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ABSTRACT 

This paper describes a few notable SystemVerilog coding styles and their impact on simulation performance. 
Benchmarks were run using the three major SystemVerilog simulation tools and those benchmarks are reported in 
the paper. Some of the most important coding styles discussed in this paper include UVM string processing and 
SystemVerilog randomization constraints. Some coding styles showed little or no impact on performance for some 
tools while the same coding styles showed large simulation performance impact.  This paper is an update to a paper 
originally presented by Adam Sherer and his co-authors at DVCon in 2012. The benchmarking described in this 
paper is only for coding styles and not for performance differences between vendor tools.
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I.   Introduction 
 
In the 2012 edition of this topic we observed that thousands of engineers were cranking out SystemVerilog code 

but often found the simulation of that code ran slower than expected. We offered a number of testbench-focused 
recommendations for optimizing that code.  Since then, millions more lines of code have been generated, simulators 
have become faster, but the question engineers raise is often the same with one new word: “Why is my SystemVerilog 
still so slow?” 

 
Generally speaking, all SystemVerilog simulators are faster in 2019 than they were in 2012.  UVM testbench code, 

randomization, assertions, and design execution have all become faster as the underlying engines become more 
efficient. While more efficient engines are necessary, it is not sufficient to address the compute requirements of 
modern verification environments. That leaves engineers with only a few options they can use to improve simulation 
efficiency:  add compute power, get more performance from their simulator vendors, construct more effective 
verification environments, and improve the code they feed into the first three.  Ouch. Cloud and datacenter expansion 
are answers for compute power access but that requires financial investment. Squeezing the simulator vendor will at 
most yield modest gains.  More effective verification environments can have larger benefits ranging from new 
technologies like formal analysis to refactoring algorithms.  It is this last point – refactoring then can raise a “yikes” 
from engineers because it sounds like a lot of work for the same output.  But as we examine this topic, we can discover 
approaches that can speed execution multiple times by training engineers to use some new best-practices. 

 
Benchmarking Different Coding Styles 

 
Note from Cliff Cummings: It is one thing to claim that certain coding styles are more/less efficient and another to 
back the claims with actual data. My Cadence co-authors have made claims about specific coding styles and I 
wanted to verify those claims; hence, I have run benchmarks as described below.  
 
The recommended coding styles in this paper were all submitted by my Cadence co-authors and may have shown 
greater improvements in their 2012 paper, but in this paper, I found it surprising that a few of the recommended 
coding styles actually made the Cadence simulations slightly worse, which indicates that the Cadence simulator 
itself has overcome some deficiencies that might have been present in 2012. Bottom line is that the reader should not 
assume that all improvements were best for Cadence, and not even my Cadence co-authors know the benchmark 
results for the Cadence simulator. 

 
The coding styles described by my Cadence co-authors were tested using the three major SystemVerilog simulators 
and are reported in this paper. My Cadence co-authors have not seen the raw benchmark data and were not given 
access to competitor simulators. Where I have included performance data in the paper, I have not identified which 
simulator gave which performance numbers. I always listed the relative performances from least improvement 
measured to most improvement measured, which means that each simulator was sometimes "Simulator A," 
"Simulator B" and "Simulator C" as shown in Figure 1. 
 

 
Figure 1 - Example coding style performance table 

Each simulator had at least 3 benchmarks where they had the best benchmark times, at least 1 benchmark where 
they had the worst benchmark times, and at least 3 benchmarks where recommended coding styles caused the 
greatest improvement. 
 
The benchmark examples were run five times on each simulator and the run times were averaged and then compared 
to the other styles used in the benchmark. Each benchmark directory has a CNT_file that defines the loop count used 
in each benchmark. Count values were anywhere from 1,000 loops for larger, memory intensive benchmarks to 
100,000,000 for smaller benchmarks that would complete quickly. To test each benchmark setup, I would frequently 
use a starting count of 100 to make sure the simulations ran without errors. The benchmark scripts are simple (if not 
stupid) Makefiles, which were easy to assemble and test.  
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You will not be told which simulator was A, B or C for each benchmark. You will not be shown the actual 
simulation times for each benchmark. The intent of this paper is to alert engineers of coding styles that may or may 
not be inefficient for a specific simulator and coding styles that are definitely very inefficient for all simulators. 
 
It is NOT the intent of this paper to prove that one simulator is faster or better than another, and we really do NOT 
want you to judge a simulator based on a single-feature, coding-style benchmark!! 
 
If readers want to know the relative efficiency/inefficiency for specific coding styles as executed on their preferred 
simulator, the reader can download the benchmark files and scripts and run the simulations themselves. The 
benchmark code can be found on the web page http://www.sunburst-design.com/benchmark_code/DVCon2019/ 
 

II.   UVM is Software 
 
Like it or not, UVM is software.  As such, engineers working with UVM need to become familiar with known-good 

software practices.  As stated in the introduction, simulators are continuously optimized to improve performance.  To 
do so, vendors typically look at coding patterns then tune the simulator to recognize these patterns for faster execution. 
For commonly used code, like the UVM reference library, this manifests itself in faster simulation for most projects.  
For project-specific coding styles or application-specific coding styles, the simulation improvements may completely 
miss some projects. With that said, there are inefficient coding styles that are more difficult for the simulators to 
recognize and need to be adjusted with software-knowledgeable coding practices. 

