
"full_case parallel_case", the Evil Twins of Verilog
Synthesis

Clifford E. Cummings

Sunburst Design, Inc.

ABSTRACT

Two of the most over used and abused directives included in Verilog models are the directives
"//synopsys full_case parallel_case". The popular myth that exists surrounding "full_case
parallel_case" is that these Verilog directives always make designs smaller, faster and latch-free.
This is false! Indeed, the "full_case parallel_case" switches frequently make designs larger and
slower and can obscure the fact that latches have been inferred . These switches can also change
the functionality of a design causing a mismatch between pre-synthesis and post-synthesis
simulation, which if not discovered during gate-level simulations will cause an ASIC to be taped
out with design problems.

This paper details the effects of the "full_case parallel_case" directives and includes examples of
flawed and inefficient logic that is inferred using these switches. This paper also gives guidelines
on the correct usage of these directives.

SNUG-1999
Boston, MA

Voted Best Paper
1st Place

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

2

1.0 Introduction

The "full_case parallel_case" commands are two of the most abused synthesis directives
employed by Verilog synthesis design engineers. The reasons cited most often to the author for
using "full_case parallel_case" are:

• "full_case parallel_case" makes my designs smaller and faster.
• "full_case" removes latches from my designs.
• "parallel_case" removes large, slow priority encoders from my designs.

The above reasons are either inaccurate or dangerous. Sometimes these directives don't affect a
design at all, sometimes these switches make a design larger and slower, sometimes these
directives change the functionality of a design, and these directives are always most dangerous
when they work!

This paper will define "full" and "parallel" case statements, detail case statement usage and show
the effects that the "full_case parallel_case" directives have on synthesized code. An alternate
title for this paper could be: "How to add $200,000 to the cost and 3-6 months to the schedule of
your ASIC design without trying!"

2.0 Case statement definitions

To fully understand how the "full_case parallel_case" directives work, a common set of terms is
needed to describe the different parts of a case statement. This section defines a common set of
terms that will be used to describe case statement functionality throughout the rest of the paper.

2.1 Case statement

In Verilog, a case statement includes all of the code between the Verilog keywords, "case"
("casez", "casex") and "endcase" [1].

A case statement is a select-one-of-many construct that is roughly equivalent to an if-else-if
statement. The general case statement in Figure 1 is equivalent to the general if-else-if statement
shown in Figure 2.

case (case_expression)
 case_item1 : case_item_statement1;
 case_item2 : case_item_statement2;
 case_item3 : case_item_statement3;
 case_item4 : case_item_statement4;
 default : case_item_statement5;
endcase

Figure 1 - Case Statement - General Form

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

3

if (case_expression === case_item1) case_item_statement1;
else if (case_expression === case_item2) case_item_statement2;
else if (case_expression === case_item3) case_item_statement3;
else if (case_expression === case_item4) case_item_statement4;
else case_item_statement5;

Figure 2 - If-else-if Statement - General Form

2.2 Case statement header

A case statement header consists of the "case" ("casez", "casex") keyword followed by the case
expression, usually all on one line of code.

When adding "full_case" or "parallel_case" directives to a case statement, the directives are
added as a comment immediately following the case expression at the end of the case statement
header and before any of the case items on subsequent lines of code.

2.3 Case expression

A Verilog case expression is the expression enclosed between parentheses immediately following
the "case" keyword. In Verilog, a case expression can either be a constant, such as "1'b1" (one bit
of '1', or "true"), it can be an expression that evaluates to a constant value, or most often it is a bit
or vector of bits that are used to compare against case items.

2.4 Case item

The case item is the bit, vector or Verilog expression that is used to compare against the case
expression.

Unlike other high-level programming languages such as 'C', the Verilog case statement includes
implied break statements. The first case item that matches the current case expression causes the
corresponding case item statement to be executed and then all of the rest of the case items are
skipped (ignored) for the current pass through the case statement.

2.5 Case item statement

A case item statement is one or more Verilog statements that are executed if the case item
matches the current case expression.

Unlike VHDL, Verilog case items can themselves be expressions. To simplify parsing of Verilog
source code, Verilog case item statements must be enclosed between the keywords "begin" and
"end" if more than one statement is to be executed for a selected case item. This is one of the few
places were Verilog syntax requirements are considered by VHDL-literate engineers to be too
verbose.

