
HDLCON 2000 1 A Proposal To Remove Those Ugly
Rev 1.1 Register Data Types From Verilog

A Proposal To Remove Those Ugly Register Data Types From Verilog

Clifford E. Cummings
Sunburst Design, Inc.

15870 SW Breccia Drive
Beaverton, OR 97007

cliffc@sunburst-design.com / www.sunburst-design.com

Abstract

One of the most confusing concepts in the Verilog
language is, when is a variable a "reg" and when is it a
"wire?" Although the rules for declaring registers and
wires are really very simple, most new and self-taught
Verilog users don't understand when and why one type of
declaration is required over another.

This paper will detail the differences between register
and net data types and propose an enhancement to the
Verilog language that would eliminate the need to declare
register data types altogether.

The proposal

Proposal:
• Remove the requirement to declare scalar

register data types and replace vector register
data types with vector net declarations.

• Report a syntax error whenever a procedural
assignment is made to a variable that is also
being driven to a value by a continuous
assignment or instance port.

Reasons:
• To remove an annoying and confusing

declaration requirement of the Verilog language.
• To reduce and simplify the required number of

Verilog declarations.

Introduction

The concept of register and net variables in Verilog is
largely misunderstood.

A VHDL process is roughly equivalent to a Verilog
always block and a VHDL concurrent signal assignment
is roughly equivalent to a Verilog continuous assignment,

but VHDL does not require different data type
declarations for process and concurrent signal
assignments. In VHDL, "signals" are commonly used in
place of both Verilog register and net data types.

Why are Verilog users burdened with these two
distinct data types?

Register & net declarations - simple rule

In Verilog, the register data types include: reg, integer,
time, real and realtime.

In Verilog, the net data types include: wire, tri, wor,
trior, wand, triand, tri0, tri1, supply0, supply1 and trireg.

Let's look at two simple Verilog examples to help
understand the declarations of register and net data types.

module and2a (y, a, b);
 output y;
 input a, b;

 assign y = a & b;
endmodule

Example 1 - Valid continuous assignment with no
wire declaration

module and2b (y, a, b);
 output y;
 input a, b;
 wire y;

 assign y = a & b;
endmodule

Example 2 - Valid continuous assignment with wire
declaration

In Example 1, a 2-input and gate is modeled using a
continuous assignment statement. The y-output does not
have to be declared because it is a 1-bit wire. Example 2

a
b

y

a
b

y

HDLCON 2000 2 A Proposal To Remove Those Ugly
Rev 1.1 Register Data Types From Verilog

is the exact same 2-input and gate with optional "wire y;"
declaration.

In Example 3, we decide to replace the continuous
assignment with an always block, but when this code is
compiled, Verilog compilers report a syntax error of the
form "illegal left-hand-side assignment" because we
forgot to change the "wire y;" declaration to "reg y;"

If the problem-declaration is changed to "reg y;" the
model compiles and simulates correctly.

module and2c (y, a, b);
 output y;
 input a, b;
 wire y;

 always @(a or b) y = a & b;
endmodule

Example 3 - "illegal left-hand-side assignment" add
the declaration: reg y

Now if the always block from the 2-input and gate of
Example 3 is changed back to a continuous assignment as
shown in Example 4, the Verilog compiler will again
report a syntax error, but this time the message will be of
the form "illegal assignment to net" because we forgot to
change the "reg y;" declaration to "wire y;" Very
annoying!

module and2d (y, a, b);
 output y;
 input a, b;
 reg y;

 assign y = a & b;
endmodule

Example 4 - "illegal assignment to net" either remove
the "reg y" declaration or change it to "wire y"

Simple rule: In Verilog, anything on the left hand side
(LHS) of a procedural assignment must be declared as a
register data type. Everything else in Verilog is a net data
type. No exceptions!

Why differentiate nets & registers?

Why differentiate between net and register data types
in Verilog? The answer to this question seems to be, data
type checking is an easy way to recognize the erroneous
assignment of the same variable from both continuous and
procedural assignments.

