
fsm_perl: A Script to Generate RTL Code for State
Machines and Synopsys Synthesis Scripts

Clifford E. Cummings

Sunburst Design, Inc.

ABSTRACT

Coding a Verilog RTL model of a state machine requires significant effort to generate an
efficient synthesizable implementation. There are a number of different coding styles that can
yield different results with varying degrees of efficiency. Because of the effort required to code a
Verilog state machine, an engineer typically makes a guess as to which coding style will yield a
good implementation and then rarely experiments with other styles after the first model simulates
correctly.

This paper details a new and highly abbreviated language for coding a state machine and then
describes the use of a Perl script called fsm_perl to turn the abbreviated code into a variety of
synthesizable models for synthesis experimentation.

The fsm_perl also generates an accompanying dc_shell script to synthesize and compare the area
and timing of each synthesized implementation.

SNUG 1999 fsm_perl
Rev 1.1

2

1.0 Introduction

Coding a Finite State Machine (FSM) is not a difficult task but does involve a fair amount of
typing. Efficient Verilog coding styles are well known but which FSM state-encoding style will
give the best results is not obvious. The ability to easily generate different Verilog FSM designs
and the accompanying synthesis scripts was the reason fsm_perl was developed. Fsm_perl is a
freely available Perl script designed to make Finite State Machine (FSM) coding,
experimentation and synthesis easy and efficient. Instructions on how to download fsm_perl from
the Sunburst Design web site are included at the end of this paper.

Figure 1 shows the basic fsm_perl design flow. An fsm_perl source file is coded using any text
editor, and then the source file is compiled using the fsm_perl command. Fsm_perl generates two
files, the synthesizable Verilog source code file and a Synopsys synthesis script. The Synopsys
synthesis script can then be run using dc_shell to read and compile the Verilog FSM code,
produce a Verilog gate-level netlist, produce the corresponding SDF timing file and an
area/timing report file.

Figure 1 - fsm_perl Design Flow

module fsm1 (...);
 ...
endmodule

foreach (...) {
 ...

}

Verilog
FSM file

Synopsys
synthesis script

fsm_perl
script

fsm1.v fsm1.scr

fsm_perl <options> fsm1

dc_shell -f fsm1.scr

fsm_perl
source code

IDLE :: ...
BBUSY:: ...
 ...

fsm1

SNUG 1999 fsm_perl
Rev 1.1

3

2.0 Basic fsm_perl Syntax

The fsm_perl syntax was designed to make FSM coding simple, compact and easily interpreted;
indeed, the fsm_perl syntax was intended to be easier to read and maintain than an equivalent
Verilog source file for the same FSM. To this end, the basic fsm_perl syntax largely revolves
around triplets to describe state diagram transition arcs.

In its most basic form, an fsm_perl source code file consists of state names, followed by one or
more triplets consisting of input statements, next state values and Mealy- or Moore-output(s)
assignments. Specifying all three fields is not required for every triplet. Legal triplet
combinations are detailed in section 5.

3.0 State Names and Encodings

Each state in the state machine must appear as a left-side argument to a state-separator operator
(a pair of adjacent colons ::). Only one adjacent colon-pair is permitted for each defined state
and no white space is permitted between the colons.

State name example:
IDLE:: ...
READ:: ...
WAIT:: ...
DONE:: ...

The first state listed will be the reset-state (the state that the state machine will go to on reset).

The state names may be optionally followed by a binary state encoding enclosed within
parentheses between the state name and the state-separator operator.

State name and encoding example:
IDLE (00):: ...
READ (01):: ...
WAIT (11):: ...
DONE (10):: ...

If user-defined state encodings are specified, then all of the states must specify a user-defined
state encoding; otherwise, fsm_perl will report a state encoding error.

4.0 Triplets

Triplets are one or more comma-separated groups consisting of input statements, next state
values and Mealy or Moore outputs assignments. Specifying all three fields is not required for
every triplet. Legal triplet combinations are detailed in section 5. Triplets must appear as a right-
side argument to a state-separator operator (::).

SNUG 1999 fsm_perl
Rev 1.1

4

5.0 Legal Triplet Statements

5.1 (Input)
The input statement is enclosed in parentheses ()'s and is an expression that is used as a Boolean
test. The code between the parentheses must be legal Verilog code since this expression will be
copied directly into the Verilog code generated by fsm_perl. At this time, fsm_perl does no
syntax checking of the Verilog expression between the parentheses; therefore, a Verilog syntax
error placed in the fsm_perl source code will be written to the generated Verilog output file and
will not be detected until the Verilog output file is compiled.