 
Frequent function/task calls add overhead and may mask algorithmic order issues.  Each function/task has to set-up 

the call, push data references and/or complete data copies to the call stack and process any specified return. When 
they are called in a loop, the performance cost is paid each time through the loop.  For simple calls, the compiler may 
in-line the function/task to avoid the stack frame manipulation, but complex calls are typically not in-lined because 
they bloat the simulation code, which can lead to cache misses creating an entirely different performance issue.  
Moreover, the body of the function/task may itself contain loops and/or additional calls. These can increase the order 
of the algorithm especially as the application scales. 

 
The example in Figure 2 calculates the number of elements in an MDA (Multi-Dimensional Array) of queues using 

a 3-dimensional foreach-loop by iterating over the array and counting elements. The algorithm is slow because it 
counts every element every time. It would be more efficient to use the queue's size() method as shown in Figure 
3, but the most efficient approach is shown in Figure 4 where a separate count (elements) variable is maintained.  
While the runtime difference between the separate counter and the built-in function may be small for a small MDA, 
it may be hard to predict how the code will be used so the best practice would be to code for efficiency.  
 

class container; 
  // 2-dimensional dynamic array of queues of trans_obj handles 
  trans_obj mda_q [][][$]; 
  int rows, cols; // default values are 0 

 
  function void set_queues(int row, int col); 
    rows = row; 
    cols = col; 
    mda_q = new[row];   // ILLEGAL: mda_q = new[row][col]; 
    // foreach loop used to initialize column sizes 
    foreach(mda_q[row]) mda_q[row] = new[col]; 
  endfunction 
 
  function void rand_init(int row, int col, int q_depth); 
    trans_obj tr = new(); 
    int       q_rand_depth; 
 
    for (int i=0; i<(row-1); i++) begin 
      for (int j=0; j<(col-1); j++) begin 
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 // randomize q-depth for each queue 
        q_rand_depth = $urandom_range(q_depth-1);  
        for (int k=0; k<(q_rand_depth-1); k++) begin 
   void'(tr.randomize()); 
   add(tr, i, j); // add to queue at [i][j] 
        end 
      end 
    end 
  endfunction 
 
  //----------------------------------------------- 
  // returns total number of trans_obj handles from  
  // 2-dimensional dynamic array of queued handles 
  //----------------------------------------------- 
  function int get_num(); 
    foreach(mda_q[i,j,k]) get_num++; 
  endfunction 
 
  function void add (trans_obj obj, int row, int col); 
    // checks for legality not shown 
    mda_q[row][col].push_back(obj); 
  endfunction 
 
  // If number of trans_obj handles is not 0, remove 
  // and return the first queued trans_obj handle 
  function trans_obj get_first(int row, int col); 
    if (mda_q[row][col].size()) begin 
      get_first = mda_q[row][col].pop_front(); 
    end 
  endfunction 
endclass  

Figure 2 - Inefficient get_num function - 3-D foreach-loop 

class container; 
  // 2-dimensional dynamic array of queues of trans_obj handles 
  trans_obj mda_q [][][$]; 
  int rows, cols; // default values are 0 
 
 
  function void set_queues(int row, int col); 
    rows = row; 
    cols = col; 
    mda_q = new[row];   // ILLEGAL: mda_q = new[row][col]; 
    // foreach loop used to initialize column sizes 
    foreach(mda_q[row]) mda_q[row] = new[col]; 
 
  endfunction 
 
  function void rand_init(int row, int col, int q_depth); 
    trans_obj tr = new(); 
    int       q_rand_depth; 
 
    for (int i=0; i<(row-1); i++) begin 
      for (int j=0; j<(col-1); j++) begin 
 // randomize q-depth for each queue 
        q_rand_depth = $urandom_range(q_depth-1);  
        for (int k=0; k<(q_rand_depth-1); k++) begin 
   void'(tr.randomize()); 
   add(tr, i, j); // add to queue at [i][j] 
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        end 
      end 
    end 
  endfunction 
 
  //----------------------------------------------- 
  // returns total number of trans_obj handles from  
  // 2-dimensional dynamic array of queued handles 
  //----------------------------------------------- 
  function int get_num(); 
    foreach(mda_q[i,j]) get_num += mda_q[i][j].size(); 
  endfunction 
 
  function void add (trans_obj obj, int row, int col); 
    // checks for legality not shown 
    mda_q[row][col].push_back(obj); 
 
  endfunction 
 
  // If number of trans_obj handles is not 0, remove 
  // and return the first queued trans_obj handle 
  function trans_obj get_first(int row, int col); 
    if (mda_q[row][col].size()) begin 
      get_first = mda_q[row][col].pop_front(); 
 
    end 
  endfunction 
endclass 

Figure 3- Possibly inefficient get_num function - 2-D foreach-loop that sums size() of all queues 

 
class container; 
  // 2-dimensional dynamic array of queues of trans_obj handles 
  trans_obj mda_q [][][$]; 
  int rows, cols; // default values are 0 
  int elements;   // default values is  0 
 
  function void set_queues(int row, int col); 
    rows = row; 
    cols = col; 
    mda_q = new[row];   // ILLEGAL: mda_q = new[row][col]; 
    // foreach loop used to initialize column sizes 
    foreach(mda_q[row]) mda_q[row] = new[col]; 
    elements = 0; 
  endfunction 
 
  function void rand_init(int row, int col, int q_depth); 
    trans_obj tr = new(); 
    int       q_rand_depth; 
 
    for (int i=0; i<(row-1); i++) begin 
      for (int j=0; j<(col-1); j++) begin 
        // randomize q-depth for each queue 
        q_rand_depth = $urandom_range(q_depth-1);  
        for (int k=0; k<(q_rand_depth-1); k++) begin 
          void'(tr.randomize()); 
          add(tr, i, j); // add to queue at [i][j] 
        end 
      end 
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    end 
  endfunction 
 