Continuous assignments setup drivers on a net.
Multiple drivers can drive the same net as shown in
Example 5.

module drivers1 (y, a1, en1, a2, en2);
 output y;
 input a1, en1, a2, en2;

 assign y = en1 ? a1 : 1'bz;

 assign y = en2 ? a2 : 1'bz;
endmodule

Example 5 - Multiple drivers on a common net using
continuous assignments

Procedural assignments, such as always block
assignments, cause changes to a single behavioral
variable. The multiple always block assignments of
Example 6 are simply assignments to the same behavioral
variable and do not setup multiple drivers. In this
example, last assignment wins.

module drivers2 (y, a1, en1, a2, en2);
 output y;
 input a1, en1, a2, en2;
 reg y;

 always @(a1 or en1)
 if (en1) y = a1;
 else y = 1'bz;

 always @(a2 or en2)
 if (en2) y = a2;
 else y = 1'bz;
endmodule

Example 6 - Multiple assignments to a behavioral
variable using always-block assignments

If one tries to setup a driver and behavioral assignment
to the same variable, the driver requires a net declaration
while the always block assignment requires a reg
declaration, both to the same variable, which is a syntax
error. This syntax error is one method of keeping Verilog
designers from trying to make two fundamentally
different types of assignments to the same variable.

module drivers3 (y, a1, en1, a2, en2);
 output y;
 input a1, en1, a2, en2;
 wire?/reg? y;

 always @(a1 or en1)
 if (en1) y = a1;
 else y = 1'bz;

 assign y = en2 ? a2 : 1'bz;
endmodule

Example 7 - Illegal driver and behavioral assignment
to the same variable

y

1'bz
y -

variable
a1

1'bz

a2

a
b

y

a
b

y

y

en1

a1

en2

a2

HDLCON 2000 3 A Proposal To Remove Those Ugly
Rev 1.1 Register Data Types From Verilog

The code in Example 7 cannot legally declare the y-
variable to be either a net type or a register type. The
diagram in Figure 1 shows conceptually that the code of
Example 7 is trying to both change a behavioral variable
and drive the same variable with a continuous assignment.

If a designer really wanted to make a procedural
assignment to the same variable as a net-driven variable,
one could declare the LHS of the always block to be what
is frequently referred to as a "shadow" register, which is a
temporary register that is then driven onto a net by a
continuous assignment as shown in Example 8 and Figure
2. But if you are going to do this, you might as well skip
the always block assignment altogether and just make the
assignment using a second continuous assignment
statement.

module drivers4 (y, a1, en1, a2, en2);
 output y;
 input a1, en1, a2, en2;
 wire y;
 reg y_tmp;

 always @(a1 or en1)
 if (en1) y_tmp = a1;
 else y_tmp = 1'bz;

 assign y = y_tmp;

 assign y = en2 ? a2 : 1'bz;
endmodule

Example 8 - Multiple drivers on a common net - one
shadow register assignment

Conditional compilation

What if a designer wants to include conditional
compilation, selecting either an always block, or a
continuous assignment as shown in Example 9. The
conditionally compiled 1-bit continuous assignment
requires no data type declaration or can include an
optional wire declaration.

The other conditionally compiled branch, the 1-bit
always block assignment, requires a reg data type
declaration.

Some companies have coding guidelines that require
all data type declarations be placed at the top of a module,
immediately after all of the I/O declarations. The
conditionally compiled always-block code will violate
this guideline, unless a separate conditionally compiled
declaration section is added to the grouped declarations
near the top of the module code (not shown).

module inva (y, a);
 output y;
 input a;

 `ifdef ASSIGN
 assign #(1:2:3,4:5:6) y = ~a;
 `else
 // mid-code reg declaration
 reg y;
 always @(a) #(1:2:3) y = ~a;
 `endif
endmodule

Example 9 - Conditional compilation with mid-code
reg declaration

Verilog-2000 port enhancements

In Verilog-1995 [1], all register-type output ports
must be declared three times:

(1) in the module header
(2) with a port declaration, and
(3) as a separate register data type.

