
Verilog-2001 Behavioral and Synthesis Enhancements

Clifford E. Cummings
cliffc@sunburst-design.com / www.sunburst-design.com

Sunburst Design, Inc.
14314 SW Allen Blvd.

PMB 501
Beaverton, OR 97005

ABSTRACT

The Verilog-2001 Standard includes a number of enhancements that are targeted at simplifying
designs, improving designs and reducing design errors.

This paper details important enhancements that were added to the Verilog-2001 Standard that are
intended to simplify behavioral modeling and to improve synthesis accuracy and efficiency.
Information is provided to explain the reasons behind the Verilog-2001 Standard enhancement
implementations..

Revised - April 2002
Important correction to ANSI
style parameter lists added to

this revision

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

2

1.0 Introduction

For the past five years, experienced engineers and representatives of EDA vendors have wrestled
to define enhancements to the Verilog language that will offer increased design productivity,
enhanced synthesis capability and improved verification efficiency.

The guiding principles behind proposed enhancements included:
1. do not break existing designs,
2. do not impact simulator performance,
3. make the language more powerful and easier to use.

This paper details many of the behavioral and synthesis enhancements that were added to the
Verilog-2001 Standard[1], including some of the rational that went into defining the added
enhancements. This paper will also discuss a few errata and corrections to the yet unpublished
2001 Verilog Standard.

Immediately after the header for each enhancement, I make predictions on when you will likely
see each enhancement actually implemented by EDA vendors.

1.1 Glossary of Terms

The Verilog Standards Group used a set of terms and abbreviations to help concisely describe
current and proposed Verilog functionality. Many of those terms are used in this paper and are
therefore defined below:

• ASIC - Application Specific Integrated Circuit
• EDA - Electronic Design Automation.
• HDLCON - International HDL Conference.
• IP - Intellectual Property (not internet protocol).
• IVC - International Verilog Conference - precursor to HDLCON when the Spring VIUF

and IVC conferences merged.
• LHS - Left Hand Side of an assignment.
• LSB - Least Significant Bit.
• MSB - Most Significant Bit.
• PLI - the standard Verilog Programming Language Interface
• RHS - Right Hand Side of an assignment.
• RTL - Register Transfer Level or the synthesizable subset of the Verilog language.
• VHDL - VHSIC Hardware Description Language.
• VHSIC - Very High Speed Integrated Circuits program, funded by the Department of

Defense in the late 1970's and early 1980's [2].
• VIUF - VHDL International Users Forum - the Spring VIUF conference was a precursor to

HDLCON when the Spring VIUF and IVC conferences merged.
• VSG - Verilog Standards Group.

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

3

2.0 What Broke in Verilog-2001?

While proposing enhancements to the Verilog language, the prime directive of the Verilog
Standards Group was to not break any existing code. There are only two Verilog-2001 behavioral
enhancement proposals that potentially break existing designs. These two enhancements are
described below.

2.1 31 open files

Verilog-1995[3] permitted users to open up to 31 files for writing. The file handle for Verilog-
1995-style files is called an MCD (Multi-Channel Descriptor) where each open file is represented
by one bit set in an integer. Only the 31 MSBs of the integer could be set for open files since bit 0
represented the standard output (STDOUT) terminal. The integer identifier-name was the file
handle used in the Verilog code.

MCDs could be bit-wise or'ed together into another integer with multiple bits set to represent
multiple open files. Using an MCD with multiple valid bits set, a designer can access multiple
open files with a single command.

In recent years, engineers have found reasons to access more than 31 files while doing design
verification. The 31 open-file limit was too restrictive.

At the same time, engineers were demanding better file I/O capabilities, so both problems were
addressed in a single enhancement. The file I/O enhancement requires the use of the integer-MSB
to indicate that the new file I/O enhancement is in use. When the integer-MSB is a "0", the file in
use is a Verilog-1995-style file with multi-channel descriptor capability. When the integer-MSB is
a "1", the file in use is a Verilog-2001-style file where it is now possible to have 2**31 open files
at a time, each with a unique binary number file-handle representation (multi-channel descriptors
are not possible with the new file I/O-style files.

Any existing design that currently uses exactly 31 open files will break using Verilog-2001. The
fix is to use the new file I/O capability for at least one of the current 31 open files. It was
necessary to steal the integer MSB to enhance the file I/O capabilities of Verilog.

2.2 `bz assignment

Verilog-1995 and earlier has a peculiar, not widely known "feature" (documented-bug!) that
permits assignments like the one shown below in Example 1 to assign up to 32 bits of "Z" with all
remaining MSBs being set to "0".

assign databus = en ? dout : 'bz;

Example 1 - Simple continuous assignment using 'bz to do z-expansion

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

4

If the databus in Example 1 is 32 bits wide or smaller, this coding style works fine. If the databus
is larger than 32 bits wide, the lower bits are set to "Z" while the upper bits are all set to "0". All
synthesis tools synthesize this code to 32 tri-state drivers and all upper bits are replaced with and-
gates so that if the en input is low, the and-gate outputs also drive "0"s.

The correct Verilog-1995 parameterized model for a tri-state driver of any size is shown Example
2:

module tribuf (y, a, en);
 parameter SIZE = 64;
 output [SIZE-1:0] y;
 input [SIZE-1:0] a;
 input en;

 assign y = en ? a : {SIZE{1'bz}};
endmodule

Example 2 - Synthesizble and parameterizable Verilog-1995 three-state buffer model

In Verilog-2001, making assignments of 'bz or 'bx will respectively z-extend or x-extend the full
width of the LHS variable.

The VSG determined that any engineer that intentionally made 'bz assignments, intending to drive
32 bits of "Z" and all remaining MSBs to "0" deserved to have their code broken! An engineer
could easily make an assignment of 32'bz wherever the existing behavior is desired and the
assignment will either truncate unused Z-bits or add leading zeros to the MSB positions to fill a
larger LHS value.