  //----------------------------------------------- 
  // returns total number of trans_obj handles from  
  // 2-dimensional dynamic array of queued handles 
  //----------------------------------------------- 
  function int get_num(); 
    return elements; 
  endfunction 
 
  function void add (trans_obj obj, int row, int col); 
    // checks for legality not shown 
    mda_q[row][col].push_back(obj); 
    ++elements; 
  endfunction 
 
  // If number of trans_obj handles is not 0, remove 
  // and return the first queued trans_obj handle 
  function trans_obj get_first(int row, int col); 
    if(mda_q[row][col].size()) begin 
      get_first = mda_q[row][col].pop_front(); 
      --elements; 
    end 
  endfunction 
endclass 

Figure 4 - Efficient get_num function utilizing separate counter variable "elements" 

 
Benchmark measurement - How slow is the 3-D foreach loop compared to keeping the elements count? 
 

 
Figure 5 - 3-D foreach loop compared to keeping the elements count 

Depending on the simulator used, deep foreach nesting can have a negative performance impact. 
 
Benchmark measurement - How slow is the 2-D foreach loop with size() method compared to keeping the 
elements count? 
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Figure 6 - 2-D foreach loop with size() method compared to keeping the elements count 

This benchmark did not show a huge difference in performance as noted across the different simulators. 
 
Benchmark Directory: BENCHM1 

 
There are other general coding approaches, some of which were identified in the 2012 paper [1]. For example, 

minimize string manipulation wherever possible.  Also removing loop invariants – code inside a loop that is not 
affected by the loop iterations – will speed simulation especially if the loop count is high.  This may not be apparent 
to the loop author if the loop limit is variable as the limit may be much higher in scaled usage.  A complement to this 
point is moving code that is only used in conditional statements, such as if or case, inside the conditional especially 
if the conditional is unlikely to be true or the calculation is only needed in one branch.  If the code is in the testbench, 
then the compiler will likely make this adjustment for you.  But if the code is in the DUT, or has any delay condition, 
the compiler may not be able to make the optimization because another process may update the rhs (right-hand side) 
of the expression. 
 
Benchmark measurement - How slow are the temp assignments outside of the loop compared to making the 
assignments directly inside of the loop? 

 

 
Figure 7 - Conditional code example with possible more efficient coding on the bottom 

Not a huge difference in performance was noted but the result is simulator-dependent. 
 
Benchmark Directory: BENCHM2 
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III.   SystemVerilog Semantics Support Syntax Skills 
 
SystemVerilog syntax knowledge is enough to get you coding, but semantics will help you do it efficiently. The 

semantics cover information beyond the syntax including defaults, simulator function specified by the standard, simple 
coding masking time-expensive execution, and more. Performance issues associated with semantics are rarely 
manifest in simulator profiles making them difficult to discover unless you can recognize coding issues associated 
with syntax semantics. This does not discount the value of profilers, but it does imply that good coding and profiling 
work together to achieve performance. 

 
Let’s take a look at the logic type.  Introduced in SystemVerilog, the logic type can have either wire or 

variable storage and that storage type is determined from context by the simulator if it is not explicitly declared. This 
matters to simulation because wires can be collapsed to be the same object for higher simulation speed whereas 
variables cannot.  Since the semantic for logic type is to default to variable storage in all cases except for the inputs 
or inouts of a design unit, you may have a properly executing simulation that mysteriously runs more slowly than you 
would expect. Some simulators provide some profiling and optimization support for this issue, but it is a best practice 
to code as explicitly as possible to avoid side-effects such as slower performance. Figure 8 shows a coding example 
where A6.y, A6.X1.y, and A6.X1.T1.y are distinct and where the highlighted declarations might not allow 
them to be collapsed to a single object.  Note that wire is implicit on the input port so the declaration is not needed 
to assure that the a signals are collapsed together.  However, it is not implicit on the output and might need to be 
declared in order for the simulator to collapse the y signals together.  

 
module A6 (output logic [7:0] y, input logic [7:0] a, b); 
  A6_1 X1 (.y(y), .a(a), .b(b)); 
endmodule 
 
module A6_1 (output logic [7:0] y, input logic [7:0] a, b); 
  A6_2 T1 (.y(y), .a(a), .b(b)); 
endmodule 
 
module A6_2 (output logic [7:0] y, input logic [7:0] a, b); 
  logic [7:0] tmp; 
 
  assign y = tmp; 
 
  always_comb tmp = a & b; 
endmodule 

Figure 8 - Example using simple logic port declarations 

It may be easier for designers to simply add wire to each port declaration to enable faster simulation speed as 
shown in Figure 9. 
 