module and2ora (y, a, b, c);
 output y;
 input a, b, c;
 reg y;
 reg tmp;

 always @(a or b)
 tmp = a & b;

 always @(tmp or a)
 y = tmp | c;
endmodule

Example 10 - Verilog-1995 and-or gate with required
triple-declared port and "reg tmp"

y

1'bz

y -
variable

???
a1

en2

a2
Figure 1 - Illegal
variable/driver

combination

yen2

a2

1'bz

a1

driver

driver

Figure 2 - Variable
assigned to a driver

y

a
b
c

HDLCON 2000 4 A Proposal To Remove Those Ugly
Rev 1.1 Register Data Types From Verilog

Another requirement of Verilog-1995 is that any net-
variable on the LHS of a continuous assignment, that does
not connect to a port, must also be declared, including 1-
bit nets. This inconsistent requirement of Verilog-1995 is
fixed in Verilog-2000 [2]. Until Verilog-2000 is widely
implemented, if the always block assignment of Example
10 is replaced with an equivalent continuous assignment
as shown in Example 11, the net declaration for tmp is
required.

module and2orb (y, a, b, c);
 output y;
 input a, b, c;
 reg y;
 wire tmp;

 assign tmp = a & b;

 always @(tmp or a)
 y = tmp | c;
endmodule

Example 11 - Verilog-1995 and-or gate with required
triple-declared port and "wire tmp"

Starting in Verilog-2000, port declaration
simplification enhancements will become available.

For the purposes of this paper, the following port
declaration style definitions are used:

• Style #1 port declarations declare both the port
direction and data type, including all of the
optional data type declarations.

• Style #2 port declarations declare all port
directions but only the required data types. All
optional data types are omitted.

It is also possible to do a mixture of style #1 and style
#2, but none of the examples in this paper show this
combination.

The first port declaration enhancement in Verilog-
2000 includes the ability to combine port and type
declarations. Example 12 shows all of the ports declared
with data types (referred to above as style #1). A separate
register declaration for the y-output is not required.

module and2orc (y, a, b, c);
 output reg y;
 input wire a, b, c;
 reg tmp;

 always @(a or b)
 tmp = a & b;

 always @(tmp or a)
 y = tmp | c;
endmodule

Example 12 - Verilog-2000 and-or gate with double-
declared port (style #1) and "reg tmp"

Example 13 also shows legal Verilog-2000
declarations where only the register-type port declarations
include data types while all of the net-type port
declarations omit the data types (referred to earlier as
style #2).

module and2ord (y, a, b, c);
 output reg y;
 input a, b, c;
 reg tmp;

 always @(a or b)
 tmp = a & b;

 always @(tmp or a)
 y = tmp | c;
endmodule

Example 13 - Verilog-2000 and-or gate with double-
declared port (style #2) and "reg tmp"

Another port-enhancement coming to Verilog-2000 is
that port directions and data types will be permitted in the
module header itself, making it possible to declare all of
the ports just once. The anticipated way of making
module-header port declarations is to code the module
header with open-parenthesis followed by each port
declared on a separate, subsequent line and ending with a
close-parenthesis and semi-colon on a stand-alone line as
shown in Example 14.

module and2ore (
 output reg y;
 input a, b, c;
);
 reg tmp;

 always @(a or b)
 tmp = a & b;

 always @(tmp or a)
 y = tmp | c;
endmodule

Example 14 - Verilog-2000 and-or gate with single-
declared port (style #2) and "reg tmp"

Making all of the port declarations in the module
header will guarantee that all ports will be declared at the
top of the module, which the Verilog Standards Group
(VSG) anticipates will permit enhanced optimization and
acceleration during Verilog compilation. In Verilog-1995,
port declarations can appear anywhere in a module, which
means a compiler cannot recognize and report a missing
port until the endmodule statement is read.