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

4

2.6 Case default

An optional case "default" can be included in the case statement to indicate what actions to
perform if none of the defined case items matches the current case expression. It is good coding
style to place the case default last, even though the Verilog standard does not require it.

2.7 Casez

In Verilog there is a casez statement, a variation of the case statement that permits "z" and "?"
values to be treated during case-comparison as "don't care" values. "Z" and "?" are treated as a
don't care if they are in the case expression and/or if they are in the case item.

More information on the precautions that should be taken when using casez for RTL modeling
and synthesis are detailed by Mills [2].

Guideline: Exercise caution when coding synthesizable models using the Verilog casez statement
[2].

Coding Style Guideline: When coding a case statement with "don't cares," use a casez statement
and use "?" characters instead of "z" characters in the case items to indicate "don't care" bits.

2.8 Casex

In Verilog there is a casex statement, a variation of the case statement that permits "z", "?" and
"x" values to be treated during comparison as "don't care" values. "x", "z" and "?" are treated as a
don't care if they are in the case expression and/or if they are in the case item.

More information on the dangers of using casex for RTL modeling and synthesis are detailed by
Mills [2]

Guideline: Do not use casex for synthesizable code [2].

3.0 What is a "full" case statement?

A "full" case statement is a case statement in which all possible case-expression binary patterns
can be matched to a case item or to a case default. If a case statement does not include a case
default and if it is possible to find a binary case expression that does not match any of the defined
case items, the case statement is not "full."

3.1 Synopsys case statement reports - "full_case"

For each case statement that is read by Synopsys tools, a case statement report is generated that
indicates one of the following conditions with respect to the "full" nature of a each case
statement:

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

5

• Full / auto (Figure 3) - Synopsys tools have determined that the case statement as coded is
"full."

Statistics for case statements in always block at line ...
===
| Line | full/ parallel |
===
| X | auto/auto |
===

Figure 3 - full / auto - Case statement is "full"

• Full / no (Figure 4) - The case statement was not recognized to be "full" by Synopsys.

Statistics for case statements in always block at line ...
===
| Line | full/ parallel |
===
| X | no/auto |
===

Figure 4 - full / no - Case statement not "full"

• Full / user (Figure 5) - A Synopsys "full_case" directive was added to the case statement
header by the user.

Statistics for case statements in always block at line ...
===
| Line | full/ parallel |
===
| X | user/auto |
===

Figure 5 - full / user - "// synopsys full_case" added to the case header

3.2 HDL "full" case statement

From an HDL simulation perspective, a "full" case statement is a case statement in which every
possible binary, non-binary and mixture of binary and non-binary patterns is included as a case
item in the case statement. Verilog non-binary values are, and VHDL non-binary values include,
"z" and "x" and are called metalogical characters by both the IEEE Draft Standard For VHDL
RTL Synthesis [3] and the IEEE Draft Standard For Verilog RTL Synthesis [4].

3.3 Synthesis "full" case statement

From a synthesis tool perspective, a "full" case statement is a case statement in which every
possible binary pattern is included as a case item in the case statement.

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

6

Verilog does not require case statements to be either synthesis or HDL simulation "full," but
Verilog case statements can be made full by adding a case default. VHDL requires case
statements to be HDL simulation "full," which generally requires an "others" clause.

Example 1 shows a case statement, with case default, for a 3-to-1 multiplexer. The case default
causes the case statement to be "full." During Verilog simulation, when binary pattern 2'b11 is
driven onto the select lines, the y-output will be driven to an unknown, but the synthesis will treat
the y-output as a "don't care" for the same select-line combination, causing a mismatch to occur
between simulation and synthesis. To insure that the pre-synthesis and post-synthesis simulations
match, the case default could assign the y-output to either a predetermined constant value, or to
one of the other multiplexer input values.

module mux3c (y, a, b, c, sel);
 output y;
 input [1:0] sel;
 input a, b, c;
 reg y;

 always @(a or b or c or sel)
case (sel)
 2'b00: y = a;
 2'b01: y = b;
 2'b10: y = c;
 default: y = 1'bx;
endcase

endmodule

Example 1 - A case default, "full" case statement

Statistics for case statements in always block at line 7 in file
 '.../mux3c.v'
===
| Line | full/ parallel |
===
| 9 | auto/auto |
===

Figure 6 - Case statement report for a case statement with a case default

3.4 Non-"full" case statements

Example 2 shows a case statement for a 3-to-1 multiplexer that is not "full." The case statement
does not define what happens to the y-output when binary pattern 2'b11 is driven onto the select
lines. In this example, the Verilog simulation will hold the last assigned y-output value and
synthesis will infer a latch on the y-output as shown in the latch inference report of Figure 7.