5.2 Next State
The next state statement is not enclosed in either parentheses or curly braces. The next state value
must exactly match one of the state names used in the fsm_perl source code.

5.3 {Outputs}
Output statements are one or more Mealy outputs enclosed in curly braces {}'s or one or more
Moore outputs enclosed in curly braces {}'s.

IDLE :: ...

CFG_WR :: (nIRDY) CFG_WR {reg_we=0},
 (!nIRDY) TURN_AR {reg_we=1},
 {nDEVSEL=0, nTRDY=0};

TURN_AR:: ...

Figure 2 - fsm_perl Triplets

nIRDY
/ reg_we=1

nIRDY
/ reg_we=0

CFG_WR
nDEVSEL = 0

nTRDY = 0

IDLE

TURN_AR

Mealy output

Mealy output

Moore outputs

State Name

Input condition

Input condition

Triplet

(Input) Next { Outputs }

SNUG 1999 fsm_perl
Rev 1.1

5

5.3.1 {Mealy Outputs}
Mealy outputs are enclosed within curly braces {}'s and must follow either an input statement, or
an input statement and a next state statement. Mealy outputs are a function of the present state
and one or more inputs, so if a next state is specified but an input statement is missing, inclusion
of an output statement is illegal and fsm_perl issues a syntax error and halts. An output statement
by itself with no input statement and no next state statement is a legal Moore output since Moore
outputs are not dependent on either inputs or next state transitions.

Only one Mealy output statement is permitted for each state diagram transition-arc triplet.
Multiple Mealy output definitions per transition-arc are coded as comma separated output
assignments enclosed within one set of curly braces.

5.3.2 {Moore Outputs}
Moore outputs are enclosed within curly braces {}'s and are not preceded by either an input
statement or a next state statement. Only one Moore output statement is permitted for each
defined state. An fsm_perl syntax error is reported if more than one Moore output is detected per
state definition.

5.4 Polarities and Bus Assignments
Input expressions are copied directly to the generated Verilog output code and input expressions
are parsed to detect input vectors. A vector range should be included in the first input vector
expression in the fsm_perl source file. Subsequent vector expressions do not require a range
specification. Whenever a range specification is found in the input expression, fsm_perl tests the
range to determine if a new minimum or maximum range value has been specified and updates
the stored identifier range if a new minimum or maximum limit is detected.

Output expressions are parsed to determine both vector ranges (if the output is a non-scalar
output) and default assignment value.

Fsm_perl has a source code directive that permits more control over vector declarations and
default assignments. The directive is called "//fsm default" and is explained in more detail in
section 7.4.

5.5 Comments
Fsm_perl only recognizes the Verilog single-line comment style (//). Everything in the fsm_perl
source file from "//" to the end of the line is considered a comment.

SNUG 1999 fsm_perl
Rev 1.1

6

6.0 Simple Example

Figure 3 shows the state diagram for a simple 4-
state, Moore state machine.

6.1 IDLE State
Figure 4 shows the fsm_perl syntax for the IDLE
state of the state machine.

Since there are two transition arcs leaving the
IDLE state, there will be two triplets to describe
these arcs. The first triplet:

IDLE :: (req) BBUSY,

indicates that if req is true, a transition to the
BBUSY state will occur. The second triplet:

IDLE;

could have been coded as (!req) IDLE; but for
this example, a default next-state transition

fsm_perl syntax

IDLE :: (req) BBUSY,
 IDLE;

BBUSY:: (dly && done) BWAIT,
 (!dly && done) BFREE,
 BBUSY,
 {gnt};

BWAIT:: (!dly) BFREE,
 BWAIT,
 {gnt};

BFREE:: (req) BBUSY,
 IDLE;

Figure 3 - fsm_perl Code with Corresponding State Diagram

!req

req

!dly && done

dly && done

!done

!dly

dly

req

!req

!nrst

BBUSY
gnt=1

BWAIT
gnt=1

BFREE
gnt=0

IDLE
gnt=0

IDLE :: (req) BBUSY,
 IDLE;

req

req

!