module A6 (output wire logic [7:0] y, input wire logic [7:0] a, b); 
  A6_1 X1 (.y(y), .a(a), .b(b)); 
endmodule 
 
module A6_1 (output wire logic [7:0] y, input wire logic [7:0] a, b); 
  A6_2 T1 (.y(y), .a(a), .b(b)); 
endmodule 
 
module A6_2 (output wire logic [7:0] y, input wire logic [7:0] a, b); 
  logic [7:0] tmp; 
 
  assign y = tmp; 
 
  always_comb tmp = a & b; 
endmodule 

Figure 9 - Example using wire-logic port declarations 
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Benchmark measurement - How slow are logic -vs- wire-logic ports in simulation? 
 

 
Figure 10 - Benchmark results using logic ports -vs- wire-logic ports 

One simulator had a minor penalty for logic ports, but wire - logic ports are cumbersome, confusing and in 
general not worth the extra coding effort. 
 
Benchmark Directory: BENCHM3 
 

Another important semantic is that the simulator will typically operate faster on a full vector than individual bits.  
This coding style is known as bit-blasting and the syntax for it is straight forward; looping over the bits of a vector for 
example.  In Figure 11, the inefficient example uses a generate statement that creates a static hierarchy.  While the 
simulator may be able to optimize a simple example within a local process like this one, complex examples with 
optimization across a hierarchy are often a source of hidden performance issues.   

 

 
 

Figure 11 - Examples of bit-blasting -vs- full-vector syntax 

Benchmark measurement - How much slower are inefficient bit-blasting operations? 
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Figure 12 - Benchmark results using generate bit-blasting -vs- full vector operations 

Inefficient bit-vector operations can have a severe performance penalty but the penalty was very simulator 
dependent for this example. 
 
Benchmark Directory: BENCHM4 

 
A third example of performance due to semantics is pass by reference versus pass by value. Without the general 

concept of a pointer and/or without the impact from algorithmic scaling, SystemVerilog coders might ignore the cost 
of passing by value.  Engineers should see the ref construct in their code wherever a function only needs read access 
to any large data objects, such as struct with hundreds of fields or QDAs (Queues, Dynamic arrays, Associative 
arrays) with hundreds of elements, but does not write back to it.  Just keep in mind that all parameters in an argument 
list that follow the ref construct will pass by reference unless you explicitly use input, output or inout. 

 
The semantics of dynamic data structures (QDAs) are also sources of common performance issues that are generally 

true of SystemVerilog and most languages that have these types.  An easy one to recognize is the use of static arrays 
instead of dynamic arrays wherever possible.  Even if there is a small amount of variability to the length of the array, 
it is better to specify a slightly larger static array rather than take on the overhead of the dynamic array (memory 
footprint and garbage collection time).  Another common performance mistake is to use dynamic arrays where a queue 
is better and vice versa. Since dynamic arrays are best for look-up and random insertion/deletion operations and queues 
are best for front or back operations with automatic resizing, the simulators have different internal representations to 
optimize each group of operations.  Comparing access between queues and associative arrays, an arbitrary indexing 
for an object in a queue is O(1) but it is O(logn) for associative arrays. 
 

IV.   Memory and Garbage Collection – Neither are Free 
 
We focused on the general semantics of dynamic types in the previous section, but the memory and garbage 

collection aspects of those types warrant a separate section.  Inefficient memory can lead to significant cache misses, 
heap management overhead, and garbage collection overhead, all of which can be difficult to discover through 
profiling. 

 
Copying dynamic objects, especially deep copies, should be minimized.  One approach mentioned earlier is to use 

the ref construct in function calls, but another critical approach is to leave deep copies to the consumer of the 
objects wherever possible.  Another approach is to reuse objects instead of continuously creating new objects when 
an object is required. This may be done with a single object or with a pool of objects.  This is certainly a situation 
where the coder needs to understand how the code will be used as it is far too easy to create objects with simple 
new()methods.  While the example in Figure 13 is focused on the single object example for brevity in this paper, 
one can envision a class with separate methods to create and destroy objects. The create method would check a 
dynamic object containing previously used objects and only new()-create one if the pool is empty. Similarly, the 



DVCon	2019	

Page 13  Yikes! Why is My SystemVerilog 
Rev 1.0 Still So Slooooow? 

destroy method should push the object into the pool rather than simply dereferencing it for garbage collection.  And, 
yes, semantics here imply that a queue is the proper dynamic object for the pool. 
 

 
Figure 13 - Example of using looped and non-looped class object construction 

Benchmark measurement - How much slower is looped construction (and destruction) or objects -vs- single 
construction and reuse? 
 

 
Figure 14 - Benchmark results using looped and non-looped class object construction 

It should be obvious that class object construction and destruction has a price. Use good judgement when 
constructing class object. 
 
Benchmark Directory: BENCHM5 

 
Implicit heap management is another way to avoid hidden performance issues.  Classes are heap objects and carry 

a fair amount of overhead.  Wherever possible struct[s] should be used instead – either inside the class or instead 
of the class.  For example, if the main purpose of the class is to be a container of heterogeneous data types, then a 
struct is a better choice.  A scoreboard is a good example.  It is more efficient to code a struct as data element 
within the class that manipulates the scoreboard instead of accessing it in a separate class because that separate class 
will require heap management and potentially engage garbage collection but the simple struct will not. 