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

7

module mux3a (y, a, b, c, sel);
 output y;
 input [1:0] sel;
 input a, b, c;
 reg y;

 always @(a or b or c or sel)
case (sel)
 2'b00: y = a;
 2'b01: y = b;
 2'b10: y = c;
endcase

endmodule

Example 2 - Non-full case statement

Statistics for case statements in always block at line 7 in file
 '.../mux3a.v'
===
| Line | full/ parallel |
===
| 9 | no/auto |
===

Inferred memory devices in process
in routine mux3a line 7 in file

 '.../mux3a.v'.
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| y_reg | Latch | 1 | - | - | N | N | - | - | - |
===

Figure 7 - Latch inference report for non-full case statement

3.5 Synopsys "full_case"

Synopsys tools recognize two directives when added to the end of a Verilog case header. The
directives are "// synopsys full_case parallel_case." The directives can either be used together or
an engineer can elect to use only one of the directives for a particular case statement. The
Synopsys "parallel_case" directive is described in section 4.4.

When "// synopsys full_case" is added to a case statement header, there is no change in the
Verilog simulation for the case statement, since "// synopsys ..." is interpreted to be nothing more
than a Verilog comment; however, Synopsys parses all Verilog comments that start with "//
synopsys ..." and interprets the "full_case" directive to mean that if a case statement is not "full"
that the outputs are "don't care's" for all unspecified case items. If the case statement includes a
case default, the "full_case" directive will be ignored.

Example 3 shows a case statement for a 3-to-1 multiplexer that is not "full" but the case header
includes a "full_case" directive. During Verilog simulation, when binary pattern 2'b11 is driven
onto the select lines, the y-output will behave as if it were latched, the same as in Example 2, but
the synthesis will treat the y-output as a "don't care" for the same select-line combination,
causing a functional mismatch to occur between simulation and synthesis.

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

8

module mux3b (y, a, b, c, sel);
 output y;
 input [1:0] sel;
 input a, b, c;
 reg y;

 always @(a or b or c or sel)
case (sel) // synopsys full_case
 2'b00: y = a;
 2'b01: y = b;
 2'b10: y = c;
endcase

endmodule

Example 3 - Non-full case statement with "full_case" directive

Warning: You are using the full_case directive with a case statement in which not all cases
are covered.

Statistics for case statements in always block at line 7 in file
 '.../mux3b.v'
===
| Line | full/ parallel |
===
| 9 | user/auto |
===

Figure 8 - Case statement report for a non-full case statement with "full_case" directive

4.0 What is a "parallel" case statement?

A "parallel" case statement is a case statement in which it is only possible to match a case
expression to one and only one case item. If it is possible to find a case expression that would
match more than one case item, the matching case items are called "overlapping" case items and
the case statement is not "parallel."

4.1 Synopsys case statement reports - "parallel_case"

For each case statement that is read by Synopsys tools, a case statement report is generated that
indicates one of the following conditions with respect to the "parallel" nature of each case
statement:

• Parallel / no (Figure 9) - The case statement was not recognized to be "parallel" by Synopsys.

Statistics for case statements in always block at line ...
===
| Line | full/ parallel |
===
| X | auto/no |
===

Figure 9 - parallel / no - Case statement not "parallel"

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

9

• Parallel / auto (Figure 10) - Synopsys tools have determined that the case statement as coded
is "parallel."

Statistics for case statements in always block at line ...
===
| Line | full/ parallel |
===
| X | auto/auto |
===

Figure 10 - parallel / auto - Case statement is "parallel"

• Parallel / user (Figure 11) - A Synopsys "parallel_case" directive was added to the case
statement header by the user.