2.3 Minimal risk

The VSG decided that there would be minimal impact from the file I/O enhancement that could
not be easily solved using the new Verilog-2001 file I/O enhancement, and the 'bz assignment
enhancement is not likely to appear in the code of any reasonably proficient Verilog designer, plus
there is an easy work-around for the 'bz functionality if the existing silly behavior is actually
desired!

3.0 LRM Errors

Unfortunately, adding new functionality to the Verilog language also required the addition of new
and untested descriptions to the IEEE Verilog Standard documentation. Until the enhanced
functionality is implemented, the added descriptions are unproven and might be short on intended
enhancement functionality detail. What corner cases are not accurately described? The VSG could
not compile the examples so there might be syntax errors in the newer examples.

One example of an error that went unnoticed in the new IEEE Verilog-2001 Standard is the
Verilog code for a function that calculates the "ceiling of the log-base 2" of a number. This

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

5

example, given in section 10.3.5, makes use of constant functions. The clogb2 function described
in the example from the IEEE Verilog Standard, duplicated below, has a few notable errors:

//define the clogb2 function
function integer clogb2;
 input depth;
 integer i,result;
 begin
 for (i = 0; 2 ** i < depth; i = i + 1)
 result = i + 1;
 clogb2 = result;
 end
endfunction

Example 3 - Verilog-2001 Standard constant function example from section 10 with errors

Errors in this model include:
(1) the input "depth" to the function in this example is only one bit wide and should have

included a multi-bit declaration.
(2) the result is not initialized. If the depth is set to "1", the for-loop will not execute and the

function will return an unknown value.

A simple and working replacement for this module that even works with Verilog-1995 is shown in
Example 4:

function integer clogb2;
 input [31:0] value;
 for (clogb2=0; value>0; clogb2=clogb2+1)
 value = value>>1;
endfunction

Example 4 - Working function to calculate the ceiling of the log-base-2 of a number

4.0 Top Five Enhancements

At a "Birds Of a Feather" session at the International Verilog Conference (IVC) in 1996,
Independent Consultant Kurt Baty moderated an after-hours panel to solicit enhancement ideas
for future enhancements to the Verilog standard.

Panelists and audience members submitted enhancement ideas and the entire group voted for the
top-five enhancements that they would like to see added to the Verilog language. These top-five
enhancements gave focus to the VSG to enhance the Verilog language.

Although numerous enhancements were considered and many enhancements added to the Verilog
2001 Standard, the top-five received the most attention from the standards group and all five
were added in one form or another. The top-five enhancements agreed to by the audience and
panel were:

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

6

#1 - Verilog generate statement
#2 - Multi-dimensional arrays
#3 - Better Verilog file I/O
#4 - Re-entrant tasks
#5 - Better configuration control

Many enhancements to the Verilog language were inspired by similar or equivalent capabilities
that already existed in VHDL. Many Verilog designers have at one time or another done VHDL
design. Any VHDL capability that we personally liked, we tried adding to Verilog. Anything that
we did not like about VHDL we chose not to add to Verilog.

4.1 Multi-Dimensional Arrays
Expected to be synthesizable? Yes. This capability is already synthesizable in VHDL and is
needed for Verilog IP development.
When? Soon!

Before describing the generate statement, it is logical to describe the multi-dimensional array
enhancement, that is essentially required to enable the power of generate statements.

Multidimensional arrays are intended to be synthesizable and most vendors will likely have this
capability implemented around the time that the Verilog 2001 LRM becomes an official IEEE
Standard.

In Verilog-1995, it was possible to declare register variable arrays with two dimensions. Two
noteworthy restrictions were that net types could not be declared as arrays and only one full
array-word could be referenced, not the individual bits within the word.

In Verilog-2001, net and register-variable data types can be used to declare arrays and the arrays
can be multidimensional. Access will also be possible to either full array words or to bit or part
selects of a single word.

In Verilog-2001, it shall still be illegal to reference a group of array elements greater than a single
word; hence, one still cannot initialize a partial or entire array by referencing the array by the array
name or by a subset of the index ranges. Two-dimensional array elements must be accessed by
one or two index variables, Three dimensional array elements must be accessed by two or three
index variables, etc.

In Example 5, a structural model of a dual-pipeline model with one 2-bit data input is fanned out
into two 2-bit by 3-deep pipeline stages and two 2-bit data outputs are driven by the two
respective pipeline outputs. The flip-flops in the model have been wired together using a 3-
dimensional net array called data. The data-word-width is listed before the identifier data, and the
other two dimensions are placed after the identifier data.

The connections between flip-flops are made using all three dimensions to indicate which
individual nets are attached to the flip-flop data input and output, while connections to the ports

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

7

are done using only two dimensions to tie the 2-bit buses to the 2-bit data input and output ports
of the model.

module dualpipe_v2k (dout1, dout0, din, en, clk, rst_n);
 output [1:0] dout1, dout0;
 input [1:0] din, en;
 input clk, rst_n;

 wire [1:0] data [1:0] [3:0];

 assign data[1][0] = din;
 assign data[0][0] = din;

 dff u000 (.q(data[0][1][0]), .d(data[0][0][0]), .clk(clk), .en(en[0]), .rst_n(rst_n));
 dff u010 (.q(data[0][2][0]), .d(data[0][1][0]), .clk(clk), .en(en[0]), .rst_n(rst_n));
 dff u020 (.q(data[0][3][0]), .d(data[0][2][0]), .clk(clk), .en(en[0]), .rst_n(rst_n));

 dff u001 (.q(data[0][1][1]), .d(data[0][0][1]), .clk(clk), .en(en[0]), .rst_n(rst_n));
 dff u011 (.q(data[0][2][1]), .d(data[0][1][1]), .clk(clk), .en(en[0]), .rst_n(rst_n));
 dff u021 (.q(data[0][3][1]), .d(data[0][2][1]), .clk(clk), .en(en[0]), .rst_n(rst_n));

 dff u100 (.q(data[1][1][0]), .d(data[1][0][0]), .clk(clk), .en(en[1]), .rst_n(rst_n));
 dff u110 (.q(data[1][2][0]), .d(data[1][1][0]), .clk(clk), .en(en[1]), .rst_n(rst_n));
 dff u120 (.q(data[1][3][0]), .d(data[1][2][0]), .clk(clk), .en(en[1]), .rst_n(rst_n));

 dff u101 (.q(data[1][1][1]), .d(data[1][0][1]), .clk(clk), .en(en[1]), .rst_n(rst_n));
 dff u111 (.q(data[1][2][1]), .d(data[1][1][1]), .clk(clk), .en(en[1]), .rst_n(rst_n));
 dff u121 (.q(data[1][3][1]), .d(data[1][2][1]), .clk(clk), .en(en[1]), .rst_n(rst_n));

 assign dout1 = data[1][3];
 assign dout0 = data[0][3];
endmodule

Example 5 - Verilog-2001 structural dual-pipeline model using multidimensional wire arrays for connections