 
Putting interface-heavy functionality into the interface rather than in classes is also more simulation efficient with 

the added benefit of being more reusable, because the functionality is associated with the interface itself, and interfaces 
can be synthesizable but classes are not.  
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V.   It is Best to Leave Sleeping Processes to Lie 

 
SystemVerilog simulators are event driven – the more events they run at a given time point, the slower they go.  

The implication, to paraphrase an old adage, is to let sleeping processes lie and not wake them unnecessarily.  
Sometimes the wake-up may occur in unexpected circumstance. 

 
A very common process in SystemVerilog is the always block with a single sensitive signal, such as the clock.  

This static process is highly optimized in all simulators, but side-effects from dynamic tasks or functions such as DPI 
(or any external) functions, virtual class tasks/functions, and virtual interface tasks/functions may disable the 
optimization.  Some of these may be handled by a given simulator, but these side-effects can be arbitrarily complex, 
so the optimization cannot be maintained in all cases.  In Figure 15, the DPI call was first executed outside the 
conditional, while in Figure 16 the DPI call is only executed if the txactive signal is high. The DPI code shown in 
Figure 17 is passed the txactive signal and become the active signal that is again tested inside of the C-code. 
Because of this, the simulator will need to run the always process on every posedge clk because it cannot see 
any side-effect coming from the DPI function.  By moving the DPI call inside the conditional, the simulator might 
optimize the process wake up to posedge clk and txactive reducing the number of times the process executes. 

 
import "DPI-C" function void dpi_tic(logic active, int count); 

 
module BENM9A (input logic txactive, clk); 
  int   counter;  // default value is 0 
 
  initial $display("%m"); 
   
  always_ff @(posedge clk) begin 
    //move DPI code into condition if it is conditional 
    dpi_tic(txactive, counter); 
    if (txactive) 
      counter <= counter+1; 
  end 
endmodule 

Figure 15 - always_ff executes DPI code before testing txactive 

 
import "DPI-C" function void dpi_tic(logic active, int count); 

 
module BENM9B (input logic txactive, clk); 
  int   counter;  // default value is 0 
 
  initial $display("%m"); 
   
  always_ff @(posedge clk) 
    if (txactive) begin 
      //move DPI code into condition if it is conditional 
      dpi_tic(txactive, counter); 
      counter <= counter+1; 
    end 
endmodule 

Figure 16 - always_ff tests txactive before calling DPI code 

 
// DPI code 
#include <stdio.h> 
#include <svdpi.h> 
 
void dpi_tic(int active, int count) 
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{ 
  if(active) 
  { 
    if((count%100000) == 0) { 
      printf("DPI tic %d\n", count); 
    } 
  } 
} 

Figure 17 - DPI code tests active signal before executing code 

Benchmark measurement - How much slower is unconditional execution of the DPI function in this example? 
 

 
Figure 18 - Benchmark results using looped and non-looped class object construction 

In this DPI-call example, there was not a huge difference and one simulator actually ran faster executing the DPI 
function while another ran slower. This might be due to DPI optimizations by one simulation vendor as opposed to 
actually executing the DPI code unconditionally. Even though the benchmark simulation did not show the expected 
performance difference, the results might be different when executing tasks, functions, virtual methods and nested 
combinations of the various methods. 
 
Benchmark Directory: BENCHM6 
 

It is possible to combine both static and dynamic process wake-up issues masking wake-up performance issues.  For 
example, code can be written such that execution begins by triggering a static process, but if that leads to code triggered 
based on execution flow, the subsequent processes can be dynamic.  Figure 19 contains an example of a state machine 
coded with while statements.  This style will lead to the intended hardware behavior, but the simulator will wake-
up the statement machine on every posedge clk regardless of the state variable.  While the simulator may be able 
to optimize this simple coding example, the coding can be arbitrarily complex, so it cannot be optimized in all cases.  
However, recoding using a recommended FSM coding style, as shown in Figure 20, will lead to both proper 
synthesized hardware and efficient simulation. 
 

module BEN11A ( 
  output logic [31:0] counter, 
  input  logic        req, ack, 
  input  logic        clk, rst_n); 
 
  enum logic [2:0] { 
                    IDLE, 
                    S1, 
                    S2, 
                    S3, 
                    S4, 
                    XXX} state; 
 
  initial @(negedge rst_n) begin 
    forever begin: fsm 
      state   = IDLE; 
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      counter = '0; 
      @(posedge rst_n); 
      @(posedge clk); // Stay in IDLE until the next clk 
 
      forever begin 
        while (!req) @(posedge clk); // Stay in IDLE 
                                state = S1; 
                     @(posedge clk); // S1 
        while (!ack) @(posedge clk); // Stay in S1 
                                state = S2; 
          counter = counter + 1;     // S2 
                     @(posedge clk); // S2 for just one clk 
        if (req) begin 
                         state = S3; 
                     @(posedge clk); // S3 
          while (req)@(posedge clk); // Stay in S3 
 end 
                         state = S4; 
              @(posedge clk); // S4 
        while ( ack) @(posedge clk); // Stay in S4 
                                state = IDLE; 
                     @(posedge clk); // IDLE 
      end 
    end 
  end 
   