Statistics for case statements in always block at line ...
===
| Line | full/ parallel |
===
| X | auto/user |
===

Figure 11 - parallel / user - "// synopsys parallel_case" added to the case header

4.2 Non-parallel case statements

Example 4 shows a casez statement that is not parallel because if the 3-bit irq bus is 3'b011,
3'b101, 3'b110 or 3'b111, more than one case item could potentially match the irq value. This
will simulate like a priority encoder where irq[2] has priority over irq[1], which has priority over
irq[0]. This example will also infer a priority encoder when synthesized.

module intctl1a (int2, int1, int0, irq);
 output int2, int1, int0;
 input [2:0] irq;
 reg int2, int1, int0;

 always @(irq) begin
 {int2, int1, int0} = 3'b0;
 casez (irq)
 3'b1??: int2 = 1'b1;
 3'b?1?: int1 = 1'b1;
 3'b??1: int0 = 1'b1;
 endcase
 end
endmodule

Example 4 - Non-parallel case statement

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

10

Statistics for case statements in always block at line 6 in file
 '.../intctl1a.v'
===
| Line | full/ parallel |
===
| 9 | no/no |
===

Figure 12 - Case statement report for Example 4

4.3 Parallel case statements

Example 5 is a modified version of Example 4 such that each of the case items is now unique and
therefore parallel. Even though the case items are parallel, this example happens to infer priority
encoder logic when synthesized.

module intctl2a (int2, int1, int0, irq);
 output int2, int1, int0;
 input [2:0] irq;
 reg int2, int1, int0;

 always @(irq) begin
 {int2, int1, int0} = 3'b0;
 casez (irq)
 3'b1??: int2 = 1'b1;
 3'b01?: int1 = 1'b1;
 3'b001: int0 = 1'b1;
 endcase
 end
endmodule

Example 5 - Parallel case statement

Statistics for case statements in always block at line 6 in file
 '.../intctl2a.v'
===
| Line | full/ parallel |
===
| 9 | no/auto |
===

Figure 13 - Case statement report for Example 5

4.4 Synopsys "parallel_case"

Example 6 is the same as Example 4 except that a Synopsys "parallel_case" directive has been
added to the case header. This example will simulate like a priority encoder but will infer non-
priority encoder logic when synthesized.

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

11

module intctl1b (int2, int1, int0, irq);
 output int2, int1, int0;
 input [2:0] irq;
 reg int2, int1, int0;

 always @(irq) begin
 {int2, int1, int0} = 3'b0;
 casez (irq) // synopsys parallel_case
 3'b1??: int2 = 1'b1;
 3'b?1?: int1 = 1'b1;
 3'b??1: int0 = 1'b1;
 endcase
 end
endmodule

Example 6 - Non-parallel case statement with "parallel_case" directive

Warning: You are using the parallel_case directive with a case statement in
which some case-items may overlap

Statistics for case statements in always block at line 6 in file
 '.../intctl1b.v'
===
| Line | full/ parallel |
===
| 9 | no/user |
===

Figure 14 - Case statement report for Example 6

In Example 6, the "parallel_case" directive has "worked" and now the synthesized logic does not
match the Verilog functional model.

4.5 A "parallel" case statement with "parallel_case" directive

The casez statement in Example 7 is parallel! If a "parallel_case" directive is added to the casez
statement, it will make no difference. The design will synthesize the same as without the
"parallel_case" directive.

The point is, the "parallel_case" directive is always most dangerous when it works! When it does
not work, it is just extra characters at the end of the case header.

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

12

module intctl2b (int2, int1, int0, irq);
 output int2, int1, int0;
 input [2:0] irq;
 reg int2, int1, int0;

 always @(irq) begin
 {int2, int1, int0} = 3'b0;
 casez (irq) // synopsys parallel_case
 3'b1??: int2 = 1'b1;
 3'b01?: int1 = 1'b1;
 3'b001: int0 = 1'b1;
 endcase
 end
endmodule

Example 7 - Parallel case statement with "parallel_case" directive

4.6 Verilog & VHDL case statements

VHDL case statements are required to have no overlap in of any case items, are therefore
"parallel" and cannot infer priority encoders. VHDL case items are constants that are used to
compare against the VHDL case expression. For this reason, it is also easy to parse multiple
VHDL case item statements without the need to include "begin" and "end" keywords for case
item statements.

Verilog case statements are permitted to have overlapping case items. Verilog case items can be
separate and distinct Boolean expressions where one or more of the expressions can evaluate to
"true" or "false." In those instances where more than one case item can match a "true" or "false"
case expression, the first matching case item has priority over subsequent matching case items;
therefore, the corresponding priority logic will be inferred by synthesis tools.

Verilog casez and casex statements can also include case items with constant vector expressions
that include "don't-cares" that would permit a case expression to match multiple case_items in
the casez or casex statements, also inferring a priority encoder.

If all goes well, "full_case parallel_case" will do nothing to your design, and it will work fine.
The problem happens when "full_case parallel_case" DO work to change the functionality of
your design or increase the size and area of your design.