4.2 The Verilog Generate Statement
Expected to be synthesizable? Yes
When? Soon.

Inspired by the VHDL generate statement, the Verilog generate statement extends generate-
statement capabilities beyond those of the VHDL-1993 generate statement.

In VHDL there is a for-generate (for-loop generate) and an if-generate statement. In Verilog-
2001 there will be a for-loop generate statement, an if-else generate statement and a case generate
statement.

4.3 The genvar index variable

After much debate, the VSG decided to implement a new index variable data type that can only be
used with generate statements. The keyword for the generate-index variable is "genvar." This
variable type is only used during the evaluation of generated instantiations and shall not be
referenced by other statements during simulation. The VSG felt it was safest to define a new
variable type with restrictive usage requirements as opposed to imposing rules on integers when
used in the context of a generate statement.

3-dimensional wire-array

Word assignment -
two index variables

Bit assignment - three index
variables

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

8

Per the IEEE Verilog-2001 Draft Standard, a Verilog genvar must adhere to the following
restrictions:

• Genvars shall be declared within the module where the genvars are used.
• Genvars can be declared either inside or outside of a generate scope.
• Genvars are positive integers that are local to, and shall only be used within a generate loop

that uses them as index variables.
• Genvars are only defined during the evaluation of the generate blocks.
• Genvars do not exist during simulation of a Verilog design.
• Genvar values shall only be defined by generate loops.
• Two generate loops using the same genvar as an index variable shall not be nested.
• The value of a genvar can be referenced in any context where the value of a parameter

could be referenced.

The Verilog generate for-loop, like the Verilog procedural for-loop, does not require a
contiguous loop-range and can therefore be used to generate sparse matrices of instances that
might prove useful to DSP related designs.

The Verilog if-else generate statement can be used to conditionally instantiate modules,
procedural blocks, continuous assignments or primitives.

The Verilog case generate statement was added to enhance the development of IP. Perhaps a
model could be written for a multiplier IP that chooses an implementation based on the width of
the multiplier operands. Small multipliers might be implemented best one or two different ways
but large multipliers might be implemented better another way. Perhaps the multiplier model
could chose a different implementation based on power_usage parameters passed to the model.

A FIFO model might be created that infers a different implementations based on whether the
model uses synchronous or asynchronous clocks.

4.4 Enhanced File I/O
Expected to be synthesizable? No
When? Soon.

Verilog has always had reasonable file-writing capabilities but it only has very limited built-in file-
reading capabilities.

Standard Verilog-1995 file reading capabilities were limited to reading binary or hex data from a
file into a pre-declared Verilog array and then extracting the data from the array using Verilog
commands to make assignments elsewhere in the design or testbench.

Verilog-1995 file I/O can be enhanced through the PLI and the most popular package used to
enhance Verilog file I/O is the package maintained by Chris Spear on his web site[4]. Any Verilog

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

9

simulator with built-in standard PLI can be compiled to take advantage of most of the Verilog-
2001 file I/O enhancements today.

Chris' file I/O PLI code was the starting point for Verilog-2001 file I/O enhancements, and since
Chris has already done most of the work of enhancing file I/O, it is likely that most Verilog
vendors will leverage off of Chris' work to implement the new file I/O enhancements.

4.5 Re-entrant Tasks and Functions
Expected to be synthesizable? Maybe?
When? Probably not soon.

Verilog functions are synthesizable today and Verilog tasks are synthesizable as long as there are
no timing controls in the body of the task, such as @(posedge clk). The #delay construct is
ignored by synthesis tools.

This enhancement might be one of the last enhancements to be implemented by most Verilog
vendors. Most existing Verilog vendors have complained that this enhancement is a departure
from the all-static variables that currently are implemented in the Verilog language. Automatic
tasks and functions will require that vendors push the current values of task variables onto a stack
and pop them off when the a recursively executing task invocation completes. Vendors are
wrestling with how they intend to implement this functionality.

This enhancement is especially important to verification engineers who use tasks with timing
controls to apply stimulus to a design. Unknown to many Verilog users, Verilog-1995 tasks use
static variables, which means that if a verification task is called a second time before the first task
call is still running, they will use the same static variables, most likely causing problems in the
testbench. The current work-around is to place the task into a separate verification module and
instantiate the module multiple times in the testbench, each with a unique instance name, so that
the task can be called multiple times using hierarchical references to the instantiated tasks.

By adding the keyword "automatic" after the keyword "task," Verilog compilers will treat the
variables inside of the task as unique stacked variables.

What about synthesis? Tektronix, Inc. of Beaverton Oregon has had an in-house synthesis tool
that was first used to design ASICs starting in the late 1980's, and that tool has had the capability
to synthesize recursive blocks of code also since the late 1980s. The recursive capabilities made
certain DSP blocks very easy to code. Some creative synthesis vendor might find some very
useful abilities by permitting recursive RTL coding; however, it is not likely that recursive tasks
will be synthesizable in the near future.

4.6 Configurations
Expected to be synthesizable? Yes, Synthesis tools should be capable of reading
configuration files to extract the files need to be included into a synthesized design.
When? This could be implemented soon.

