
HDLCON 2002 1 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

SystemVerilog Ports & Data Types For Simple, Efficient and Enhanced HDL
Modeling

Clifford E. Cummings
Sunburst Design, Inc.

cliffc@sunburst-design.com

Abstract

Verilog-2001 introduced an enhanced and abbreviated
method to declare module headers, ports and data types.
The Accellera SystemVerilog effort will further enhance
Verilog design by abbreviating the capability to
instantiate modules with implicit port connections and
interface types. These capabilities and additional
complimentary enhancements are detailed in this paper.

1. Introduction

To declare, or not to declare, that is the question!

Verilog-1995[1] had verbose and redundant port
declaration requirements. Verilog-2001[2] introduced the
“ANSI-C”-style enhancement to remove port declaration
redundancy from the Verilog language. Accellera
SystemVerilog proposals will further enhance port
declarations with the introduction of interface
declarations. The evolution of and enhancements to
Verilog port declarations are detailed in this paper.

For those who prefer a requirement that all variables
be declared before they are used, Verilog-2001
introduced a new “none” option for the
`default_nettype compiler directive. The usage and
disadvantages of this “enhancement” are also discussed in
this paper.

Another Accellera SystemVerilog proposed
enhancement is to permit instantiation of modules with
implicit connections. This proposed enhancement is also
detailed and promoted in this paper.

This paper concludes with guidelines to increase
Verilog and SystemVerilog design productivity.

2. Verilog-1995: verbose module headers

Verilog-1995 had the annoying requirement that all
module ports had to be declared two or three times.

The Verilog-1995 code for the muxff block diagram of
Figure 1 is shown in Example 1.

Figure 1 - muxff Block Diagram

module muxff1 (q, d, clk, ce, rst_n);
 output q;
 input d, clk, ce, rst_n;
 reg q;
 wire y;

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 0;
 else q <= y;

 assign y = ce ? d : q;
endmodule

Example 1 - Verilog-1995 version of the muxff module

A Verilog-1995 version of this model requires that the
q-port be declared three times: once in the module header,
once as an output port and once as a reg-variable data
type. The d, clk, ce and rst_n ports must all be
declared twice: once in the module header and once as
input data ports (the port-wire data type declaration is
not required).

Verilog-1995 requires that an internal 1-bit wire
driven by a continuous assignment must be declared. The
y-wire declaration in Example 1 - Verilog-1995 version
of the muxff module

 is required.

HDLCON 2002 2 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

To avoid extra wire and wire-bus declarations that can
exist in a large Verilog design, some engineers have

adopted the strategy to make the continuous assignment in
the wire declaration itself, as shown in Example 2[3].

module muxff2 (q, d, clk, ce, rst_n);
 output q;
 input d, clk, ce, rst_n;
 reg q;

 // Embedded wire declaration to
 // eliminate the need for separate wire
 // declaration and assign statement
 wire y = ce ? d : q;

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 0;
 else q <= y;
endmodule

Example 2 - Verilog-1995 version of the muxff module
with combined wire declaration & assignment

The only disadvantage to making net-assignment
declarations in a design is that the declarations tend to be
dispersed throughout the RTL code, which seems
somewhat strange. My own preference is to make all
declarations at the top of the module and then make
assignments where appropriate throughout the RTL code;
however, making the dispersed net-assignment
declarations throughout the RTL code is a reasonable
means to reduce all of the extra net declarations in a
model, a goal that I support.

The only other problem associated with making net-
assignment declarations is when a right-hand-side
variable is required in an assignment before it is declared.
In those cases, the separate net or net-bus declaration is
required.

The requirement to make all of the extra port and extra
net declarations seemed to be both verbose and
redundant.

3. Verilog-2001: “ANSI-C” style ports

Verilog-2001 introduced an abbreviated module port
declaration enhancement, often referred to as “ANSI-C”
style port declarations, where each module port could be
declared just once and include the port position, port
direction and port data type all in a single declaration.

The Verilog-2001 code for the muxff block diagram of
Figure 1 is shown in Example 3.

module muxff3 (
 output reg q,
 input d, clk, ce, rst_n);

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 0;
 else q <= y;

 assign y = ce ? d : q;
endmodule

Example 3 - Verilog-2001 version of the muxff module

The Verilog-2001 version of this model has combined
the q port-header, port-direction and data type into a
single declaration. The other ports have similarly been
combined into a single port-header, port-direction
declaration (the port-wire data type declaration is again
not required).