There is one other style of Verilog case statement that frequently infers a priority encoder. The
style is frequently referred to as the "case if true" or "reverse case" statement coding style.

This case statement style evaluates expressions for each case item and then tests to see of they are
"true" (equal to 1'b1). This coding style is used to infer very efficient one-hot finite state
machines, but is otherwise a somewhat dangerous coding practice.

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

13

4.7 Coding priority encoders

Non-parallel case statements infer priority encoders. It is a poor coding practice to code priority
encoders using case statements. It is better to code priority encoders using if-else-if statements.

Guideline: Code all intentional priority encoders using if-else-if statements. It is easier for a
typical design engineer to recognize a priority encoder when it is coded as an if-else-if statement.

Guideline: Case statements can be used to create tabular coded parallel logic. Coding with case
statements is recommended when a truth-table-like structure makes the Verilog code more
concise and readable.

Guideline: Examine all synthesis tool case-statement reports [5].

Guideline: Change the case statement code, as outlined in the above coding guidelines, whenever
the synthesis tool reports that the case statement is not parallel (whenever the synthesis tool
reports "no" for "parallel_case") [5].

Although good priority encoders can be inferred from case statements, following the above
coding guidelines will help to prevent mistakes and mismatches between pre-synthesis and post-
synthesis simulations.

5.0 Synthesis coding styles

Sunburst Design Assumption: it is generally a bad coding practice to give the synthesis tool
different information about the functionality of a design than is given to the simulator.

Whenever either "full_case" or "parallel_case" directives are added to the Verilog source code,
more information is potentially being given about the design to the synthesis tool than is being
given to the simulator.

Guideline: In general, do not use "full_case parallel_case" directives with any Verilog case
statements.

Guideline: There are exceptions to the above guideline but you better know what you're doing if
you plan to add "full_case parallel_case" directives to your Verilog code.

Guideline: Educate (or fire) any employee or consultant that routinely adds "full_case
parallel_case" to all case statements in their Verilog code, especially if the project involves the
design of medical diagnostic equipment, medical implants, or detonation logic for thermonuclear
devices!

Guideline: only use full_case parallel_case to optimize onehot FSM designs.

Other exceptions might exist and will be acknowledged by the author as they are discovered.

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

14

6.0 Latch example using "full_case"

Myth: "// synopsys full_case" removes all latches that would otherwise be inferred from a case
statement.

Truth: The "full_case" directive only removes latches from a case statement for missing case
items. One of the most common ways to infer a latch is to make assignments to multiple outputs
from a single case statement but neglect to assign all outputs for each case item. Even adding the
"full_case" directive to this type of case statement will not eliminate latches [6].

Example 8 shows Verilog code for a simple address decoder that will infer a latch for the mce0_n
mce1_n and rce_n outputs, despite the fact that the "full_case" directive was used with the case
statement. In this example, the case statement is "full" but not all outputs are assigned for each
case item; therefore, latches were inferred for all three outputs. The easiest way to eliminate
latches is to make initial default value assignments to all outputs immediately beneath the
sensitivity list, before executing the case statement, as shown in Example 9.

module addrDecode1a (mce0_n, mce1_n, rce_n, addr);
 output mce0_n, mce1_n, rce_n;
 input [31:30] addr;
 reg mce0_n, mce1_n, rce_n;

 always @(addr)
 casez (addr) // synopsys full_case
 2'b10: {mce1_n, mce0_n} = 2'b10;
 2'b11: {mce1_n, mce0_n} = 2'b01;
 2'b0?: rce_n = 1'b0;
 endcase
endmodule

Example 8 - "full_case" directive with latched outputs

Statistics for case statements in always block at line 6 in file
 ...'addrDecode1a.v'
===
| Line | full/ parallel |
===
| 8 | user/auto |
===

Inferred memory devices in process
in routine addrDecode1a line 6 in file

 ...'addrDecode1a.v'.
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
mce0_n_reg	Latch	1	-	-	N	N	-	-	-
mce1_n_reg	Latch	1	-	-	N	N	-	-	-
rce_n_reg	Latch	1	-	-	N	N	-	-	-
===

Figure 15 - Case statement report and latch report for "full_case" latched example