!nrst

BBUSY

IDLE
gnt=0

Figure 4 - IDLE State Definition

Reset state is listed first

SNUG 1999 fsm_perl
Rev 1.1

7

triplet was used, indicating that there will be a transition to the IDLE state unless req is true, in
which case the transition to BBUSY will occur.

The IDLE state does not list any outputs. This means that this state will use the default reset
output assignments, as determined by the other output assignments in the fsm_perl source file.

6.2 BBUSY State
Figure 5 shows the fsm_perl syntax for the Bus
BUSY (BBUSY) state of the state machine.

The BBUSY state has one Moore and no Mealy
outputs. The output gnt is the first occurrence
of this output in the fsm_perl code; therefore,
this output is assumed to have a default-reset
value opposite to the assigned value in this
state. The default value for gnt will be a 0 after
reset, and is assigned to 1 for the BBUSY state.

The BBUSY state also has three transition arcs
leaving this state so there will be three triplets
in the fsm_perl code to describe these arcs. The
first triplet:

(dly && done) BWAIT,

indicates that if dly and done are both true, a transition to the BWAIT state will occur. The
second triplet:

(!dly && done) BFREE,

indicates that if dly is not true and done is true, a transition to the BFREE state will occur. The
third triplet:

BBUSY,

could have been coded as (!done) BBUSY; but for this example, a default next-state transition
triplet was used, indicating that there will be a transition to the BBUSY state unless done is false,
in which case a transition to one of the other two destination states will occur. There is one more
triplet without either an input or a next state statement:

{gnt};

This triplet represents the Moore output for the BBUSY state, which was described above.

BBUSY:: (dly && done) BWAIT,
 (!dly && done) BFREE,
 BBUSY,
 {gnt};

!dly && done

dly && done

!done

BBUSY
gnt=1

BWAIT

BFREE

Figure 5 - BBUSY State Definition

SNUG 1999 fsm_perl
Rev 1.1

8

6.3 BWAIT State
Figure 6 shows the fsm_perl syntax for the Bus
WAIT (BWAIT) state of the state machine.

The BWAIT state has one Moore and no Mealy
outputs. The output:

{gnt};

is assigned to 1 for the BWAIT state.

The BWAIT state also has two transition arcs
leaving this state so there will be two triplets in
the fsm_perl code to describe these arcs. The
first triplet:

(!dly) BFREE,

indicates that if dly is not true, a transition to
the BFREE state will occur. The second triplet:

BWAIT,

could have been coded as (dly) BWAIT; but for this example, a default next-state transition
triplet was used, indicating that there will be a
transition to the BWAIT state unless dly is false,
in which case the transition to the BFREE state
will occur.

6.4 BFREE State
Figure 7 shows the fsm_perl syntax for the Bus
FREE (BFREE) state of the state machine.

The BFREE state has two transition arcs leaving
this state so there will be two triplets in the
fsm_perl code to describe these arcs. The first
triplet:

(req) BBUSY,

indicates that if req is true, a transition to the
BBUSY state will occur. The second triplet:

IDLE;

BFREE:: (req) BBUSY,
 IDLE;

Figure 7 - BFREE State Definition

!req

req

BBUSYBFREE
gnt=0

IDLE

BWAIT:: (!dly) BFREE,
 BWAIT,
 {gnt};

Figure 6 - BWAIT State Definition

!dly

dly

BWAIT
gnt=1

BFREE

SNUG 1999 fsm_perl
Rev 1.1

9

could have been coded as (!req) IDLE; but for this example, a default next-state transition
triplet was used, indicating that there will be a transition to the IDLE state unless req is true, in
which case the transition to the BBUSY state will occur.

7.0 Fsm_perl Directives

Although fsm_perl is able to extract most of the information from the fsm_perl source code,
"fsm" options can be specified to alter the default settings used by fsm_perl.

The fsm_perl user-selected defaults can be changed by adding directives (synthetic comments) to
the fsm_perl source code. An fsm synthetic comment must start with "//fsm". No space is
permitted between the "//" and "fsm". Legal "//fsm" commands are listed below.

7.1 //fsm clock
By default, fsm_perl generates Verilog code with clock name "clk" and "posedge" polarity. These
values can be changed by adding an fsm synthetic comment to the fsm_perl source code of the
form:

//fsm clock [negative_polarity]new_clock_name

Examples: //fsm clock !clock (low-true "clock")
//fsm clock CLK (high-true "CLK")

Negative edge polarities are specified by preceding the clock signal name with either "!" or "~".