Also note that the y-wire declaration is not required in
the Verilog-2001 version of this model. Verilog-2001
internal wire declaration requirements are discussed in
the next section.

4. Verilog-2001: `default_nettype none

As noted in section 2, 1-bit internal wires driven from
continuous assignments had to be explicitly declared in
Verilog-1995. Verilog-2001 removed this inconsistency
from the Verilog language.

Verilog-2001 also introduced the
`default_nettype compiler directive option “none.”
This option forces Verilog-2001-compliant compilers to
require that all wire declarations be explicitly declared.
Some engineers prefer the requirement that all wire
declarations be explicitly made while others would prefer
to do away with the additional verbiage and potential
source of misspelled identifiers and keywords.

By default, the implied net type of a module is wire.
The Verilog-1995 Standard allowed a different default net
type to be specified by adding the compiler directive
`default_nettype and then selecting an argument
from one of the following list: wire, tri, tri0, wand,
triand, tri1, wor, trior and trireg.

Verilog-2001 added a new `default_nettype

option, “none.” Specifying a none option tells the
compiler that all net variables must be declared and that
no default type is inferred.

The debatable intent of this option is to assist
engineers in finding typos more easily since every
identifier in a design must have a corresponding
declaration.

Consider the circuit of Figure 2. This is the intended
logic for a simple design.

HDLCON 2002 3 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

Figure 2 - Test-module intended logic

The Verilog code of Example 4 was intended to
implement the circuit of Figure 2, but two common
mistakes were made: (1) the output of the buffer was
labeled outl (letter “l”) instead of out1 (digit 1), and
(2) the input of the inverter was labeled outO (letter “O”)
instead of out0 (digit 0). With implicit wire data types,
this circuit compiles without error but will simulate
incorrectly due to two disconnects in the circuit as shown
in Figure 3.

module testmod1(
 output out1, out1_n,
 input in1, in2);

 and u1 (out0, in1, in2);

 // Typo: should be out1 (1 not l)
 buf u2 (outl, out0);

 // Typo: should be out0 (0 not O)
 not u3 (out1_n, outO);
endmodule

Example 4 - Verilog testmod1code with no
`default_nettype compiler directive

Figure 3 - Verilog testmod1 actual logic

The Verilog code of Example 5 includes the new
Verilog-2001 option “none” for the compiler directive,
`default_nettype.

This design will fail compilation with two syntax
errors indicating that the identifiers “outl” and “outO”
have not been declared (see Figure 4). Because the errors

were caught during compilation instead of simulation, the
theory is that this design is easier to debug.

`default_nettype none
module testmod2(
 output wire out1, out1_n,
 input wire in1, in2);
 wire out0;

 and u1 (out0, in1, in2);

 // Typo: should be out1 (1 not l)
 buf u2 (outl, out0);

 // Typo: should be out0 (0 not O)
 not u3 (out1_n, outO);
endmodule

Example 5 - Verilog testmod2 code with `default_nettype
none compiler directive

Figure 4 - Verilog testmod2 syntax-error logic

Unfortunately, additional declarations provide
additional opportunities to introduce errors. A problem
with the Example 6 Verilog code is that the model is
actually correct but in the process of adding the additional
wire declarations to satisfy the `default_nettype
none option, three typos actually occurred in the wire
declarations (outl, ou1_n and outO).

This design will fail compilation with three syntax
errors indicating that the identifiers “out1,” “out1_n”
and “out0” have not been declared (see Figure 5). These
three identifiers are actually correct but the declarations
for these identifiers are wrong. The error messages have
actually hidden the real errors in this design, which
occurred in the declarations.

