
Coding And Scripting Techniques For FSM Designs With
Synthesis-Optimized, Glitch-Free Outputs

Clifford E. Cummings

Sunburst Design, Inc.

ABSTRACT

A common synthesis recommendation is to code modules with a cloud of combinational logic on
the module inputs and registered logic on all of the module outputs. FSM designs often include
outputs generated from combinational logic based on the present state or combinational Mealy
outputs. This paper details design and synthesis techniques that support the coding and synthesis
scripting of glitch-free registered outputs for Finite State Machine designs.

SNUG-2000
Boston, MA

Voted Best Paper
2nd Place

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

2

1.0 Introduction

Efficient state machine design using a Hardware Description Language (HDL), such as Verilog,
can take many forms [1][2]. Are there specific forms that lend themselves well to synthesis? This
paper describes some common coding styles and highlights two coding styles with registered
outputs that are well suited for commonly used synthesis techniques.

This paper will briefly describe coding styles that generate combinational logic outputs and then
will detail coding styles that generate registered outputs and describe why the registered output
coding styles are often beneficial to synthesis strategies.

2.0 Basic FSM Structure

A typical block diagram for a Finite State Machine (FSM) is shown in Figure 1.

Figure 1 - FSM Block Diagram

A Moore state machine is an FSM where the outputs are only a function of the present state.

A Mealy state machine is an FSM where one or more of the outputs are a function of the present
state and one or more of the inputs.

Both Moore and Mealy FSMs have been successfully implemented in digital designs. How the
outputs are generated for these state machines is an interesting topic. Outputs are sometimes
generated by combinational logic based on comparisons with a set of states, and sometimes
outputs can be derived directly from individual state bits.

Present
State
FF's

Next
State
Logic

Output
Logic

next

state

clock

inputs

outputs

combinational
logic

combinational
logic

sequential
logic

state

(Mealy State Machine Only)

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

3

The code in Example 1 uses a common, efficient
Verilog coding style to implement the state diagram
shown in Figure 2.

This coding style is sometimes referred to as a two-
always block coding style with continuous
assignment outputs. The first always block in this
example is used to generate the sequential state
register, the second always block is used to generate
the combinational next state logic, and the
continuous assignments are used to generate the
combinational output logic.

module fsm1a (ds, rd, go, ws, clk, rst_n);
 output ds, rd;
 input go, ws;
 input clk, rst_n;

 parameter [1:0] IDLE = 2'b00,
 READ = 2'b01,
 DLY = 2'b10,
 DONE = 2'b11;

 reg [1:0] state, next;

 always @(posedge clk or negedge rst_n)
 if (!rst_n) state <= IDLE;
 else state <= next;

 always @(state or go or ws) begin
 next = 2'bx;
 case (state)
 IDLE: if (go) next = READ;
 else next = IDLE;

 READ: next = DLY;

 DLY: if (ws) next = READ;
 else next = DONE;

 DONE: next = IDLE;

 endcase
 end

 assign rd = (state==READ || state==DLY);
 assign ds = (state==DONE);
endmodule

Example 1 - FSM Coding Style - Two-always blocks with continuous assignment outputs

Except where noted,
outputs “rd” and
“ds” equal 0

go=0

go=1

ws=0

ws=1

IDLE

READ
rd=1

DONE
ds=1

 DLY
rd=1

State register,
sequential

always block

Next state,
combinational
always block

Continuous
assignment

outputs

Figure 2 - FSM1 State Diagram

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

4

The code in Example 2 is used to synthesize the same basic logic as Example 1, but the
generation of the outputs is accomplished by moving the output equations into the same always
block that is used to generate the combinational next state logic. This is a commonly used two-
always block coding style.

module fsm1 (ds, rd, go, ws, clk, rst_n);
 output ds, rd;
 input go, ws;
 input clk, rst_n;
 reg ds, rd;

 parameter [1:0] IDLE = 2'b00,
 READ = 2'b01,
 DLY = 2'b10,
 DONE = 2'b11;

 reg [1:0] state, next;

 always @(posedge clk or negedge rst_n)
 if (!rst_n) state <= IDLE;
 else state <= next;

 always @(state or go or ws) begin
 next = 2'bx;
 ds = 1'b0;
 rd = 1'b0;
 case (state)
 IDLE: if (go) next = READ;
 else next = IDLE;