In the single-declared, enhanced-port coding styles
shown in Example 14 and Example 15, the tmp variable
still needs to be declared as a reg, if assigned in an always

y

a
b
c

y

a
b
c

y

a
b
c

y

a
b
c

HDLCON 2000 5 A Proposal To Remove Those Ugly
Rev 1.1 Register Data Types From Verilog

block (Example 14), or the tmp variable can be omitted or
declared as a wire, if assigned from a continuous
assignment (Example 15). The y-output also requires a
reg declaration in both examples.

module and2orf (
 output reg y;
 input a, b, c;
);
 wire tmp;

 assign tmp = a & b;

 always @(tmp or a)
 y = tmp | c;
endmodule

Example 15 - Verilog-2000 and-or gate with single-
declared port (style #2) and "wire tmp"

The problem that still exists with all of the Verilog-
2000 port declaration enhancements is that changing an
output port or internal variable assignment from a
continuous assignment to an always block still requires
the enhanced port declarations to be changed to reflect the
data type of the variable being modified, the same as with
Verilog-1995 data type declarations.

If separate register and net data type requirements are
eliminated, the same enhanced port declarations as shown
in Example 16 and Example 17 will be both abbreviated
and legal. Note that in both examples, the declarations are
identical and no net or register declarations are required.

module and2org (
 output y;
 input a, b, c;
);

 always @(a or b)
 tmp = a & b;

 always @(tmp or a)
 y = tmp | c;
endmodule

Example 16 - Verilog-2005(?) and-or gate with
single-declared port (always y-output)

module and2orh (
 output y;
 input a, b, c;
);

 assign tmp = a & b;

 assign y = tmp | c;
endmodule

Example 17 - Verilog-2005(?) and-or gate with single-
declared port (assign y-output)

module and2ori (
 output y;
 input a, b, c;
);

 assign tmp = a & b;

 always @(tmp or c)
 y = tmp | c;
endmodule

Example 18 - Verilog-2005(?) and-or gate with single-
declared port (always y-output)

Of course, the and-or model can also be simplified in
Verilog-2005(?) by combining the separate assignments
seen in earlier examples into either a single continuous
assignment as shown in Example 19 or into a single
always block as shown in Example 20. Example 20 also
shows the combinational sensitivity list operator "@*"
that is used to gather all RHS variables, if-expression
variables (not in this example) and case-expression
variables (not in this example) into the sensitivity list. The
"@*" operator is new with Verilog-2000.

module and2orj (
 output y;
 input a, b, c;
);

 assign y = (a & b) | c;
endmodule

Example 19 - Verilog-2005(?) and-or gate with
continuous assignment

module and2ork (
 output y;
 input a, b, c;
);

 always @*
 y = (a & b) | c;
endmodule

Example 20 - Verilog-2005(?) and-or gate with
procedural assignment

In both Example 19 and Example 20, the code has
been simplified over the equivalent Verilog-1995 module,
shown in Example 21.

y

a
b
c

y

a
b
c

y

a
b
c

y

a
b
c

y

a
b
c

y

a
b
c

HDLCON 2000 6 A Proposal To Remove Those Ugly
Rev 1.1 Register Data Types From Verilog

module and2orl (y, a, b, c);
 output y;
 input a, b, c;
 reg y;

 always @(a or b or c)
 y = (a & b) | c;
endmodule

Example 21 - Verilog-1995 and-or gate with required
triple-declared port and one always block

Pros & cons of declaring wires

Some Verilog designers believe it is a good practice to
declare all wires, including 1-bit wires, in every module
were the wires exist. The apparent reasons for making all
declarations is to (1) document the existence of all wires
and (2) the mistaken notion that Verilog does
comprehensive size checking on all declared variables.

Declaring all wires is also a habit that is developed by
some engineers that have previously designed using
VHDL, a language where all signal declarations are
required. In VHDL, the compiler does checking between
declared signals, signal sizes, and the sizes of the signals
used in the actual VHDL models.