`default_nettype none
module testmod3(out1, out1_n,
 in1, in2);
 output out1, out1_n;
 input in1, in2;
 wire outl, ou1_n; // Typos
 wire in1, in2;

HDLCON 2002 4 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

 wire outO; // Typo

 and u1 (out0, in1, in2);
 buf u2 (out1, out0);
 not u3 (out1_n, out0);
endmodule

Example 6 - Verilog testmod3 code with declaration
errors

Figure 5 - Verilog testmod3 correct logic (but does not
compile)

VHDL has a similar requirement that all identifiers,
including 1-bit signals, must be declared. My experience
in doing top-level VHDL ASIC designs has proven to be
frustrating because of this requirement.

While doing large VHDL designs, I discovered that I
spent almost as much time in the top-level blocks
debugging pages of signal declarations as I did debugging
actual RTL bugs.

My experience has been that adding pages of
declarations is almost as error prone as doing RTL design,
that adding all of the declarations can be very verbose and
that error messages can be very confusing (indicating a
syntax error in the error-free RTL code while hiding the
fact that the error is in the declaration).

Although finding typos before simulation is desirable,
a more reasonable approach to the problem would be a
compiler or lint tool that could scan RTL source code to
insure that each identifier has at least one driving source
and one receiver. Adding pages of declarations just to
find typos in the RTL code (and introduce more typos in
the declarations) is tedious, verbose and frustrating.

Adding the `default_nettype none directive to a
working Verilog model is asking for trouble. Adding the
directive will require all identifiers to be declared. Since
the RTL code is already working, more mistakes could be
introduced by adding declarations.

My experience has also generally been, the more
concise the code, the fewer the errors and the greater the
clarity of the design.

Guideline: do not add `default_nettype none to
a working Verilog design.

Guideline: do not use `default_nettype none,
ever!

5. SystemVerilog: Implicit port connections

Two exciting proposals that were passed in April 2002
by the Accellera SystemVerilog Committee provide
enhanced methods for instantiating modules with
implicitly connected ports to reduce the verbose overhead
of listing all named ports in an instantiation.

5.1. Verilog positional port connections

Both Verilog-1995 and Verilog-2001 permit module
instantiation using positional port connections.

Instantiation using positional ports simply requires
listing the port connections in the correct order to match
the port order of the instantiated module.

Advantage: instantiation of a module is fast and easy.

Disadvantages:

• if the module is instantiated with an incorrect port
order, the simulation will fail and the task of
debugging this type of bug can be time
consuming.

• if the port order of the instantiated module is
changed by a third party, the instantiation will also
have to change.

• minor port order changes are often the most
difficult to find and debug. Swapping two control
signal inputs will still compile without syntax
error and there will be no compilation warning.
Finding this type of bug can be very time
consuming and the motive for some homicides!

Guideline: when instantiating a module from another
design team member, from a third party or vendor, or if
you do not have direct control over the module being
instantiated, do not use positional port connections.

Reason: If the author of the module decides that the
port order should be changed to “make the design more
readable,” all instantiations of the module will have to be
updated.

This is a common guideline at many companies
(companies who have experienced problems and delays
when an instantiated module was changed but the change
went unannounced and initially unnoticed).

5.2. Verilog named port connections

Both Verilog-1995 and Verilog-2001 permit module
instantiation using named port connections.

HDLCON 2002 5 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

Instantiation using named ports simply requires listing
both the explicit port names of the module being
instantiated and the accompanying net names that connect
to the explicit ports.

Disadvantage: instantiations are twice as verbose as
using positional port connections and take longer to build.

Advantages:

• the ordering of the instance ports does not cause
design failures.

• if the port order of the instantiated module is
changed by a third party, no instantiation changes
are required.

• minor port order changes do not impact a design.

• if the port names change, the compiler gives
immediate feedback, in the form of a syntax error,
indicating that the specified ports do not exist.

Guideline: in general, use named port connections
when instantiating modules into a design.

Guideline: show all unconnected module ports using
empty named connections.

Reason: some Verilog compilers give warnings for
missing ports from a named port connection list.
Unnecessary warnings should be avoided.

These are common guidelines at many companies.

5.3. SystemVerilog: Implicit .name port
connections (passed April 2002)

SystemVerilog will permit an abbreviated method to
instantiate modules using the implicit .name port
connection enhancement.

In SystemVerilog, if the net connected to a port of an
instantiated model matches the name of the port on the
instantiated model, the size of the port on the instantiated
model and has a compatible data type to the port on the
instantiated model, the matching port name can be listed
just once with a leading period. This is the same syntax as
named port connections only without the redundant name
inside of parentheses.