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

10

Configuration files will make it possible to create a separate file that can map the instances of a
source file to specific files as long as the files can be accessed with a UNIX-like path name. This
enhancement should remove the need to employ `uselib directives in the source model to change
the source files that are used to simulate specific instances within a design.

The `uselib directive has never been standardized because it requires a designer to modify the
source models to add directives to call specific files to be compiled for specific instances.
Modifying the source files to satisfy the file mapping requirements of a simulation run is a bad
idea and the VSG hopes that usage of the `uselib directives will eventually cease. The
configuration file also offers an elegant replacement for the common command line switches: -y,
-v and +libext+.v, etc. These non-standard command line switches should also slowly be replaced
with the more powerful Verilog-2001configuration files.

5.0 More Verilog Enhancements

In addition to the top-five enhancement requests, the VSG considered and added other powerful
and useful enhancements to the Verilog language. Many of these enhancements are described
below.

5.1 ANSI-C style port declarations
Expected to be synthesizable? Yes.
When? Almost immediately.

Verilog-1995 requires all module header ports to be declared two or three times, depending on
the data type used for the port. Consider the simple Verilog-1995 compliant example of a simple
flip-flop with asynchronous low-true reset, as shown in Example 6.

module dffarn (q, d, clk, rst_n);
 output q;
 input d, clk, rst_n;
 reg q;

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 1'b0;
 else q <= d;
endmodule

Example 6 - Verilog-1995 D-flip-flop model with verbose port declarations

The Verilog-1995 model requires that the "q" output be declared three times, once in the module
header port list, once in an output port declaration and once in a reg data-type declaration. The
Verilog-2001 Standard combines the header port list declaration, port direction declaration and
data-type declaration into a single declaration as shown in Example 7, patterned after ANSI-C
style ports. Declaring all 1-bit inputs as wires is still optional.

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

11

module dffarn (
 output reg q,
 input d, clk, rst_n);

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 1'b0;
 else q <= d;
endmodule

Example 7 - Verilog 2001 D-flip-flop model with new-style port declarations

This enhancement is a more compact way of making port declarations and should be easy to
implement for simulation and synthesis soon.

5.2 Parameter passing by name (explicit & implicit)
Expected to be synthesizable? Yes.
When? Almost immediately.

Verilog-1995 standardized two ways to change parameters for instantiated modules, (1)
parameter redefinition and (2) defparam statements.

(1) Parameter redefinition is accomplished by instantiating a module and adding #(new_value1 ,
new_value2 , ...) immediately after the module name.

Advantage: this technique insures that all parameters are passed to a module at the same time that
the module is referenced.

Disadvantage: all parameters must be explicitly listed, in the correct order, up to and including the
parameter(s) that are changed. For example, if a module contains 10 parameter definitions, and if
the module is to be instantiated requires that the seventh parameter be changed, the instantiation
must include seven parameters within the parentheses, listed in the correct order and including the
first six values even though they did not change for this instantiation. It is not permitted to simply
list six commas followed by the new seventh parameter value.

(2) Using defparam redefinition is accomplished by instantiating a module and including a separate
defparam statement to change the instance_name.parameter_name value to its new value.

Advantage: this technique gives a simple and direct correspondence between the instance-name,
parameter-name pair and the new value.

Disadvantage: defparam statements can appear anywhere in the Verilog source code and can
change any parameter on any module. Translation - when compiling a Verilog design, none of the
parameters in any module are fixed until the last Verilog source file is read, because the last file
might hierarchically change every single parameter in the design! A "grand-child" module might
change all of the parameters of the "grand-parent" module, which might pass new parameter
values to the "parent/child" module. It gets ugly and probably slows the compilation of a Verilog
design.

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

12

Verilog-2001 adds a superior way of passing parameters to instantiated modules, using named
parameter passing, using the same technique as named port instantiation.

Advantage #1: Only the parameters that change need to be referenced in named port
instantiations. The same advantage that exists when using defparam statements.

Advantage #2: All parameter information is available when the module instantiation is parsed and
parameters are passed down the hierarchy; they do not cause side-effects up the hierarchy.

This is the best solution for IP development and usage.

The current defparam statement will not be fully usable in some Verilog-2001 enhancements and
the VSG hopes that the addition of named parameter redefinition will eventually cause defparam
statement usage to die.

Vendors might want to flag defparam statements as Verilog-2001 compiler errors with the
following message:

"The Verilog compiler found a defparam statement in the source code at (file-
line#). To use defparam statements in the Verilog source code, you must include the
switch +Iamstupid on the command line which will degrade compiler performance.
Defparam statements can be replaced with named parameter redefinition as define by
the Verilog-2001 standard"

5.3 Signed Arithmetic
Expected to be synthesizable? Could be(?)
When? Synthesis vendor dependent.

The signed arithmetic enhancement removes a frequent complaint about Verilog, that the design
has to explicitly code signed arithmetic functionality into the model.

Any vendor that already handles synthesis of signed arithmetic operations should be able to take
advantage of this enhancement to facilitate signed arithmetic design tasks.

5.4 `ifndef & `elsif
Expected to be synthesizable? Yes.
When? This could be implemented soon.

The `ifdef / `else / `endif conditionally-compiled-code compiler directives have been a part of the
Verilog language since before the Verilog-1995 Standard. Two additions have been added to help
generate conditionally compile code: `ifndef and `elsif.

The `ifdef set of compiler directives have been synthesizable by most synthesis tools for a long
time and they became synthesizable by Synopsys tools starting with Synopsys version 1998.02
(full usage within Synopsys tools requires that the switch hdlin_enable_vpp be set to true).

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

13

The `ifndef switch adds a small simplification to Verilog code where the intent is to compile a
block of code only when a specific text macro has not been defined.

`ifdef SYNTHESIS
`else
 initial $display("Running RTL Model");
`endif

Example 8 - Verilog-1995 coding style to replicate the Verilog-2001 `ifndef capability

`ifndef SYNTHESIS
 initial $display("Running RTL Model");
`endif

Example 9 - Using the new Verilog-2001 `ifndef compiler directive

Since the `ifndef and `elseif statements are used to simply determine when code should be
compiled, these compiler directives could easily be implemented in both simulation and synthesis
without much effort.

