library, SCV. Mr. Rose was also a key contributor in the development in the verification
methodology libraries, URM (Cadence proprietary library), OVM (Cadence and Mentor collaboration) and UVM
(Accellera).
Mr. Rose holds a BSEE from The University of Kansas.
Email address: jlrose@cadence.com

Adam Sherer
Adam Sherer drives verification software and hardware sales in the Eastern North America region for Cadence
Design Systems. Mr. Sherer has 27 years of experience in verification and software engineering that also has
included roles in product management, applications engineering, standards development, and R&D.
Mr. Sherer received his MS EE from the University of Rochester, with research published in the IEEE Transactions
on CAD. His BS EE and BA CS were received from SUNY Buffalo. Mr. Sherer also holds a 2017 patent in
verification technology.
Email address: asherer@cadence.com

Last Updated: April 2019