7.2 //fsm period
The //fsm period directive is the only fsm_perl directive that does not affect the generated
Verilog code. The "period" directive helps specify clock constraints for the generated Synopsys
synthesis script. By default, fsm_perl generates a synthesis script with no clock constraints.
A clock constraint can be added to the Synopsys synthesis script by adding an fsm synthetic
comment to the fsm_perl source code of the form:

//fsm period clock_period

Examples: //fsm period 20 ("create_clock clk -period 20")

//fsm clock CK
//fsm period 10 ("create_clock CK -period 10")

7.3 //fsm reset
By default, fsm_perl generates Verilog code with reset name "nrst" and "negedge" polarity. These
values can be changed by adding an fsm synthetic comment to the fsm_perl source code of the
form:

//fsm reset [negative_polarity]new_reset_name

Examples: //fsm reset !rst_N (low-true "rst_N")
//fsm reset reset (high-true "reset")

Negative edge polarities are specified by preceding the clock signal name with either "!" or "~".

SNUG 1999 fsm_perl
Rev 1.1

10

7.4 //fsm default
Fsm_perl extracts scalar or vector information from the fsm_perl source and makes a default
assignment when the outputs are assigned within the combinational always block. The default
assignment value is determined by the scalar polarity or vector assignment value of each
identifier that is found in the fsm_perl source code. The first time an output identifier is found,
fsm_perl assumes that an assignment other than the reset-default is being made. Scalar reset-
defaults are set to the opposite polarity of the first scalar assignment and vector reset-defaults
outputs are assigned to all 0's. For example:

S1 :: S2,
 {y1};
...

State S1 unconditionally transitions to state S2 on the next clock edge and State S1 has one scalar
Moore output, y1, that is set to 1'b1; therefore, fsm_perl assumes the reset-default setting for the
y1 output must have been 1'b0. This assumption means that only when the output is assigned to
a non-default value, must the output assignment be specified in the fsm_perl source code.

When an fsm_perl source file includes vector assignments and Mealy output assignments,
fsm_perl might assume an incorrect reset-default output assignment value. //fsm default can be
used to change the reset-default output assignment value. For the above example, if y1 should be
set to 1'b1 by default, the example could include the directive:

//fsm default y1=1'b1
...
S1 :: S2,
 {y1};
...

7.5 //fsm state
By default, fsm_perl generates Verilog code with the state name "state". To select a different
state name, use the fsm_perl directive:

//fsm state new_state_name

Examples: //fsm state PS
//fsm state STATE

7.6 //fsm next
By default, fsm_perl generates Verilog code with the next state name "next". To select a different
next state name, use the fsm_perl directive:

//fsm next new_next_name

Examples: //fsm next NS
//fsm next NEXT

7.7 //fsm define
It is sometimes desirable to make input comparisons against a macro that is defined by the
Verilog `define compiler directive. When a `define comparison is used, fsm_perl must be notified
of the existing definition; otherwise, fsm_perl will assume the `define identifier is a scalar input

SNUG 1999 fsm_perl
Rev 1.1

11

and include the identifier as both a port identifier and as a declared input. To specify the
existence of a macro definition, use the fsm_perl directive:

//fsm define macro_name

Examples: //fsm define `CONFIG_READ
//fsm define `CONFIG_WRITE

Usage example
triplet: (!nFRAME && IDSEL && (nC_BE==`CONFIG_WRITE)) CFG_WR, ...

7.8 //fsm filename
By default, fsm_perl uses the fsm_perl source file name as the root of the Verilog output file
name. To select a different Verilog output file name, use the fsm_perl directive:

//fsm filename new_file_name

Example: //fsm filename myfile

7.9 //fsm module
By default, fsm_perl uses the fsm_perl source file name as the root of the Verilog module name
and output file name. If there is a period in the fsm_perl source file name, unless the "//fsm
module" directive is included in the fsm_perl source code, an illegal Verilog module name will
be generated. To select a different Verilog module name, use the fsm_perl directive:

//fsm module new_module_name

Example: //fsm module mymodule

In the absence of a separate "//fsm filename" directive, the "//fsm module" directive also changes
the output file name. To generate unique Verilog module and output file names, use both the
"//fsm module" and "//fsm filename" directives.