Implicit port connections reduce the redundant nature
of listing a name twice for each named port connection
when the port name matches the variable name that is
connected to the port.

With a careful naming convention, instantiating large
logic blocks into a higher level module will be less
tedious by using SystemVerilog .name implicit port
connections.

When using the .name implicit port connection
technique, any sub-block port that does not match in size
or name to the module net or bus connected to the port,

must be connected using a named-port connection.
Mixing implicit .name port connections with positional
port connections is not permitted.

Implicit port connections must follow these rules:

• Implicit .name ports shall not be used in an
instantiated sub-block with positional port
connections.

• Implicit .name ports may be used in an instantiated
sub-block with named port connections.

• It is permitted to instantiate instances with positional
port connections, instances with named port
connections, instances with implicit .name port
connections and instances with implicit .* port
connections, all in the same upper-level module.

• If implicit .name port connections are used to
instantiate a sub-block with named port connections,
the .name ports may be placed anywhere in the port
list.

• For an implicit .name connection to be made, the
port name on an instantiated sub-block must match
the net or bus name of the connecting module.

• For an implicit .name connection to be made, the
port size on an instantiated sub-block must match the
net or bus size of the connecting module.

• For an implicit .name connection to be made, the
port data type on an instantiated sub-block must be
compatible to the data type of the variable connecting
to the module. Any port that would connect to a
variable in the upper module without causing a
Verilog error or warning is considered to be
compatible.

• Any individual port in an implicitly instantiated
module that does not match size and name and is not
data-type compatible with the net or bus of the upper-
level module, must be instantiated by name.

• If a port on an instantiated sub-block is unconnected
in the upper-level module, the port can be explicitly
listed as a named port with empty parentheses, or
omitted from the instantiation port list (Guideline:
add unconnected ports to the instantiation port list
with empty connection parentheses).

• All nets or busses in the upper-level module that
connect to implicit ports must either be explicitly
declared as a scalar-net, vector-net, or as a port on
the upper-level module.

HDLCON 2002 6 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

5.4. SystemVerilog: Implicit .* port connections
(passed April 2002)

SystemVerilog will also permit an enhanced and
abbreviated method to instantiate modules using the
implicit .* port connection token.

In SystemVerilog, if the net connected to a port of an
instantiated model matches the name of the port on the
instantiated model, the size of the port on the instantiated
model and has a compatible data type to the port on the
instantiated model, the matching port name can be
omitted and an implicit .* port connection can be made.

Many design teams use the proven methodology of
using the same name for a top-level net and all of the
ports that connect to that net. These same design teams
generally use the safe method of making named port
connections when instantiating the top-level blocks.

Engineers who have coded large top-level ASIC
designs, have experienced the pain of connecting
hundreds and thousands of named ports to tens and
hundreds of top-level modules.

SystemVerilog introduces the capability to instantiate
modules with highly abbreviated and efficient .*

implicit port connections. Implicit .* port connections
are intended to facilitate the process of instantiating large
sub-blocks into upper-level modules without having to
type multiple lines of named port connections where the
sub-blocks are instantiated.

Implicit .* port connections reduce the verbose
nature of most higher-level modules by limiting the
number of named ports that actually have to be listed
when a module is instantiated. At the same time, since
only those nets or busses that do not match must be listed
in the module instantiation, they are emphasized and not
hidden in a sea of named port connections.

With a careful naming convention, instantiating large
logic blocks into a higher level module can now be
greatly facilitated by using SystemVerilog implicit .*
port connections.

When using the .* implicit port connection token, any
sub-block port that does not match in size or name to the
module net or bus connected to the port, must be
connected using a named-port connection. Mixing
implicit port connections (.* connections) with positional
port connections is not permitted.

Implicit port connections must follow these rules:

• Implicit .* ports shall not be used in an instantiated
sub-block with positional ports.

• Implicit .* ports may be used in an instantiated sub-
block with named ports.

• It is permitted to instantiate instances with positional
port connections, instances with named port
connections, instances with implicit .name port
connections and instances with implicit .* port
connections, all in the same upper-level module.