5.5 Exponential Operator
Expected to be synthesizable? Yes, if the operands are constants.
When? This could be implemented soon.

The ** (exponential) operator is a straightforward way of determining such things as memory
depth. If a model has 10 address bits, it should have 1024 memory locations.

If the two operands of the ** operator are constants at compile-time, there is no reason a
synthesis tool could not calculate the final value to be used during synthesis.

5.6 Local Parameters
Expected to be synthesizable? Yes.
When? This could be implemented soon.

Parameters, local to a module, that cannot be changed by parameter redefinition during
instantiation is another enhancement to the Verilog-2001 Standard. Local parameters are declared
using the keyword localparam.

This enhancement is needed by IP developers who want to create a parameterized design where
only certain non-local parameters can be manually changed while other local parameters are
manipulated within a design based on the parameters that are passed to a particular design
instance. Restricting access to some parameters helps to insure that a IP users cannot
inadvertently set incompatible parameter values for a particular module. The memory models in
Example 10 and Example 11 both use local parameters to calculate one of the memory parameters
based on other memory parameters.

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

14

5.7 Comma separated sensitivity list
Expected to be synthesizable? Yes.
When? Almost immediately.

Verilog-1995 uses the keyword "or" as a separator in the sensitivity list. New users of the Verilog
language often ask the question, "can I use and in the sensitivity list?" The answer is no.

The "or" keyword is merely a separator between signals in the sensitivity list and nothing more.
The Verilog sensitivity list is one of the few places where Verilog is more verbose than VHDL. I
personally found this to be offensive!

VHDL separates signals in the sensitivity list with a comma character, which most Verilog users
would agree is a better separator token. For this reason, the comma character has been added as
an alternate way of separating signals in a Verilog sensitivity list.

Because this enhancement is really just a parsing change, it should be very easy to implement.
There is no reason this capability should not be available by all Verilog vendors as soon as the
Verilog-2001 Standard is released by the IEEE.

The Verilog code for a parameterized ram model in Example 10 uses a comma-separated
sensitivity list in the always block just two lines before the endmodule statement.

//--
// ram1 model - Verilog-2001 @(a, b, c)
// requires ADDR_SIZE & DATA_SIZE parameters
// MEM_DEPTH is automatically sized
//--
module ram1 (addr, data, en, rw_n);
 parameter ADDR_SIZE = 10;
 parameter DATA_SIZE = 8;
 parameter MEM_DEPTH = 1<<ADDR_SIZE;
 output [DATA_SIZE-1:0] data;
 input [ADDR_SIZE-1:0] addr;
 input en, rw_n;

 reg [DATA_SIZE-1:0] mem [0:MEM_DEPTH-1];

 assign data = (rw_n && en) ? mem[addr] : {DATA_SIZE{1'bz}};

 always @(addr, data, rw_n, en)
 if (!rw_n && en) mem[addr] = data;
endmodule

Example 10 - Parameterized Verilog ram model with comma-separated sensitivity list

5.8 @* combinational sensitivity list
Expected to be synthesizable? Yes.
When? Almost immediately.

The Verilog-2001 Standard refers to the @* operator as the implicit event expression list;
however, members of the VSG called the always @* keyword-pair, the combinational logic

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

15

sensitivity list and that was its primary intended purpose, to be used to model and synthesize
combinational logic.

Experienced synthesis engineers are aware of the problems that can occur if combinational always
blocks are coded with missing sensitivity list entries. Synthesis tools build combinational logic
strictly from the equations inside of an always block but then synthesis tools check the sensitivity
list to warn the user of a potential mismatch between pre-synthesis and post-synthesis simulations
[4].

The always @* procedural block will eliminate the need to list every single always-block input in
the sensitivity list. This enhancement will reduce typing, and reduce design errors. The intent was
to reduce effort when coding combinational sensitivity lists and to reduce opportunities for coding
errors that could lead to a pre-synthesis and post-synthesis simulation mismatch.

The @* was really intended to be used at the top of an always block, but the VSG chose not to
restrict its use to just that location. The VSG could not think of a good reason not to use, nor did
the VSG think it was wise to restrict, the @* operator only to the top of the always block. This
enhancement was made orthogonal but it should be used with caution and has the potential to be
abused.

The Verilog code for a parameterized ram model in Example 11 uses an @* sensitivity list in the
always block just two lines before the endmodule statement.

//--
// ram1 model - Verilog-2001
// requires ADDR_SIZE & DATA_SIZE parameters
// MEM_DEPTH is automatically sized
//--
module ram1 #(parameter ADDR_SIZE = 10,
 parameter DATA_SIZE = 8)
 (output [DATA_SIZE-1:0] data,
 input [ADDR_SIZE-1:0] addr,
 input en, rw_n);

 localparam MEM_DEPTH = 1<<ADDR_SIZE;
 reg [DATA_SIZE-1:0] mem [0:MEM_DEPTH-1];

 //--
 // Memory read operation
 //--
 assign data = (rw_n && en) ? mem[addr] : {DATA_SIZE{1'bz}};

 //--
 // Memory write operation - modeled as a latch-array
 //--
 always @*
 if (!rw_n && en) mem[addr] <= data;
endmodule

Example 11 - Parameterized Verilog ram model with @* combinational sensitivity list

The Verilog-2001 Standard notes that nets and variables which appear on the RHS of
assignments, in function and task calls, or case expressions and if expressions shall all be included

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

16

in the implicit sensitivity list. Missing from the Verilog-2001 Standard is the fact that variables on
the LHS of an expression when used as an index range and variables used in case items should
also be included in the implicit sensitivity list. In the 3-to-8 decoder with output enable shown in
Example 12, the en input and the a-inputs should included in the @* implied sensitivity list.

module decoder (
 output reg [7:0] y,
 input [2:0] a,
 input en);

 always @* begin
 y = 8'hff;
 y[a] = !en;
 end
endmodule

Example 12 - 3-to-8 Decoder model using the @* implicit sensitivity list

5.9 Constant functions
Expected to be synthesizable? Yes.
When? This might take some time to implement.

Perhaps the most contentious enhancement to the Verilog-2001 Standard, the enhancement that
raised the most debate and that was almost removed from the standard on multiple occasions in
the past five years, was the constant function. EDA vendors opposed this enhancement because of
the perceived difficulty in efficiently implementing this enhancement, and its potential impact on
compile-time performance.