Example: //fsm module mymodule
 //fsm filename myfile

8.0 Command Invocation

Fsm_perl is invoked from the UNIX command prompt as follows:

fsm_perl [options] fsm_perl_source_file

The fsm_perl source code, Verilog output file and Synopsys synthesis script for the fsm1 design
used in the "Simple Example" (in section 6) are shown in Figure 11 at the end of this paper.

8.1 Fsm_perl Output Files
Fsm_perl generates two output files: a Verilog source file and a Synopsys synthesis script to
compile the Verilog source file. See section 9.0 for details about the generated Synopsys
synthesis scripts.

SNUG 1999 fsm_perl
Rev 1.1

12

8.2 Fsm_perl Options
Fsm_perl has command line options that help generate different Verilog coding styles and
Synopsys synthesis scripts for synthesis experimentation. Each option generates just one Verilog
output file and one synthesis script.

8.2.1 -e Option
The -e option generates a Verilog file with binary encoded state variables and standard Synopsys
enumeration comments. The -e option also generates a synthesis script that will compile the
Verilog design four different ways. The script compiles the design (1) with no special processing,
(2) using the FSM compiler gray encoding style setting, (3) using the FSM compiler one_hot
encoding style setting, and (4) using the FSM compiler binary encoding style setting.

The Synopsys enumeration comments help the Synopsys FSM compiler to find and process the
state variables and state encodings.

For the following command invocation:
fsm_perl -e fsm1 (where fsm1 is the fsm_perl source file)

fsm_perl will create two output files named:
fsm1_e.v (the synthesizable Verilog FSM source file)
fsm1_e.scr (the Synopsys synthesis script to compile the fsm1_e.v file).

The "_e" appendage indicates the "enumerated" coding style. The fsm_perl source code, Verilog
output file and Synopsys synthesis script using the "-e" command option are shown in Figure 13
at the end of this paper.

8.2.2 -1 Option
The -1 (the number "one") option generates a Verilog file with one-hot encoded state variables
and adds "synopsys full_case parallel_case" to the case statement. This is the only place where
"full_case parallel_case" is automatically added to the Verilog source code since this coding style
is the only coding style where full and parallel directives generally seem to make a positive
difference in the quality of the synthesized design.

For the following command invocation:
fsm_perl -1 fsm1 (where fsm1 is the fsm_perl source file)

fsm_perl will create two output files named:
fsm1_1fp.v (the synthesizable Verilog FSM source file)
fsm1_1fp.scr (the Synopsys synthesis script to compile the fsm1_1fp.v file)

The "_1fp" appendage indicates the "one-hot full_case parallel_case" coding style. The fsm_perl
source code, Verilog output file and Synopsys synthesis script using the "-1" command option are
shown in Figure 12 at the end of this paper.

SNUG 1999 fsm_perl
Rev 1.1

13

8.2.3 -f Option
The -f option generates a Verilog file with "synopsys full_case" appended to the case statement
header code. Using this option is not recommended since the pre-synthesis simulation might not
match the post-synthesis implementation, plus there are Verilog coding styles that can
accomplish the same or better synthesis optimization without using this potentially dangerous
switch; however, the switch is included to permit easy experimentation with "full_case" usage.

For the following command invocation:
fsm_perl -f fsm1 (where fsm1 is the fsm_perl source file)

fsm_perl will create two output files named:
fsm1_f.v (the synthesizable Verilog FSM source file)
fsm1_f.scr (the Synopsys synthesis script to compile the fsm1_f.v file)

The "_f" appendage indicates that " full_case" has been added to the Verilog output file.

8.2.4 -p Option
The -p option generates a Verilog file with "synopsys parallel_case" appended to the case
statement header code. Using this option is not recommended since the pre-synthesis simulation
might not match the post-synthesis implementation, plus there are Verilog coding styles that can
accomplish the same or better synthesis optimization without using this potentially dangerous
switch; however, the switch is included to permit easy experimentation with "parallel_case"
usage.

For the following command invocation:
fsm_perl -p fsm1 (where fsm1 is the fsm_perl source file)

fsm_perl will create two output files named:
fsm1_p.v (the synthesizable Verilog FSM source file)
fsm1_p.scr (the Synopsys synthesis script to compile the fsm1_p.v file)

The "_p" appendage indicates that " parallel_case" has been added to the Verilog output file.