• If implicit port connections are used to instantiate a
sub-block, the .* token may be placed anywhere in
the instantiated port list with other named port
connections, if any are listed.

• For an implicit .* connection to be made, the port
name on an instantiated sub-block must match the net
or bus name of the connecting module.

• For an implicit .* connection to be made, the port
size on an instantiated sub-block must match the net
or bus size of the connecting module.

• For an implicit .* connection to be made, the port
data type on an instantiated sub-block must be
compatible to the data type of the variable connecting
to the module. Any port that would connect to a
variable in the upper module without causing a
Verilog error or warning is considered to be
compatible.

• Any individual port in an implicitly instantiated
module that does not match both size and name of
the net or bus of the upper-level module, or that does
not have a compatible data type to the net or bus of
the upper-level module, must be instantiated by
name.

• If a sub-block is instantiated using implicit .* port
connections and if a port on the instantiated sub-
block is unconnected in the upper-level module, the
port shall be explicitly listed as a named port with
empty parentheses, showing there is no connection to
the port.

• All nets or busses in the upper-level module that
connect to implicit .* ports must either be explicitly
declared as a scalar-net, vector-net, or as a port on
the upper-level module.

5.5. Instantiation Example

Consider the example of a Complex Arithmetic Logic
Unit[4] (CALU) as shown in Figure 6. This CALU
design has nine instantiated sub-blocks. The Verilog-2001
module headers for the nine sub-blocks are shown in
Example 7 through Example 15.

If the sub-block module port lists are carefully named
so that the port names match the names of the top-level
CALU module nets or busses that are connected to the
instantiated ports, implicit port connections can be used
when the sub-blocks are instantiated into the CALU.

HDLCON 2002 7 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

Figure 6 - Complex Arithmetic Logi Unit (CALU) block diagram

HDLCON 2002 8 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

module multop1 (
 output [15:0] mop1,
 input [15:0] data,
 input ld_multop1, clk, rst_n);
 // RTL code for multiplier operand1 reg
endmodule

 Example 7 - multop1 module header - Verilog-2001
version

module multiplier (
 output [31:0] mult,
 input [15:0] mop1, data);
 // RTL code for the multiplier
endmodule

 Example 8 - multiplier module header - Verilog-2001
version

module multoutreg (
 output [31:0] multout,
 input [31:0] mult,
 input ld_multout, clk, rst_n);
 // RTL code for he multiplier output reg
endmodule

 Example 9 - multoutreg module header - Verilog-2001
version

module barrel_shifter (
 output [31:0] bs,
 input [15:0] data,
 input [4:0] bs_lshft,
 input ld_bs, clk, rst_n);
 // RTL code for the barrel shifter
endmodule

 Example 10 - barrel_shifter module header - Verilog-
2001 version

module mux2 (
 output [31:0] y,
 input [31:0] i1, i0,
 input sel1);
 // RTL code for a 2-to-1 mux
endmodule

 Example 11 - mux2 module header - Verilog-
2001 version

module alu (
 output [31:0] alu_out,
 output zero, neg,
 input [31:0] alu_in, acc,
 input [2:0] alu_op);
 // RTL code for the ALU
endmodule

 Example 12 - alu module header - Verilog-
2001 version

module accumulator (
 output [31:0] acc,
 input [31:0] alu_out,
 input ld_acc, clk, rst_n);
 // RTL code for the accumulator register
endmodule

 Example 13 - accumulator module header - Verilog-2001
version

module shifter (
 output [15:0] data,
 input [31:0] acc,
 input [1:0] shft_lshft,
 input ld_shft, en_shft, clk,
rst_n);
 // RTL code for the shifter
endmodule

 Example 14 - shifter module header - Verilog-2001
version

module tribuf #(parameter SIZE=16)
 (output [SIZE-1:0] data,
 input [SIZE-1:0] acc,
 input en_acc);
 // RTL code for the tristate buffer
endmodule