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

15

module addrDecode1d (mce0_n, mce1_n, rce_n, addr);
 output mce0_n, mce1_n, rce_n;
 input [31:30] addr;
 reg mce0_n, mce1_n, rce_n;

 always @(addr) begin
 {mce1_n, mce0_n, rce_n} = 3'b111;
 casez (addr)
 2'b10: {mce1_n, mce0_n} = 2'b10;
 2'b11: {mce1_n, mce0_n} = 2'b01;
 2'b0?: rce_n = 1'b0;
 endcase
 end
endmodule

Example 9 - Initial default value assignments to remove latches

Statistics for case statements in always block at line 6 in file
 ...'addrDecode1d.v'
===
| Line | full/ parallel |
===
| 9 | auto/auto |
===

Figure 16 - Case statement report for Example 9

7.0 Synopsys warnings

When Verilog files are read by design_analyzer or dc_shell, Synopsys issues warnings when the
"full_case" directive is used with a case statement that was not "full" (see Synopsys "full_case"
description in section 3.5).

Example 10 shows a non-full case statement with "full_case" directive. Figure 17 shows the
warning that is reported when the "full_case" directive is used with a non-full case statement.

module fcasewarn1b (y, d, en);
 output y;
 input d, en;
 reg y;

 always @(d or en)
 case (en) // synopsys full_case
 1'b1: y = d;
 endcase
endmodule

Example 10 - Non-full case statement with "full_case" directive

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

16

"Warning: You are using the full_case directive with a case statement in which not all
cases are covered."

Statistics for case statements in always block
 at line 6 in file ..."/fcasewarn1b.v"
===
| Line | full/ parallel |
===
| 8 | user/auto |
===

Figure 17 - Synopsys "full_case" warning

The warning in Figure 17 is really saying, "watch out! the full_case directive might work and
cause your design to break!!" Unfortunately this warning is easy to miss when running a
synthesis script and the design might be adversely affected by the "full_case" directive.

Similarly, when Verilog files are read by design_analyzer or dc_shell, Synopsys issues warnings
when the "parallel_case" directive is used with a case statement that was not "parallel." (see
Synopsys "parallel_case" description in section 4.4).

Example 11 shows a non-parallel case statement with "parallel_case" directive. Figure 18 shows
the warning that is reported when the "parallel_case" directive is used with a non-parallel case
statement.

module pcasewarn1b (y, z, a, b, c, d);
 output y, z;
 input a, b, c, d;
 reg y, z;

 always @(a or b or c or d) begin
 {y,z} = 2'b00;
 casez ({a,b,c,d}) // synopsys parallel_case
 4'b11??: y = 1'b1;
 4'b??11: z = 1'b1;
 endcase
 end
endmodule

Example 11 - Non-parallel case statement with "parallel_case" directive

"Warning: You are using the parallel_case directive with a case statement in which some
case-items may overlap."

Statistics for case statements in always block
 at line 6 in file ..."/pcasewarn1b.v"
===
| Line | full/ parallel |
===
| 9 | no/user |
===

Figure 18 - Synopsys "parallel_case" warning

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

17

The warning in Figure 18 is really saying, "watch out! the parallel_case directive might work
and cause your design to break!!" Unfortunately this warning, like the "full_case" warning, is
also easy to miss when running a synthesis script and the design might be adversely affected by
the "parallel_case" directive.

8.0 Actual "full_case" design problem

The 2-to-4 decoder with enable in Example 12, uses a case statement that is coded without using
any synthesis directives. The resultant design was a decoder built from 3-input and gates and
inverters. No latch is inferred because all outputs are given a default assignment before the case
statement. For this example, the pre-synthesis and post-synthesis designs and simulations
matched. The 2-to-4 decoder with enable in Example 13, uses a case statement with the
"full_case" synthesis directive. Because of this synthesis directive, the enable input (en) was
optimized away during synthesis and left as a dangling input. The pre-synthesis simulation
results of modules code4a and code4b matched the post-synthesis simulation results of module
code4a, but did not match the post-synthesis simulation results of module code4b [2].