In Verilog, the same rigorous size-checking does not
exist. Although some size-checking does occur, unless a
bit-range is included on variables in the body of the code
(not just in the declaration), much of the size-checking
can be easily missed. Many variables declared as 1-bit
wires and then used as buses, without referencing the bus-
range in the Verilog code, will be translated into 1-bit
wires where the assignment of all leading bits-positions
are padded with 0's.

module invbad1 (y, a);
 output [7:0] y;
 input [7:0] a;
 wire tmp;

 assign tmp = ~a;
 assign y = tmp;
endmodule

Example 22 - Undetected bad 1-bit wire declaration

The model in Example 22 is a contrived, but simple,
example of an 8-bit inverter, where the internal tmp
variable is erroneously declared to be a 1-bit wire. When
compiled there is no syntax error or warning, and when
simulated using the testbench in Example 23, the 1-bit
tmp is padded with leading zeros causing the upper seven
bits of the module output to always be zero.

module tb;
 reg [7:0] a;
 wire [7:0] y;

 inv_module u1 (.y(y), .a(a));

 initial begin
 $monitor ("y=%h a=%h", y, a);
 a = 8'h00;
 #10 a = 8'h55;
 #10 a = 8'hCC;
 #10 $finish;
 end
endmodule

Example 23 - Testbench for inverter modules

The same model using a 1-bit reg variable as shown in
Example 24 suffers from the exact same problem as the 1-
bit wire code of Example 22. In neither case did the
presence of a wire or reg declaration assist in locating a
coding mistake; indeed, it could be argued that the
presence of the declarations might have masked the fact
that the variables had been improperly declared.

module invbad2 (y, a);
 output [7:0] y;
 input [7:0] a;
 reg tmp;

 always @(a) tmp = ~a;

 assign y = tmp;
endmodule

Example 24 - Undetected bad 1-bit reg declaration

As a side note, even though VHDL performs all of the
previously mentioned size checking, on a very large
VHDL design that was completed by the author, the
author noticed that he spent almost as much time
debugging the pages of required signal declarations at the
top-level of the design as he spent debugging actual
design problems.

It is the authors opinion that limiting declarations to
just bus declarations helps to concisely show which
identifiers should be multi-bit in width while eliminating
unneeded and verbose 1-bit declarations that tend to fill
space and mask the existence of internal buses. The
author believes that linting tools are best suited to
examine sizes and report potential problems. The author
acknowledges that other skilled designers hold the
opposite opinion, that all variables should be declared.

In Example 25 and Example 26, the appropriate
internal bus declarations have been made and both models
simulate correctly.

y

a
b
c

HDLCON 2000 7 A Proposal To Remove Those Ugly
Rev 1.1 Register Data Types From Verilog

module invgood1 (y, a);
 output [7:0] y;
 input [7:0] a;
 wire [7:0] tmp;

 assign tmp = ~a;
 assign y = tmp;
endmodule

Example 25 - Good 8-bit wire reg declaration

module invgood2 (y, a);
 output [7:0] y;
 input [7:0] a;
 reg [7:0] tmp;

 always @(a) tmp = ~a;

 assign y = tmp;
endmodule

Example 26 - Good 8-bit wire reg declaration

Net and register differences

There are some significant differences between
Verilog net and register data types. Figure 3 shows a table
that lists important differences between net and register
data types.

Net types Register types
Verilog strengths Yes No

Uninitialized
value

HiZ X (unknown)

Multiple
assignments

Combination of
all driven values

Last assignment
wins

Types allowed to
be declared with

a range

wire, tri, wor,
trior, wand,

triand, tri0, tri1,
supply0,

supply1, trireg

reg

Types with
implied range

(excluding 1-bit
values)

none integer (32-bits),
time (64-bits),

real,
realtime

Figure 3 - Net and register differences

Handling existing register types

In order to implement the reg-removal enhancement, a
plan must be put in place to make this enhancement
backward-compatible with existing register-type

declarations. All existing models with all Verilog-1995
and Verilog-2000 register type declarations need to be
properly read and simulated.

To show how Verilog compilers might treat the
different register data types to be backward compatible,
Figure 4 shows a table of possible implementations.