8.2.5 Multiple Options
Multiple options can be used at the same time when fsm_perl is invoked. When multiple options
are used, the resultant file names will contain appended letters indicating which file options were
used to run the fsm_perl script.

SNUG 1999 fsm_perl
Rev 1.1

14

9.0 Synthesis Scripts

Not only does fsm_perl generate the Verilog code for an FSM, it also generates the Synopsys
synthesis script required to compile the design and report performances.

Figure 8 shows the synthesis script that is typically generated when using fsm_perl. The synthesis
script reads the Verilog source file, compiles the design, writes out the SDF timing file, writes
out the Verilog gate-level netlist, then reports area usage and worst case timing to a report file.

design_list = { fsm1 }
foreach (DESIGN, design_list) {
 rpt_file = DESIGN + ".rpt"
 echo DESIGN + " Synthesis Run" > rpt_file
 read -f verilog DESIGN + ".v"
 current_design = DESIGN
 compile
 create_schematic -size infinite
 write_timing -f sdf-v2.1 -context verilog -o DESIGN + ".sdf"
 write -f verilog -hier -output DESIGN + ".vg"
 report_area >> rpt_file
 report_timing >> rpt_file
}

Figure 8 - fsm1.scr File

design_list = { fsm1_e }
foreach (DESIGN, design_list) {
 rpt_file = DESIGN + ".rpt"
 echo DESIGN + " Synthesis Run" > rpt_file
 read -f verilog DESIGN + ".v"
 current_design = DESIGN
 compile
...
 echo DESIGN + " Synopsys Gray-Code Synthesis Run" >> rpt_file
 extract
 set_fsm_encoding_style gray
 compile
 create_schematic -size infinite
 write_timing -f sdf-v2.1 -context verilog -o DESIGN + "_xg.sdf"
 write -f verilog -hier -output DESIGN + "_xg.vg"
...
 echo DESIGN + " Synopsys One-Hot Synthesis Run" >> rpt_file
 extract
 set_fsm_encoding_style onehot
 compile
...
 echo DESIGN + " Synopsys Binary Synthesis Run" >> rpt_file
 extract
 set_fsm_encoding_style binary
 compile
...
}

Figure 9 - Synopsys FSM Compiler-Options Script (fsm1_e.scr)

SNUG 1999 fsm_perl
Rev 1.1

15

If the FSM file is compiled with the "-e" command option, fsm_perl will generate a synthesis
script to compile the design four different ways: (1) with no special processing, (2) using the
FSM compiler gray encoding style setting, (3) using the FSM compiler one_hot encoding style
setting, and (4) using the FSM compiler binary encoding style setting. Figure 9 shows a section
of the synthesis script that is typically generated using the "-e" option.

If the fsm_perl source file contains the "//fsm period" option, fsm_perl will generate a synthesis
script to compile the design with clock constraints. Both "//fsm period" and "//fsm clock" affect
the "create_clock" command that is put into the synthesis script, as shown in figure 10.

10.0 Download fsm_perl

This paper and the fsm_perl script are available for download at the Sunburst Design web site:

www.sunburst-design.com

The fsm_perl source code contains the GNU copyright header that permits free distribution of the
fsm_perl code as long as the copyright header is included and remains unchanged.

//fsm clock CK
//fsm period 10

IDLE :: (req) BBUSY,
 IDLE;

BBUSY:: (dly && done) BWAIT,
...

design_list = { fsm1i }
foreach (DESIGN, design_list) {
 ...
 read -f verilog DESIGN + ".v"
 current_design = DESIGN
 create_clock CK -period 10
 compile
 ...
}

Figure 10 - Adding Clock Constraints

fsm_perl source file

Synopsys synthesis
script

Clock constraint
command

fsm_perl "clock" and
"period" directives

SNUG 1999 fsm_perl
Rev 1.1

16

Both fsm_perl and the paper can be freely downloaded from the Sunburst Design web site.
Enhancement requests can be sent to cliffc@sunburst-design.com. The subject line should
contain "fsm_perl enhancement request".

10.1 Fsm_perl Development & Enhancements

Fsm_perl was first created with the intent of simplifying the task of generating Verilog source
code for simulation and synthesis. Later, other capabilities were added to generate state machines
using different FSM state-encoding styles and different Verilog coding styles. The next step was
to permit the creation of multiple Verilog files with different coding styles and an accompanying
Synopsys synthesis script to permit easy experimentation with Verilog styles, Synopsys switches
and to report the various area and timing results. The latter capability greatly accelerates the
selection of an optimal coding style and synthesis strategy.