  always @(negedge rst_n) begin 
    disable fsm; 
  end 
endmodule 

Figure 19 - Mixed static and dynamic processes with inefficient wake-up 

 
module BEN11B ( 
  output logic [31:0] counter, 
  input  logic        req, ack, 
  input  logic        clk, rst_n); 
 
  enum logic [2:0] { 
                    IDLE, 
                    S1, 
                    S2, 
                    S3, 
                    S4, 
                    XXX} state, next; 
 
  always_ff @(posedge clk, negedge rst_n) 
    if (!rst_n) state <= IDLE; 
    else        state <= next; 
 
  always_comb begin 
    next = XXX; 
    case(state) 
      IDLE: if( req) next = S1; 
            else     next = IDLE; 
      S1:   if( ack) next = S2; 
            else     next = S1; 
      S2:   if(!req) next = S4; 
            else     next = S3; 
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      S3:   if(!req) next = S4; 
            else     next = S3; 
      S4:   if(!ack) next = IDLE; 
            else     next = S4; 
      default:       next = XXX; 
    endcase 
  end 
   
  always_ff @(posedge clk, negedge rst_n) 
    if (!rst_n) counter <= '0; 
    else begin 
      case (next) 
        IDLE, S1, S3, S4: ; // No counter change 
        S2     : counter <= counter + 1; 
        default: counter <= XXX; 
      endcase 
    end 
endmodule 

Figure 20 - Mixed static and dynamic processes recoded for efficient simulation 

Benchmark measurement - Surprisingly, the standard FSM coding style was SLOWER that the while-loop style.  
 

 
Figure 21 - Benchmark results using behavioral while-loops -vs- standard FSM coding styles 

Despite the fact that this benchmark showed that the standard FSM coding style might be slower than the while -
loop behavioral implementation, correct FSM coding styles are more important that this benchmarked simulation 
performance. 
 
Benchmark Directory: BENCHM7 

 
VI.   UVM Best Practices 

 
Not surprising, all of the principles discussed so far apply to UVM. Wherever possible, deep-copy, pass by value, 

process wake-up associated with UVM should be minimized. 
A common approach in UVM is to code message writing to interesting parts of the verification environment.  A 

simple optimization is to guard the messaging using the uvm_report_enabled() function.  In Figure 22, the 
messaging is triggered if the verbosity level is set at or above UVM_HIGH.  And if the messaging needs to be written 
frequently, the UVM tree printer or even the line printer should be used to get meaningful information while keeping 
the messaging overhead to a minimum. 

 
`include "CNT_file" 
class mem_print_test; 
  int mem [47:0]; 
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  virtual clk_if vif; 
 
  function new(virtual clk_if nif); 
    vif = nif; 
  endfunction 
 
  task run(); 
    set_data(32'h0000_0000); 
    repeat (`CNT/10) get_data(); 
    set_data(32'h1111_1111); 
    repeat (`CNT/10) get_data(); 
    set_data(32'h2222_2222); 
    repeat (`CNT/10) get_data(); 
    set_data(32'h3333_3333); 
    repeat (`CNT/10) get_data(); 
    set_data(32'h4444_4444); 
    repeat (`CNT/10) get_data(); 
    set_data(32'h5555_5555); 
    repeat (`CNT/10) get_data(); 
    set_data(32'h6666_6666); 
    repeat (`CNT/10) get_data(); 
    set_data(32'h7777_7777); 
    repeat (`CNT/10) get_data(); 
    set_data(32'h8888_8888); 
    repeat (`CNT/10) get_data(); 
    set_data(32'h9999_9999); 
    repeat (`CNT/10) get_data(); 
  endtask 
 
  function void set_data(int data, bit random='0); 
    if (random) 
      for (int i=0; i<48; i++) mem[i] = $urandom; 
    else   
      mem = '{default:data}; 
  endfunction 
 
  function void get_data(); 
    string memlayout; 
    `ifdef FAST 
    // Only do expensive string processing for >= UVM_HIGH verbosity 
    if(uvm_report_enabled(UVM_HIGH, UVM_INFO, "MEMDATA")) begin 
    `endif 
      // Format the memory layout into a string 
      memlayout = "  {\n"; 
      foreach(mem[i])  
          memlayout = $sformatf("%s    mem[%0d]:%8h", 
                                 memlayout, i, mem[i]); 
      memlayout = {memlayout, "  }\n"}; 
    `ifdef FAST 
    end 
    `endif 
    `uvm_info("MEMDATA", memlayout, UVM_HIGH) 
   endfunction 
endclass 

Figure 22 - Conditional messaging in UVM 

Benchmark measurement - How much slower is this UVM simulation using unconditional string processing? 
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Figure 23 - Benchmark results using unconditional -vs- conditional UVM string processing 

The unconditional array string processing even when the processed string was not printed was huge, exacting a 
penalty of 3,000-10,000 time slower than conditional string processing. Care should be taken as it relates to UVM 
string processing. 
 