Register type Net type implementation?
reg wire

reg [msb:lsb] wire [msb:lsb]
integer wire signed [31:0]

time wire [63:0]
real*

realtime*
* only assigned in a

procedural block

Figure 4 - Net implementations of existing register
types

The above integer, time, real and realtime keywords
could still be used to imply certain data types with certain
ranges. The integer declaration could also infer the signed
net data type that was added to Verilog-2000. Real and
realtime data types might not have meaning when
rendered as wires so assignments to these variables might
continue to be restricted to procedural blocks, with the
possible exception of Verilog-AMS.

Internally, Verilog compilers could continue to treat all
data types the same way it does now. The difference is
that Verilog should be able to infer the appropriate
internal data type from the context of the code. 1-bit wire
variables assigned inside of an always block can still go
unknown at the beginning of a simulation if not assigned,
and wire variables assigned inside of a procedural block
can still be implemented without Verilog strengths.

There might be certain minor problems with the above
implementation proposals, but the author believes that
these are minor details that can worked out by the IEEE
Verilog Standards Group.

Existing register data type declarations could for the
most part be ignored except as they pertain to whether or
not a variable is a signed variable (integer), implied bus
widths (integer - 32 bits wide / time - 64 bits wide) or
explicit bus widths (reg [msb:lsb]).

A new type of syntax check

Instead of forcing users to make distinctions between
data types used in procedural blocks and data types used
outside of procedural blocks, why not define a syntax
error whenever the same variable is assigned both inside
and outside a procedural block.

One potential problem that exists with the proposed
reg-removal enhancement is that the elimination of
required net and register data types would allow designers
to make both driver-type assignments and behavioral-type

HDLCON 2000 8 A Proposal To Remove Those Ugly
Rev 1.1 Register Data Types From Verilog

assignments to the same variable. This should not be
permitted.

Implementation of the reg-removal proposal should be
accompanied by a new type of syntax check, one that
determines which variables are assigned from a
procedural block and which are not. It shall be illegal to
make assignments to the same variable from both a
procedural assignment and a non-procedural assignment.
This is really what Verilog compilers enforce with current
net and register declaration requirements.

Further assignment restrictions might include:
• It shall not be permitted to make procedural

assignments to an inout port.
• It shall not be permitted to make procedural

assignments to input ports of the enclosing
module.

• It shall not be permitted to make procedural
assignments to nets that are driven by instantiated-
module output ports.

Conclusions

In conclusion, the current net and register data type
requirements are both confusing and annoying. The only
apparent reason to enforce these declaration rules is to
keep engineers from making procedural assignments to
variables that are driven from a non-procedural
assignment source.

To eliminate the above problems and simplify Verilog
modeling, the author makes the following proposals:

• Remove the requirement to declare register data
types for procedural assignments.

• Permit assignments to net data types within
procedural blocks.

• Permit optional register-type declarations for
backward compatibility and for short-hand
declarations

• Require compliant simulators to flag a syntax
error if assignments are made to the same
variable from both inside and outside of a
procedural block.

References

 [1] IEEE Standard Hardware Description Language Based
on the Verilog Hardware Description Language, IEEE Computer
Society, IEEE Std 1364-1995

[2] IEEE Standard Hardware Description Language Based
on the Verilog Hardware Description Language, IEEE Std
P1364-Y2K (Draft 4)

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is
an independent EDA consultant and trainer with 19 years
of ASIC, FPGA and system design experience and nine
years of Verilog, synthesis and methodology training
experience.

Mr. Cummings, a member of the IEEE 1364 Verilog
Standards Group (VSG) since 1994, chaired the VSG
Behavioral Task Force, which was charged with
proposing enhancements to the Verilog language. Mr.
Cummings is also a member of the IEEE Verilog
Synthesis Interoperability Working Group.

Mr. Cummings holds a BSEE from Brigham Young
University and an MSEE from Oregon State University.

E-mail Address: cliffc@sunburst-design.com
This paper can be downloaded from the web site:

www.sunburst-design.com/papers

(Data accurate as of March 7th, 2001)