One enhancement in progress is the generation of all fsm_perl Verilog output files and a
synthesis script to compile and report results from all coding styles. This enhancement will
facilitate selection of the best coding style for a design project.

A one-hot output registered coding style permits the generation of non-glitching registered
outputs. This is another enhancement under present consideration.

With the release of the Synopsys 1999.05 TCL interface, generation of a TCL script output file
might also be a valuable future enhancement.

Another potential enhancement would be the generation of synthesizable VHDL code from
fsm_perl source code. This should require little more than an alternate code generator.

As the art of FSM design using HDLs progresses, it is anticipated that additional styles will be
generated by fsm_perl.

11.0 Conclusion

The fsm_perl syntax is short, simple to generate and easy to understand. Fsm_perl removes much
of the tedious effort associated with the entry of synthesizable Verilog FSM code, plus fsm_perl
generates the Synopsys script that is necessary to compile and examine the synthesized FSM
design.

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 19 years of ASIC, FPGA and system design experience and nine years of Verilog,
synthesis and methodology training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (VSG) since 1994, chaired
the VSG Behavioral Task Force, which was charged with proposing enhancements to the Verilog

SNUG 1999 fsm_perl
Rev 1.1

17

language. Mr. Cummings is also a member of the IEEE Verilog Synthesis Interoperability
Working Group.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

E-mail Address: cliffc@sunburst-design.com
This paper can be downloaded from the web site: www.sunburst-design.com/papers

(Data accurate as of September 7th, 2001)

SNUG 1999 fsm_perl
Rev 1.1

18

IDLE :: (req) BBUSY,
 IDLE;

BBUSY:: (dly && done) BWAIT,
 (!dly && done) BFREE
 BBUSY,
 {gnt};

BWAIT:: (!dly) BFREE,
 BWAIT,
 {gnt};

BFREE:: (req) BBUSY,
 IDLE;

module fsm1 (gnt, dly, done, req, clk, nrst);
 output gnt;
 input dly, done, req;
 input clk, nrst;
 reg gnt;

 parameter [1:0] IDLE = 2'd0,
 BBUSY = 2'd1,
 BWAIT = 2'd2,
 BFREE = 2'd3;

 reg [1:0] state, next;

 always @(posedge clk or negedge nrst)
 if (!nrst) state <= IDLE;
 else state <= next;

 always @(state or dly or done or req) begin
 next = 2'bx;
 gnt = 1'b0;
 case (state)
 IDLE: begin
 next = IDLE;
 if (req) next = BBUSY;
 end

 BBUSY: begin
 next = BBUSY;
 if (dly && done) next = BWAIT;
 if (!dly && done) next = BFREE;
 gnt = 1'b1;
 end

 BWAIT: begin
 next = BWAIT;
 if (!dly) next = BFREE;
 gnt = 1'b1;
 end

 BFREE: begin
 next = IDLE;
 if (req) next = BBUSY;
 end

 endcase
 end
endmodule

design_list = { fsm1 }
foreach (DESIGN, design_list) {
 rpt_file = DESIGN + ".rpt"
 echo DESIGN + " Synthesis Run" >
rpt_file
 read -f verilog DESIGN + ".v"
 current_design = DESIGN
 compile
 create_schematic -size infinite
 write_timing -f sdf-v2.1 -context
verilog -o DESIGN + ".sdf"
 write -f verilog -hier -output DESIGN +
".vg"
 report_area >> rpt_file
 report_timing >> rpt_file
}

Figure 11 - fsm_perl Source, Verilog File, Synthesis Script

fsm1 - fsm_perl source

fsm1.v - Verilog output

fsm1.scr - Synopsys script

fsm_perl compile command:
fsm_perl fsm1

SNUG 1999 fsm_perl
Rev 1.1

19

IDLE :: (req) BBUSY,
 IDLE;

BBUSY:: (dly && done) BWAIT,
 (!dly && done) BFREE
 BBUSY,
 {gnt};

BWAIT:: (!dly) BFREE,
 BWAIT,
 {gnt};