Benchmark Directory: BENCHM8 
 

Another source on unnecessary execution is associated with TLM analysis ports.  Since these are often used as a 
callback mechanism, monitors, collectors, or other components package data and then write the data to all of the 
consumers that are attached to the analysis port.  As such, the monitor will often do all the transaction sampling and 
broadcasting, but there is no requirement that an analysis port be connected to any other components so the sampled 
transaction may not be used.  In fact, the connection can be environment dependent.   
 

Figure 24 shows the unconditional monitoring and broadcasting of transactions on the analysis port, while Figure 
25 uses a conditional test to see if anything is connected to the analysis port before sampling and broadcasting a 
transaction. 

 
class tb_monitor extends uvm_monitor; 
  `uvm_component_utils(tb_monitor) 
 
  virtual dut_if vif; 
 
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  uvm_analysis_port #(trans1) ap = new("ap", this); 
 
  // Unconditionally broadcast UVM analysis port transactions 
  task run_phase(uvm_phase phase); 
    forever collect(); 
  endtask 

 
  task collect(); 
    trans1 tr = trans1::type_id::create("tr"); 
    get_txn_from_interface(tr); 
    ap.write(tr); 
  endtask 
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  task get_txn_from_interface(trans1 tr); 
    tr.data1 = vif.data1; 
    tr.data2 = vif.data2; 
    @vif.cb1; 
  endtask 
endclass  

Figure 24 - Unconditionally sampling transaction and broadcasting on a UVM analysis port 

 
class tb_monitor extends uvm_monitor; 
  `uvm_component_utils(tb_monitor) 
 
  virtual dut_if vif; 
 
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  uvm_analysis_port #(trans1) ap = new("ap", this); 

 
  // Conditionally broadcast UVM analysis port transactions 
  task run_phase(uvm_phase phase); 
    if(ap.size()) forever collect(); 
  endtask 
 
  task collect(); 
    trans1 tr = trans1::type_id::create("tr"); 
    get_txn_from_interface(tr); 
    ap.write(tr); 
  endtask 
 
  task get_txn_from_interface(trans1 tr); 
    tr.data1 = vif.data1; 
    tr.data2 = vif.data2; 
    @vif.cb1; 
  endtask 
endclass  

Figure 25 - Conditionally sampling transaction and broadcasting on a UVM analysis port 

Benchmark measurement - How much slower is unconditional UVM transaction sampling analysis port 
broadcasting -vs- NOT sampling and broadcasting if the analysis port is unconnected to other components? 

 

 
Figure 26 - Benchmark results of transaction sampling & broadcasting with no components  
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Turning off unused analysis port path sampling and broadcasting can significantly improve simulation performance. 
Verification IP (VIP) developers should take note and turn off transaction sampling and broadcasting if the VIP agent 
is not connected to any other components.  
 
Benchmark Directory: BENCHM9 

 
There are some additional best practices that can help reduce the risk of unexpected overhead. If objections need to 

be frequently raised and lowered for objects deep in the hierarchy, the overhead can become prohibitive, so the use of 
global objection handling may be warranted.  Configurations can also lead to unexpected overhead if the complexity 
of the types causes the expansion of the fields to hundreds or thousands of elements.  In this case a configuration 
container should be used. A final point of guidance is to never use wildcards for field names unless absolutely 
necessary because of the unanticipated algorithmic order issues. A simple name lookup is of log(n) order, but the 
wildcards invoke the regular expression execution causing additional overhead.  

 
VII.   Verification Best Practices 

 
  This section probably warrants a paper unto itself.  As such, we will focus on a few critical recommendations 

associated with randomization, assertions, and coverage execution.  The authors agree that this just scratches the 
surface on this topic, but these simple recommendations can be broadly applied so they fit within the context of this 
paper.   

 
SystemVerilog provides multiple ways to randomize variables so it’s important to understand the advantages of 

each to maximize performance.  $urandom adds thread stability to the older Verilog standard $random and remains 
the fastest way to do randomization of single, independent variables which are randomized often. More complex 
constraint-based randomization is often used in UVM environments and is subject to a lot of optimization work in 
each simulator. However, there are practices that can help each engine solve constraints faster.  Using solve order to 
break up or simplify constraint solving and using pre_randomize/post_randomize for sequential solving can 
speed-up simulation but you do need to be careful to avoid creating invalid solutions. Echoing recommendations made 
earlier in this paper regarding arrays, coders should be careful to avoid coupling such variables where possible.  
Figures 15 and 16 bring some of these concepts together.  In Figure 27, the loop sets up a constraint on each array 
element based on its neighbor resulting in a list of 16-256 (randomized) integers with 32-bit variables that have to be 
solved simultaneously.  Modifying the code to use post_randomize() and an array sort() method as shown 
in Figure 28 can improve runtime performance up to 1000x. 

 
class txn15; 
  rand int          addr; 
  rand logic [15:0] payload[$]; 
  rand bit    [2:0] del; 
 
  constraint size_ct { payload.size() inside { [16:256]}; } 
 
  constraint sort_ct {  
    foreach (payload[i]) {  
      // i must be greater than 0 
      if(i) payload[i] >= payload[i-1];  
    } 
  } 
 
  function void show_payload(); 
    `uvm_info("FIG15", $sformatf("payload=%p", payload), UVM_MEDIUM) 
  endfunction 
endclass 

Figure 27 - Constraint-based sorting of array elements 

 
class txn16; 
  rand int          addr; 
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  rand logic [15:0] payload[$]; 
  rand bit    [2:0] del; 
 
  constraint size_ct { payload.size() inside { [16:256]}; } 
 
  function void post_randomize(); 
    payload.sort(); 
  endfunction 

 
  function void show_payload(); 
    `uvm_info("FIG16", $sformatf("payload=%p", payload), UVM_MEDIUM) 
  endfunction 
endclass  

Figure 28 - post_randomize() sorting of array elements 

Benchmark measurement - How much slower is constraint-based array sorting -vs- post_randomize() use of 
the array sort() method? 
 