A quote from an EDA vendor who requested that constant functions not be added to Verilog
summarizes some of the opposition:

"Constant functions are another example of how a VHDL concept does not map will into Verilog
... The Verilog language is simply too powerful and unrestricted to support such functionality."

The users on the VSG also recognize that constant functions might not only be difficult to
implement, but also impact compile times. Despite this potential impact on compile-time
performance, users deemed this functionality too important to omit from the Verilog-2001
Standard. Vendors might want to publicize that a design modeled without constant functions will
compile faster than designs that include constant functions.

Constant functions are important to IP developers. The objective of the constant function is to
permit an IP developer to add local parameters to a module that are calculated from other
parameters that could be passed into the module when instantiated.

Constant functions will require vendors to calculate some parameters at compile time, which will
require that some parameters not be immediately calculated when read, but that they will be
calculated after a function is used to determine the actual value of a parameter.

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

17

Consider the example of a simple ROM model. To make a parameterized version of a ROM
model, we need to know the number of address bits, number of memory locations and number of
data bits. The data bus width should be passed to the model, but only the memory size or number
of address bits should be passed to the model. If we are given the number of address bits, we
should calculate the memory depth at compile time. If we are given the number of memory
locations, we should be able to calculate how many address bits are required at compile time.

In order to make constant functions somewhat more agreeable to EDA vendors, they were
defined with significant restrictions including some that do not apply to normal Verilog functions.
Significant restrictions that apply to constant functions include:

• Constant functions shall not contain hierarchical references.
• Constant functions are defined and invoked in the same module.
• Constant functions shall ignore system tasks. This permits a regular Verilog function with

system tasks such as $display commands to be changed into a constant function without
requiring removal of the system tasks.

• Constant functions shall not permit system functions.
• Constant functions shall have no side effects (they shall not make assignments to variables

that are defined outside of the constant function).
• If a constant function uses an external parameter within the internal calculations of the

function, the external parameter must be declared before the constant function call.
• All variables used in a constant function that are not parameters or functions must be

declared locally in the constant function.
• If the constant function uses a parameter that is directly or indirectly modified by a

defparam statement, the behavior of the Verilog compiler is undefined. The compiler can
return an unknown value or it can issue a syntax error.

• Constant functions cannot be defined inside of a generate statement.
• Constant functions shall not call other constant functions in any context that requires a

constant expression.

The VSG anticipated that the typical use of a constant function would be to perform simple
calculations to generate local parameters to insure compatibility with passed parameters. The
above restrictions insure that constant functions do not cause undue compile-time problems.

5.10 Attributes
Expected to be synthesizable? Partially.
When? As soon as the IEEE synthesis committee finishes its work and includes attributes
into the synthesis spec.

Verilog-2001 will add a new construct (new to Verilog) called an attribute. The attribute uses (*
*) tokens (named "funny braces" by members of the VSG) as shown in Figure 1.

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

18

(* attribute_name = constant_expression *)
-or-

(* attribute_name *)

Figure 1 - Legal attribute definition syntax using (* *)

Attributes were primarily added to the Verilog language enable other tools to use Verilog as an
input language and still pass non-Verilog information to those tools. For many years now, vendors
have been adding hooks into the Verilog language by way of synthetic comments. The most
famous (infamous) example is the deadly[6] synthetic comment:

// synopsys full_case parallel_case

The biggest problem with the synthetic comment approach is that attaching tool-specific
information to a Verilog comment forces those same tools to parse all Verilog comments to see if
the comment contains a tool-specific directive.

To assist vendors who use Verilog as an input language, the VSG decided to add attributes to the
Verilog language that for the most part will be ignored by Verilog compilers the same as any
Verilog comment. The attributes permit third-party vendors to add tool-related information to the
source code without impacting simulation and without having to parse every Verilog comment.

5.11 Required net declarations
Expected to be synthesizable? N/A.
When? Soon.

Verilog-1995 has an odd and non-orthogonal requirement that all 1-bit nets, driven by a
continuous assignment, that are not declared to be a ports, must be declared. It is the only 1-bit
net type that must be declared in Verilog. This non-orthogonal restriction is removed in Verilog-
2001.

module andor1 (y, a, b, c);
 output y;
 input a, b, c;
 wire n1; // not required in Verilog-2001

 assign n1 = a & b;
 assign y = n1 | c;
endmodule

Example 13 - Verilog-1995 required net declaration for the LHS of a continuous assignment to an internal net

5.12 `default_nettype none
Expected to be synthesizable? N/A.
When? Soon.

In the Verilog-1995 Standard, any undeclared identifier, except for the output of a continuous
assignment that drives a non-port net, is by default a 1-bit wire. Verilog never required these 1-bit

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

19

net declarations and adding the declarations to a model yielded no additional checking to insure
that all 1-bit nets were declared.

The Verilog-2001 Standard adds a new option to the `defult_nettype compiler directive called
"none." If the "none" option is selected, all 1-bit nets must be declared.

Whether or not forcing all 1-bit nets to be declared is a good coding practice or not is open to
debate. Some engineers believe that all nets should be declared before they are used. Other
engineers find that declaring all 1-bit nets can be both time and space-consuming.

Editorial comment: I personally find the practice of declaring all 1-bit nets to be a waste of time,
effort and lines of code. VHDL requires all 1-bit nets (signals) to be declared, and on a VHDL
ASIC design that I worked on in 1996, while instantiating and connecting the major sub-blocks
and I/O pads at the top-level model of an ASIC design, I spent as much time debugging flawed
signal declarations as I did debugging real hardware problems. The only declarations that I
personally found useful were multi-bit signals (buses), which are also required in Verilog-1995.
My signal declarations extended over three pages of code and offered no additional useful
information about the design. Nevertheless, one can now inflict similar pain and suffering into a
Verilog design using the `default_nettype none compiler directive.