Example 15 - tribuf module header - Verilog-2001 version

HDLCON 2002 9 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

module calu1 (data, bs_lshft, alu_op, shft_lshft, calu_muxsel,
 en_shft, ld_acc, ld_bs, ld_multop1, ld_multout,
 ld_shft, en_acc, clk, rst_n);
 inout [15:0] data;
 input [4:0] bs_lshft;
 input [2:0] alu_op;
 input [1:0] shft_lshft;
 input calu_muxsel, en_shft, ld_acc, ld_bs;
 input ld_multop1, ld_multout, ld_shft, en_acc;
 input clk, rst_n;
 wire [31:0] acc, alu_in, alu_out, bs, mult, multout;
 wire [15:0] mop1;

 multop1 multop1 (.mop1(mop1), .data(data),
 .ld_multop1(ld_multop1),
 .clk(clk), .rst_n(rst_n));
 multiplier multiplier (.mult(mult), .mop1(mop1),
 .data(data));
 multoutreg multoutreg (.multout(multout),
 .mult(mult),
 .ld_multout(ld_multout),
 .clk(clk), .rst_n(rst_n));
 barrel_shifter barrel_shifter (.bs(bs), .data(data),
 .bs_lshft(bs_lshft),
 .ld_bs(ld_bs),
 .clk(clk), .rst_n(rst_n));
 mux2 mux (.y(alu_in),
 .i0(multout),
 .i1(acc),
 .sel1(calu_muxsel));
 alu alu (.alu_out(alu_out),
 .zero(), .neg(), .alu_in(alu_in),
 .acc(acc), .alu_op(alu_op));
 accumulator accumulator (.acc(acc), .alu_out(alu_out),
 .ld_acc(ld_acc), .clk(clk),
 .rst_n(rst_n));
 shifter shifter (.data(data), .acc(acc),
 .shft_lshft(shft_lshft),
 .ld_shft(ld_shft),
 .en_shft(en_shft),
 .clk(clk), .rst_n(rst_n));
 tribuf tribuf (.data(data), .acc(acc[15:0]),
 .en_acc(en_acc));
endmodule

Example 16 - Verilog-2001 calu1 module with all sub-modules instantiated using named port connections

When these modules are instantiated into a Verilog-
1995-style or Verilog-2001-style CALU module with
named port connections, the correct CALU module code
is shown in Example 16.

Although using named port connections is the
recommended way to instantiate sub-blocks into an
upper-level module, inspection of the code in Example

16 shows that most of the connections have matching
port and connecting-net names.

As shown in this example, named port connections
can be both tedious to create and verbose.

HDLCON 2002 10 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

module calu2 (data, bs_lshft, alu_op, shft_lshft, calu_muxsel,
 en_shft, ld_acc, ld_bs, ld_multop1, ld_multout,
 ld_shft, en_acc, clk, rst_n);
 inout [15:0] data;
 input [4:0] bs_lshft;
 input [2:0] alu_op;
 input [1:0] shft_lshft;
 input calu_muxsel, en_shft, ld_acc, ld_bs;
 input ld_multop1, ld_multout, ld_shft, en_acc;
 input clk, rst_n;
 wire [31:0] acc, alu_in, alu_out, bs, mult, multout;
 wire [15:0] mop1;

 multop1 multop1 (.mop1, .data, .ld_multop1,
 .clk, .rst_n);
 multiplier multiplier (.mult, .mop1, .data);
 multoutreg multoutreg (.multout, .mult, .ld_multout,
 .clk, .rst_n);
 barrel_shifter barrel_shifter (.bs, .data, .bs_lshft, .ld_bs,
 .clk, .rst_n);
 mux2 mux (.y(alu_in),
 .i0(multout),
 .i1(acc),
 .sel1(calu_muxsel));
 alu alu (.alu_out, .zero(), .neg(), .alu_in,
 .acc, .alu_op);
 accumulator accumulator (.acc, .alu_out, .ld_acc, .clk,
 .rst_n);
 shifter shifter (.data, .acc, .shft_lshft,
 .ld_shft, .en_shft, .clk, .rst_n);
 tribuf tribuf (.data, .acc(acc[15:0]), .en_acc);
endmodule

Example 17 - Verilog-2001 calu2 module with all sub-modules instantiated using implicit .name port connections

When these modules are instantiated into a
SystemVerilog-style CALU module with .name

implicit port connections, the correct CALU module
code is shown in Example 17.