 READ: begin rd = 1'b1;
 next = DLY;
 end

 DLY: begin rd = 1'b1;
 if (ws) next = READ;
 else next = DONE;
 end

 DONE: begin ds = 1'b1;
 next = IDLE;
 end

 endcase
 end
endmodule

Example 2 - FSM Coding Style - Two-always blocks with combined output assignments

State register,
sequential

always block

Next state & outputs,
combinational always

block

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

5

The combinational outputs generated by these two coding styles (Example 1 and Example 2)
suffer two principal disadvantages:

1. Combinational outputs can glitch between states.
2. Combinational outputs consume part of the overall clock cycle that would have been

available to the block of logic that is driven by the FSM outputs.

When module outputs are generated using combinational logic, there is less time for the
receiving module to pass signals through inputs and additional combinational logic before they
must be clocked.

3.0 Partitioning For Synthesis

A popular and proven technique for partitioning a
design for synthesis is to partition the design so
that all outputs are registered and all
combinational logic is on the input-side of a
module as shown in Figure 3. This is sometimes
referred to as "cloud-register" partitioning.

A variation on the same synthesis technique is to
partition the design so that all combinational logic
is on the inputs or between registered stages
within the module as shown in Figure 4.

The reason this technique is important is not that it necessarily makes a design any better, but that
it greatly simplifies the task of constraining a design for synthesis.

Designs can be and have been successfully completed with combinational logic on both the
inputs and the outputs of module partitions, but such designs complicate the task of constraining
a design to meet timing requirements.

As shown in Figure 5, if a design requires a 10ns clock cycle, and if the output combinational
logic of module A consumes 3.5ns, then the inputs of modules C and D and some of the inputs of
module E must be constrained to use only 6.5ns (including setup time on registered elements).

clock

inputs
registered

outputs

Combinational
logic

Sequential
logic

module

clock

registered
outputs

Combinational
logic

Sequential
logic

module

Sequential
logic

inputs

Combinational
logic

No combinational
logic on the outputs

No combinational
logic on the outputs

Figure 4 - Multi-stage module partition with registered outputs

Figure 3 - "Cloud-register" module partition

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

6

If module B consumes 5ns in the
output combinational logic, then
the other inputs of module E must
be constrained to use only 5ns
(including setup time on registered
elements).

For this simple 5-module design,
the task of making these
constraints is not too difficult, but
imagine having to constrain dozens
of inputs on the tens or hundreds of
modules of a larger design, and
making sure all of the constraints
have been correctly set. This is one
of the motivations behind
registered module outputs.

4.0 Synthesis Time Budgeting

In a paper entitled "Evolvable Makefiles and Scripts for Synthesis", [3] Ekstrandh and Bell,
describe a clever time-budgeting technique for synthesizing many modules by constraining inputs
and outputs to sequential modules, and applying time-budget allotments to pure combinational
modules. If pure combinational logic modules are removed and all sequential module outputs are
registered, techniques similar to those described by Ekstrandh and Bell become even easier to
implement.

One major argument against registered outputs is that redundant combinational logic might be
required at the inputs of multiple receiving modules. In contrast, moving the combinational logic
from some module outputs to the inputs of receiving modules might help suggest a different,
more optimal partitioning of a design.

The best reason for moving combinational logic away from module outputs is that it significantly
reduces synthesis scripting efforts that can lead to more easily meeting overall timing constraints.
Tight constraints on output combinational logic in a driving module and tight timing constraints
on input combinational logic in a receiving module generally does not yield the same efficient
logic that could be inferred if all of the combinational logic could be optimized together with a
larger overall timing constraint.