6.0 Array of Instance
Expected to be synthesizable? Yes.
When? Soon.

A noteworthy enhancement to the Verilog language is the Array of Instance that was added to the
1995 IEEE Verilog Standard. This enhancement was implemented by Cadence more than two
years ago, but the other simulation vendors and all synthesis vendors were slow to follow.

An array of instance allows an simple one-dimensional linear array of instances to be declared in a
single statement.

Most ASIC designers build a top-level module that only permits instantiation of other modules, no
RTL code allowed. The RTL code is used in sub-modules but not in the top-level module.

In the top-level module, all of the major sub-blocks are instantiated along with all of the ASIC I/O
pads. Consider the task of instantiating the I/O pads for a 32-bit address bus and a 16-bit data bus.
Verilog engineers have always been required to make 32 address-pad and 16 data-pad
instantiations in the top-level model as shown in Example 14.

module top_pads1 (pdata, paddr, pctl1, pctl2, pctl3, pclk);
 inout [15:0] pdata; // pad data bus
 input [31:0] paddr; // pad addr bus
 input pctl1, pctl2, pctl3, pclk; // pad signals
 wire [15:0] data; // data bus
 wire [31:0] addr; // addr bus

 main_blk u1 (.data(data), .addr(addr),
 .sig1(ctl1), .sig2(ctl2), .sig3(ctl3), .clk(clk));

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

20

 IBUF c4 (.O(ctl3), .pI(pctl3));
 IBUF c3 (.O(ctl2), .pI(pctl2));
 IBUF c2 (.O(ctl1), .pI(pctl1));
 IBUF c1 (.O(clk), .pI(pclk));

 IBUF i15 (.O(data[15]), .pI(pdata[15]));
 IBUF i14 (.O(data[14]), .pI(pdata[14]));
 IBUF i13 (.O(data[13]), .pI(pdata[13]));
 IBUF i12 (.O(data[12]), .pI(pdata[12]));
 IBUF i11 (.O(data[11]), .pI(pdata[11]));
 IBUF i10 (.O(data[10]), .pI(pdata[10]));
 IBUF i9 (.O(data[9]), .pI(pdata[9]));
 IBUF i8 (.O(data[8]), .pI(pdata[8]));
 IBUF i7 (.O(data[7]), .pI(pdata[7]));
 IBUF i6 (.O(data[6]), .pI(pdata[6]));
 IBUF i5 (.O(data[5]), .pI(pdata[5]));
 IBUF i4 (.O(data[4]), .pI(pdata[4]));
 IBUF i3 (.O(data[3]), .pI(pdata[3]));
 IBUF i2 (.O(data[2]), .pI(pdata[2]));
 IBUF i1 (.O(data[1]), .pI(pdata[1]));
 IBUF i0 (.O(data[0]), .pI(pdata[0]));

 BIDIR b31 (.N2(addr[31]), .pN1(paddr[31]), .WR(wr));
 BIDIR b30 (.N2(addr[30]), .pN1(paddr[30]), .WR(wr));
 BIDIR b29 (.N2(addr[29]), .pN1(paddr[29]), .WR(wr));
 BIDIR b28 (.N2(addr[28]), .pN1(paddr[28]), .WR(wr));
 BIDIR b27 (.N2(addr[27]), .pN1(paddr[27]), .WR(wr));
 BIDIR b26 (.N2(addr[26]), .pN1(paddr[26]), .WR(wr));
 BIDIR b25 (.N2(addr[25]), .pN1(paddr[25]), .WR(wr));
 BIDIR b24 (.N2(addr[24]), .pN1(paddr[24]), .WR(wr));
 BIDIR b23 (.N2(addr[23]), .pN1(paddr[23]), .WR(wr));
 BIDIR b22 (.N2(addr[22]), .pN1(paddr[22]), .WR(wr));
 BIDIR b21 (.N2(addr[21]), .pN1(paddr[21]), .WR(wr));
 BIDIR b20 (.N2(addr[20]), .pN1(paddr[20]), .WR(wr));
 BIDIR b19 (.N2(addr[19]), .pN1(paddr[19]), .WR(wr));
 BIDIR b18 (.N2(addr[18]), .pN1(paddr[18]), .WR(wr));
 BIDIR b17 (.N2(addr[17]), .pN1(paddr[17]), .WR(wr));
 BIDIR b16 (.N2(addr[16]), .pN1(paddr[16]), .WR(wr));
 BIDIR b15 (.N2(addr[15]), .pN1(paddr[15]), .WR(wr));
 BIDIR b14 (.N2(addr[14]), .pN1(paddr[14]), .WR(wr));
 BIDIR b13 (.N2(addr[13]), .pN1(paddr[13]), .WR(wr));
 BIDIR b12 (.N2(addr[12]), .pN1(paddr[12]), .WR(wr));
 BIDIR b11 (.N2(addr[11]), .pN1(paddr[11]), .WR(wr));
 BIDIR b10 (.N2(addr[10]), .pN1(paddr[10]), .WR(wr));
 BIDIR b9 (.N2(addr[9]), .pN1(paddr[9]), .WR(wr));
 BIDIR b8 (.N2(addr[8]), .pN1(paddr[8]), .WR(wr));
 BIDIR b7 (.N2(addr[7]), .pN1(paddr[7]), .WR(wr));
 BIDIR b6 (.N2(addr[6]), .pN1(paddr[6]), .WR(wr));
 BIDIR b5 (.N2(addr[5]), .pN1(paddr[5]), .WR(wr));
 BIDIR b4 (.N2(addr[4]), .pN1(paddr[4]), .WR(wr));
 BIDIR b3 (.N2(addr[3]), .pN1(paddr[3]), .WR(wr));
 BIDIR b2 (.N2(addr[2]), .pN1(paddr[2]), .WR(wr));
 BIDIR b1 (.N2(addr[1]), .pN1(paddr[1]), .WR(wr));
 BIDIR b0 (.N2(addr[0]), .pN1(paddr[0]), .WR(wr));

endmodule

Example 14 - Verilog-1995 structural top-level ASIC model with multiple I/O pad instantiations

VHDL engineers have been able to use two generate for-loops to instantiate the same 32 address
and 16 data pad models. With Verilog-2001, Verilog engineers can now use similarly simple
generate for-loops to instantiate the 32 address and 16 data pads, as shown in Example 15.