In the example code for the calu2 module, note that
all of the busses and nets that are connected to the ports
of both the multop1 and multiplier modules have
names and sizes that match the port names and sizes on
the instantiated modules. There is a 16-bit bus named
mop1 that is driven by the multop1 register into the
multiplier module. Since this bus is not a declared
port on the calu2 module, it must be explicitly declared
in the calu2 module in order to take advantage of the
.name implicit port connection capability. Similarly, the
32-bit mult bus, driven by the multiplier module is also
an internal bus and must be explicitly declared in the
calu2 module. All of the other ports that are connected
to the multop1 register and the multiplier instance
are connected to busses and nets that are explicitly
declared as ports on the calu2 module and therefore
they do not require separate explicit net declarations.

In the Example 17 code for the calu2 module, note
that a generic 32-bit-wide, 2-to-1 mux has been

instantiated. Since none of the ports on this sub-block
match the net or bus names of the calu2 module, all of
the ports must either be connected by name or by
position (in this example, they are connected by name).

In the example code for the calu2 module, note that
the alu has two unused outputs, zero and neg. The
unused ports may be listed with empty connections as
shown, or omitted from the instantiation port list when
using the implicit .name port connection enhancement.

In the example code for the calu2 module, note that
the tribuf module has a 16-bit input port named acc
but it is connected to a 32-bit bus also named acc. Since
the port and bus sizes do not match, a named connection
is required to show which bits of the 32-bit acc bus are
connected to the 16-bit acc port. SystemVerilog does
not assume that the low-order bits of a same-named port
and bus are connected. That information must be
provided in the named port connection.

For all of the other sub-blocks in the example code
for the calu2 module, any instance port that is
connected to a calu2 module port requires no
additional explicit net declaration, while all of the

HDLCON 2002 11 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

instance ports of sub-blocks that are connected to calu2
internal busses require explicit net declarations within
the calu2 module.

It can be seen from this example that the implicit
.name port connects save a significant amount of typing.

module calu3 (
 inout [15:0] data,
 input [4:0] bs_lshft,
 input [2:0] alu_op,
 input [1:0] shft_lshft,
 input calu_muxsel, en_shft, ld_acc, ld_bs,
 input ld_multop1, ld_multout, ld_shft, en_acc,
 input clk, rst_n);

 wire [31:0] acc, alu_in, alu_out, bs, mult, multout;
 wire [15:0] mop1;

 multop1 multop1 (.*);
 multiplier multiplier (.*);
 multoutreg multoutreg (.*);
 barrel_shifter barrel_shifter (.*);
 mux2 mux (.y(alu_in), .i0(multout),
 .i1(acc), .sel1(calu_muxsel));
 alu alu (.*, .zero(), .neg());
 accumulator accumulator (.*);
 shifter shifter (.*);
 tribuf tribuf (.*, .acc(acc[15:0]));
endmodule

Example 18 - SystemVerilog calu3 module with sub-modules instantiated using implicit .* port connections

When these modules are instantiated into a
SystemVerilog-style CALU module with .* implicit port
connections, the correct CALU module code is shown in
Example 18.

In the example code for the calu3 module, note that
all of the busses and nets that are connected to the ports of
both the multop1 and multiplier modules have names
and sizes that match the port names and sizes on the
instantiated modules. There is a 16-bit bus named mop1
that is driven by the multop1 register into the
multiplier module. Since this bus is not a declared port
on the calu3 module, it must be explicitly declared in the
calu3 module in order to take advantage of the .name
implicit port connection capability. Similarly, the 32-bit
mult bus, driven by the multiplier module is also an
internal bus and must be explicitly declared in the calu3
module. All of the other ports that are connected to the
multop1 register and the multiplier instance are
connected to busses and nets that are explicitly declared
as ports on the calu3 module and therefore they do not
require separate explicit net declarations.

In the Example 18 code for the calu3 module, note
that a generic 32-bit-wide, 2-to-1 mux has been
instantiated. Since none of the ports on this sub-block
match the net or bus names of the calu3 module, all of

the ports must either be connected by name or by position
(in this example, they are connected by name).

In the example code for the calu3 module, note that
the alu has two unused outputs, zero and neg. The
unused ports must be listed with empty connections when
using the implicit port connection token (.*) to make the
rest of the connections.