BFREE:: (req) BBUSY,
 IDLE;

module fsm1_1fp (gnt, dly, done, req, clk, nrst);
 output gnt;
 input dly, done, req;
 input clk, nrst;
 reg gnt;

 parameter [3:0] IDLE = 4'd0,
 BBUSY = 4'd1,
 BWAIT = 4'd2,
 BFREE = 4'd3;

 reg [3:0] state, next;

 always @(posedge clk or negedge nrst)
 if (!nrst) begin
 state <= 4'b0;
 state[IDLE] <= 1'b1;
 end
 else state <= next;

 always @(state or dly or done or req) begin
 next = 4'b0;
 gnt = 1'b0;
 case (1'b1) // synopsys full_case parallel_case
 state[IDLE]: begin
 next[IDLE] = 1'b1;
 if (req) next[BBUSY] = 1'b1;
 end
 state[BBUSY]: begin
 next[BBUSY] = 1'b1;
 if (dly && done) next[BWAIT] = 1'b1;
 if (!dly && done) next[BFREE] = 1'b1;
 gnt = 1'b1;
 end
 state[BWAIT]: begin
 next[BWAIT] = 1'b1;
 if (!dly) next[BFREE] = 1'b1;
 gnt = 1'b1;
 end
 state[BFREE]: begin
 next[IDLE] = 1'b1;
 if (req) next[BBUSY] = 1'b1;
 end

 endcase
 end
endmodule

design_list = { fsm1_1fp }
foreach (DESIGN, design_list) {
 rpt_file = DESIGN + ".rpt"
 echo DESIGN + " Synthesis Run" >
rpt_file
 read -f verilog DESIGN + ".v"
 current_design = DESIGN
 compile
 create_schematic -size infinite
 write_timing -f sdf-v2.1 -context
verilog -o DESIGN + ".sdf"
 write -f verilog -hier -output DESIGN +
".vg"
 report_area >> rpt_file
 report_timing >> rpt_file
}

Figure 12 - fsm_perl Source, One-Hot Verilog File, Script

fsm1 - fsm_perl source

fsm1_1fp.v - Verilog output

fsm1_1fp.scr - Synopsys

fsm_perl compile command:
fsm_perl -1 fsm1

SNUG 1999 fsm_perl
Rev 1.1

20

//fsm clock CK
//fsm period 10

IDLE :: (req) BBUSY,
 IDLE;

BBUSY:: (dly && done) BWAIT,
 (!dly && done) BFREE
 BBUSY,
 {gnt};

BWAIT:: (!dly) BFREE,
 BWAIT,
 {gnt};

module fsm1i_e (gnt, dly, done, req, CK, nrst);
 output gnt;
 input dly, done, req;
 input CK, nrst;
 reg gnt;

 parameter [1:0] // synopsys enum code
 IDLE = 2'd0,
 BBUSY = 2'd1,
 BWAIT = 2'd2,
 BFREE = 2'd3;

 // synopsys state_vector state
 reg [1:0] // synopsys enum code
 state, next;

 always @(posedge CK or negedge nrst)
 if (!nrst) state <= IDLE;
 else state <= next;

 always @(state or dly or done or req) begin
 next = 2'bx;
 gnt = 1'b0;
 case (state)
 IDLE: begin
 next = IDLE;
 if (req) next = BBUSY;
 end
 BBUSY: begin
 next = BBUSY;
 if (dly && done) next = BWAIT;
 if (!dly && done) next = BFREE;
 gnt = 1'b1;
 end
 BWAIT: begin
 next = BWAIT;
 if (!dly) next = BFREE;
 gnt = 1'b1;
 end
 BFREE: begin
 next = IDLE;
 if (req) next = BBUSY;
 end
 endcase
 end
endmodule

design_list = { fsm1i_e }
foreach (DESIGN, design_list) {
...
 read -f verilog DESIGN + ".v"
 current_design = DESIGN
 create_clock CK -period 10
 compile
...
 extract
 set_fsm_encoding_style gray
 compile
...
 extract
 set_fsm_encoding_style onehot
 compile
...
 extract
 set_fsm_encoding_style binary
 compile
...
}

Figure 13 - fsm_perl Source with Clock & Period Directives, Verilog File, 4-Pass-Compile Synthesis Script

fsm1i - fsm_perl source

fsm1i_e.v - Verilog output

fsm1i_e.scr - Synopsys script

fsm_perl compile command:
fsm_perl -e fsm1i