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

21

module top_pads2 (pdata, paddr, pctl1, pctl2, pctl3, pclk);
 inout [15:0] pdata; // pad data bus
 input [31:0] paddr; // pad addr bus
 input pctl1, pctl2, pctl3, pclk; // pad signals
 wire [15:0] data; // data bus
 wire [31:0] addr; // addr bus

 main_blk u1 (.data(data), .addr(addr),
 .sig1(ctl1), .sig2(ctl2), .sig3(ctl3), .clk(clk));

 genvar i;

 IBUF c4 (.O(ctl3), .pI(pctl3));
 IBUF c3 (.O(ctl2), .pI(pctl2));
 IBUF c2 (.O(ctl1), .pI(pctl1));
 IBUF c1 (.O(clk), .pI(pclk));

 generate for (i=0; i<16; i=i+1) begin: dat
 IBUF i1 (.O(data[i]), .pI(pdata[i]));

 generate for (i=0; i<32; i=i+1) begin: adr
 BIDIR b1 (.N2(addr[i]), .pN1(paddr[i]), .WR(wr));

endmodule

Example 15 - Top-level ASIC model with address and data I/O pads instantiated using a generate statement

For simple contiguous one-dimensional arrays, the array of instance construct is even easier to use
and has a more intuitive syntax. Finally, simulation and synthesis vendors are now starting to
support the Verilog-1995 Array of Instance construct that makes placement of 32 consecutively
named instances possible with an easy instantiation by bus names as ports and applying a range to
the instance name as shown in Example 16.

module top_pads3 (pdata, paddr, pctl1, pctl2, pctl3, pclk);
 inout [15:0] pdata; // pad data bus
 input [31:0] paddr; // pad addr bus
 input pctl1, pctl2, pctl3, pclk; // pad signals
 wire [15:0] data; // data bus
 wire [31:0] addr; // addr bus

 main_blk u1 (.data(data), .addr(addr),
 .sig1(ctl1), .sig2(ctl2), .sig3(ctl3), .clk(clk));

 IBUF c4 (.O(ctl3), .pI(pctl3));
 IBUF c3 (.O(ctl2), .pI(pctl2));
 IBUF c2 (.O(ctl1), .pI(pctl1));
 IBUF c1 (.O(clk), .pI(pclk));

 IBUF i[15:0] (.O(data), .pI(pdata));

 BIDIR b[31:0] (.N2(addr), .pN1(paddr), .WR(wr));

endmodule

Example 16 - Top-level ASIC model with address and data I/O pads instantiated using arrays of instance

Arrayed instance
names i[15] to i[0]

Arrayed instance names
b[31] to b[0]

Generated instance names
dat[0].i1 to dat[15].i1

Generated instance names
adr[0].b1 to adr[31].b1

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

22

7.0 Conclusions

The Verilog-2001 enhancements are coming. These enhancements will increase the efficiency and
productivity of Verilog designers.

8.0 Honorable Mention

Although the Behavioral Task Force benefited from the expertise and contributions of numerous
synthesis experts, a particular honorable mention must go out to Kurt Baty of WSFDB.

Kurt has experience designing some 50 ASICs and has written a significant number of Design
Ware models that are used in Synopsys synthesis tools. Kurt complains that he had to write all of
the models using VHDL because Verilog lacked a few of the key features that are required to
make parameterized models. Kurt's insight into the 1995 Verilog limitations lead to enhancements
that will make future IP model creation not only doable, but also easier to do in Verilog than it
was in VHDL.

9.0 References

[1] IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language, IEEE Std P1364/D5

[2] Douglas L. Perry, VHDL, McGraw-Hill, Inc., 1994, p. 1.

[3] IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language, IEEE Computer Society, IEEE Std 1364-1995

[4] www.chris.spear.net

[5] Don Mills and Clifford E. Cummings, "RTL Coding Styles That Yield Simulation and Synthesis
Mismatches," SNUG'99 (Synopsys Users Group San Jose, CA, 1999) Proceedings, section-TA2
(1st paper), March 1999.

[6] Clifford E. Cummings, '"full_case parallel_case", the Evil Twins of Verilog Synthesis,' SNUG'99
Boston (Synopsys Users Group Boston, MA, 1999) Proceedings, section-FA1 (2nd paper),
October 1999.

Revision 1.2 - What Changed?

The ANSI style ports in previous versions of this paper incorrectly showed semi-colons between
port declarations and between the parameter list and the port list. These errors were fixed in this
version of the document.

HDLCON 2001 Verilog-2001 Behavioral and
Rev 1.3 Synthesis Enhancements

23

Revision 1.3 (April 2002) - What Changed?

Example 11 still incorrectly showed ANSI style parameters separated by a semicolon instead of a
comma and also included an illegal comma at the end of the ANSI style parameter list. Note that
the second parameter keyword is not required in the ANSI style parameter list and would
typically be removed.

Example 11 also included a localparam declaration in the ANSI style parameter list, which is
illegal. The localparam has been moved outside of the ANSI style header.

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and trainer
with 20 years of ASIC, FPGA and system design experience and ten years of Verilog, synthesis
and methodology training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (VSG) since 1994, chaired
the VSG Behavioral Task Force, which was charged with proposing enhancements to the Verilog
language. Mr. Cummings is also a member of the IEEE Verilog Synthesis Interoperability
Working Group and the Accellera SystemVerilog Standardization Group

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

E-mail Address: cliffc@sunburst-design.com
This paper can be downloaded from the web site: www.sunburst-design.com/papers

(Data accurate as of December 17th, 2001)