In the example code for the calu3 module, note that
the tribuf module has a 16-bit input port named acc
but it is connected to a 32-bit bus also named acc. Since
the port and bus sizes do not match, a named connection
is required to show which bits of the 32-bit acc bus are
connected to the 16-bit acc port. SystemVerilog does not
assume that the low-order bits of a same-named port and
bus are connected. That information must be provided in
the named port connection.

For all of the other sub-blocks in the example code for
the calu3 module, any instance port that is connected to
a calu3 module port requires no additional explicit net
declaration, while all of the instance ports of sub-blocks
that are connected to calu3 internal busses require
explicit net declarations within the calu3 module.

HDLCON 2002 12 SystemVerilog Ports & Data Types For Simple,
Rev 1.1 Efficient and Enhanced HDL Modeling

6. SystemVerilog: interface port types

Pending approval, SystemVerilog will add an
enhanced and powerful method to declare reusable
complex module port bundles called an “interface.”

An interface is declared between the keywords
interface/endinterface and is typically declared
outside of module boundaries.

6.1. Interface ports for IP development

Pending approval of SystemVerilog interface ports,
one of the primary benefactors of this capability will be
intellectual property (IP) developers.

Verilog-2001 IP is frequently developed as an RTL
block that is provided for instantiation into a customer
design.

Similarly, SystemVerilog IP will also be an RTL
model that is provided to a customer through an
interface block. The advantage of the interface
block is that the IP provider will code how to connect the
IP into an interface that can simply be instantiated into
a customer module.

Because both sides of the IP connection can now be
specified and coded by the IP developer, the customer can
more easily instantiate the IP block and the developer can
insure that the interface between the commercial IP
and the customer module is correctly specified.

Using modports, an IP developer can even indicate
the direction of the customer ports, giving further
guidance to the customer on how to connect to the IP
design.

7. SystemVerilog Proposals

The SystemVerilog Standard is currently scheduled for
first release around June of 2002, and input, support or
requests for removal of the enhancements outlined in this
paper will still be considered.

8. Summary and conclusions

Verilog-2001 offers significant simplification over
Verilog-1995 when declaring module ports, directions ad
data types.

Although the new compiler directive option
`default_nettype none forces declaration checking
that may help find typos in the body of the Verilog code,
the added declarations themselves can be tedious to code,
add verbosity to a design and be the source of additional
unnecessary typos. The author believes the none option
should be avoided.

SystemVerilog will offer greater abstraction and
design brevity through the use of implicit port
connections and interfaces.

The following is a summary of the guidelines that
were given in this paper:

Guideline: do not add `default_nettype none to
a working Verilog design.

Guideline: do not use `default_nettype none,
ever!

Guideline: when instantiating a module from another
design team member, from a third party or vendor, or if
you do not have direct control over the module being
instantiated, do not use positional port connections.

Guideline: in general, use named port connections
when instantiating modules into a design.

Guideline: show all unconnected module ports using
empty named connections.

References

[1] IEEE Standard Hardware Description Language Based on
the Verilog Hardware Description Language, IEEE
Computer Society, IEEE, New York, NY, IEEE Std 1364-
1995

[2] IEEE Standard Verilog Hardware Description Language,
IEEE Computer Society, IEEE, New York, NY, IEEE Std
1364-2001,

[3] Adam Krolnik, personal communication.

[4] First-Generation TMS320 User’s Guide, Texas
Instruments, 1989, pg. 3-17.

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is
an independent EDA consultant and trainer with 20 years
of ASIC, FPGA and system design experience and ten
years of Verilog, synthesis and methodology training
experience.

Mr. Cummings, a member of the IEEE 1364 Verilog
Standards Group (VSG) since 1994, chaired the VSG
Behavioral Task Force, which was charged with
proposing enhancements to the Verilog language. Mr.
Cummings is also a member of the IEEE Verilog
Synthesis Interoperability Working Group and the
Accellera SystemVerilog Standardization Group

Mr. Cummings holds a BSEE from Brigham Young
University and an MSEE from Oregon State University.

E-mail Address: cliffc@sunburst-design.com

This paper can be downloaded from the web site:
www.sunburst-design.com/papers

(Data accurate as of April 18th, 2002)