 
Figure 29 - Benchmark results showing penalty for "clever" array-sorting constraint 

As shown in Figure 29, randomization constraints techniques can hinder simulation performance the 1,000's of 
percent. Be aware of the penalties you might incur from "clever" constraint techniques. 
 
Benchmark Directory: BENCHM10 

 
Assertions are also commonly used in UVM environments and subject to a lot of optimization in simulators.  As 

with randomization, a set of best practices can help boost performance.  In general, we want to balance the well-known 
value of assertions with efficient simulation.  Minimizing the number of attempts by configuring the enabling 
condition to trigger only on the first cycle of the enabling condition, using single-cycle assertions wherever possible, 
and using single-clock assertions – even if that means splitting the assertion into two separate assertions – all result in 
improved performance.  While local variables may be needed to manipulate data inside sequences and properties, they 
add overhead during simulation.   
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Figure 30The example at the top of Figure 30 shows an assertion coded using a local variable such that when a goes 
high, a local value of b is saved and then used at the end of the assertion. The example at the bottom of Figure 30 
simply uses the $past() assertion capability to state that the b-value from two cycles ago should be checked at the 
end of the assertion. 

 
Benchmark measurement - How much slower is using local variables -vs- other assertion techniques? 
 

 

Figure 30 - Coding assertion with local variables -vs- using other assertion capabilities 

The use of local variables seems to be very-vendor dependent. Some vendors may have optimized local variable 
while others may have optimized other assertion methods. Ask your vendor for recommendations regarding the use 
of local variables with their SystemVerilog simulator. 
 
Benchmark Directory: BENCHM11 
 

Coverage is a third common element of verification environments.  When setting up the coverage bins, choose 
vectored or auto bins to maximize performance as scalar and fixed-size bins create additional simulation overhead and 
are more difficult to debug. Per the mantra of this paper, fewer coverage events will deliver faster simulation.  This 
starts by sampling coverage using a specific event trigger rather than a generic event such as a system clock.  Coverage 
sampling events can be further reduced by having covergroup[s] share common expressions. A third method to 
reduce sampling events is to merge sample process that use the same event as shown in Figure 18. 
 

module top; 
  bit [31:0] addr1, addr2; 
  bit [15:0] data; 
  bit        collect_cov; 
  bit        valid;   // triggering event 
 
  logic clk; 
  `include "CNT_file" 
 
  covergroup cg1; 
    adr1: coverpoint addr2 { 
            bins a[4] = {[0:$]};  
          } 
  endgroup 
 
  covergroup cg2; 
    adr2: coverpoint addr2 { 
            bins b[4] = {[0:$]};  
          } 
  endgroup 
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  covergroup cg3; 
    dat1: coverpoint data { 
            bins d[4] = {[0:$]};  
          } 
  endgroup 
 
  clkgen i1 (.clk(clk)); 
 
  cg1 c1 = new(); 
  cg2 c2 = new(); 
  cg3 c3 = new(); 
 
  initial begin 
    forever @(posedge clk) begin 
      addr1 = $urandom; 
      addr2 = $urandom; 
      data  = $urandom; 
      {collect_cov, valid}  = $urandom_range(0,3); 
    end 
  end 
 
  initial begin 
    repeat(`CNT) @(posedge clk); 
    $finish; 
  end 
 
  `ifdef MERGED 
 
  // Sampling merged to a single event  
  always @(posedge valid iff collect_cov) begin 
    c1.sample(); 
    c2.sample(); 
    c3.sample(); 
  end 
 
  `else 
 
  always @(posedge valid iff collect_cov) 
    c1.sample(); 
 
  always @(posedge valid iff collect_cov) 
    c2.sample(); 
 
  always @(posedge valid iff collect_cov) 
    c3.sample(); 
 
  `endif 
endmodule 

Figure 31 - Merged sampling -vs- separate sampling of covergroups 

Benchmark measurement - How much slower is sampling of covergroup[s] in separate always blocks -vs- 
sampling in the same always block? 
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Figure 32 - Benchmark results of covergroup sampling in separate & merged always blocks 

The sampling of covergroup [s] in separate -vs- merged always blocks did not show a large performance 
difference and the results, although small, were simulation vendor dependent. 
 
Benchmark Directory: BENCHM12 
  

VIII.   Acknowledgment 
 
UVM/SystemVerilog environments have grown in size and complexity since we looked at SystemVerilog 

performance in 2012. With that growth, the cost of slow execution has also grown.  This paper provided code examples 
and guidelines to make every simulation faster and reduce those “yikes” moments verification engineers have when 
they run their regressions. 
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