// no full_case
// Decoder built from four 3-input and gates
// and two inverters
module code4a (y, a, en);
 output [3:0] y;
 input [1:0] a;
 input en;
 reg [3:0] y;

 always @(a or en) begin
 y = 4'h0;
 case ({en,a})
 3'b1_00: y[a] = 1'b1;
 3'b1_01: y[a] = 1'b1;
 3'b1_10: y[a] = 1'b1;
 3'b1_11: y[a] = 1'b1;
 endcase
 end
endmodule

Example 12 - Decoder example with no "full_case" directive

Statistics for case statements in always block at line 9 in file
 '.../code4a.v'
===
| Line | full/ parallel |
===
| 12 | no/auto |
===

Figure 19 - Case statement report for Example 12

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

18

// full_case example
// Decoder built from four 2-input nor gates
// and two inverters
// The enable input is dangling (has been optimized away)
module code4b (y, a, en);
 output [3:0] y;
 input [1:0] a;
 input en;
 reg [3:0] y;

 always @(a or en) begin
 y = 4'h0;
 case ({en,a}) // synopsys full_case
 3'b1_00: y[a] = 1'b1;
 3'b1_01: y[a] = 1'b1;
 3'b1_10: y[a] = 1'b1;
 3'b1_11: y[a] = 1'b1;
 endcase
 end
endmodule

Example 13 - Decoder example with "full_case" directive

Warning: You are using the full_case directive with a case statement in which
not all cases are covered

Statistics for case statements in always block at line 10 in file
 '.../code4b.v'
===
| Line | full/ parallel |
===
| 13 | user/auto |
===

Figure 20 - Case statement report for Example 13

9.0 Actual "parallel_case" design problem

One consultant shared the experience where "parallel_case" was added to the Verilog code for a
large ASIC design to remove stray priority encoders and infer a smaller and faster design. The
Verilog case statement was coded as a priority encoder and all RTL simulations worked
correctly. Unfortunately, the gate-level design without priority encoder did not function correctly
and the gate-level simulations did not catch the problem. This ASIC had to be re-designed,
costing $100,000's of actual dollars, delayed product release, and unknown lost dollars for being
months late to market.

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

19

10.0 Summary of guidelines and conclusions

Summary of guidelines and conclusions

Guideline: Exercise caution when coding synthesizable models using the Verilog casez statement
[2].

Guideline: Do not use casex for synthesizable code [2].

Guideline: In general, do not use "full_case parallel_case" directives with any Verilog case
statements.

Guideline: There are exceptions to the above guideline but you better know what you're doing if
you plan to add "full_case parallel_case" directives to your Verilog code.

Guideline: Code all intentional priority encoders using if-else-if statements. It is easier for a
typical design engineer to recognize a priority encoder when it is coded as an if-else-if statement.

Guideline: Coding with case statements is recommended when a truth-table-like structure makes
the Verilog code more concise and readable.

Guideline: Examine all synthesis tool case-statement reports [5].

Guideline: Change the case statement code, as outlined in the above coding guidelines, whenever
the synthesis tool reports that the case statement is not parallel (whenever the synthesis tool
reports "no" for "parallel_case") [5].

Guideline: only use full_case parallel_case to optimize onehot FSM designs.

Coding Style Guideline: When coding a case statement with "don't cares," use a casez statement
and use "?" characters instead of "z" characters in the case items to indicate "don't care" bits.

Guideline: Educate (or fire) any employee or consultant that routinely adds "full_case
parallel_case" to all case statements in their Verilog code.

Conclusion: "full_case" and "parallel_case" directives are most dangerous when they work! It is
better to code a full and parallel case statement than it is to use directives to make up for poor
coding practices.

SNUG’99 Boston "full_case parallel_case", the Evil Twins
Rev 1.1

20

References

[1] IEEE Standard Hardware Description Language Based on the Verilog Hardware
Description Language, IEEE Computer Society, IEEE Std 1364-1995

[2] Don Mills and Clifford Cummings, "RTL Coding Styles That Yield Simulation and
Synthesis Mismatches," in SNUG 1999 Proceedings.

[3] IEEE P1076.6 Draft Standard For VHDL Register Transfer Level Synthesis, section 5

[4] IEEE P1364.1 Draft Standard For Verilog Register Transfer Level Synthesis, section 4

[5] Steve Golson, personal communication

[6] "HDL Compiler for Verilog Reference Manual," section 9. Synopsys Online
Documentation v1999.05

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 18 years of ASIC, FPGA and system design experience and eight years of Verilog,
synthesis and methodology training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (VSG) since 1994,
currently chairs the VSG Behavioral Task Force, which is charged with proposing enhancements
to the Verilog language. Mr. Cummings is also a member of the IEEE Verilog Synthesis
Interoperability Working Group.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

E-mail Address: cliffc@sunburst-design.com
This paper can be downloaded from the web site: www.sunburst-design.com/papers

(Data accurate as of October 9th, 2000)