Figure 5 - Constraining combinational outputs that drive
combinational inputs

module B

module A

module D

module E

module C
3.5ns

10ns clock cycle

6.5ns

6.5ns

6.5ns

5ns5ns

Different input
constraints

required

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

7

5.0 Registering FSM Outputs

Two good methods for coding FSMs so that all module outputs are registered include, (1)
generating and registering "next-outputs", and (2) Encoding the state variables so that each
output is one of the encoded bits of the registered state variable.

module fsm1b (ds, rd, go, ws, clk, rst_n);
 output ds, rd;
 input go, ws;
 input clk, rst_n;
 reg ds, rd;

 parameter [1:0] IDLE = 2'b00,
 READ = 2'b01,
 DLY = 2'b10,
 DONE = 2'b11;

 reg [1:0] state, next;

 always @(posedge clk or negedge rst_n)
 if (!rst_n) state <= IDLE;
 else state <= next;

 always @(state or go or ws) begin
 next = 2'bx;
 case (state)
 IDLE: if (go) next = READ;
 else next = IDLE;
 READ: next = DLY;
 DLY: if (ws) next = READ;
 else next = DONE;
 DONE: next = IDLE;
 endcase
 end

 always @(posedge clk or negedge rst_n)
 if (!rst_n) begin
 ds <= 1'b0;
 rd <= 1'b0;
 end
 else begin
 ds <= 1'b0;
 rd <= 1'b0;
 case (state)
 IDLE: if (go) rd <= 1'b1;
 READ: rd <= 1'b1;
 DLY: if (ws) rd <= 1'b1;
 else ds <= 1'b1;
 endcase
 end
endmodule

Example 3 - FSM Coding Style - Three-always block coding style

5.1 Three Always Block FSM

State register,
sequential

always block

Next state,
combinational
always block

Registered
outputs

sequential
always block

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

8

The first method commonly used to register
the FSM outputs is to code a two always
block FSM, the same as in Example 1, but
instead of generating the outputs using
continuous assignments, code a third block
as a sequential always block to register the
"next outputs" as shown in Example 3.

This method requires careful coding since
this style forces an engineer to examine the
present state and the inputs to determine
what the "next outputs" will be. This
method is somewhat error prone, but works
fine if the outputs are properly coded.

The block diagram in Figure 6 shows the
two sequential and one combinational logic blocks that are generated by the three always blocks.

5.2 Output Encoded FSM

A second interesting method for registering
the FSM outputs is to select a state encoding
that forces the outputs to be driven by
individual state-register bits as shown in the
block diagram of Figure 7.

A structured method for encoding the
outputs as part the state encoding is outlined
in the following steps:

1. Count the number of outputs (x) and
the number of states (y) in the state
machine and start by making a table
with y+1 rows and x+1 columns.

2. Starting at the second row in the left-
hand column, make a list of all the
FSM states, moving down the column
for each state in the state machine.
This will fill the left-hand column

except for the top left-hand column
cell.

of outputs
x = 2

of states
y = 4

table size
3 columns by 5 rows

IDLE

READ
rd=1

DONE
ds=1

 DLY
rd=1

next

state

clock

inputs
state &
outputs

combinational
logic

Next
State
Logic

sequential
logic

Present
State
FF’s

Figure 8 - Extracting table information from a state
diagram

Figure 7 - FSM with registered outputs encoded as state
bits

Figure 6 - FSM with registered outputs

next

state

clock

inputs

outputs

combinational
logic

state
Next
State
Logic

sequential
logic

sequential
logic

Output
FF’s

Present
State
FF’s

next
outputs

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

9

3. Starting at the first row, second column and working to the right, list each FSM output as a
separate column header.

State ds rd
IDLE 0 0
READ 0 1
DLY 0 1
DONE 1 0

Table 1 - Starting state table (redundant output patterns
are circled)

4. Place a "1" in each output column where an
output is high for the listed states and place a
"0" in each output column where an output is
low for the listed states.

5. After filling out the entire table, search for
output patterns that are the same for more
than one state. If there are no duplicate patterns, use the output patterns in the table as state
encodings. If all of the encodings are unique, no additional state bits are necessary and each
state bit not only represents part of the state encoding, it also represents what will become a
registered output bit.

Note: FSM inputs do not affect the state encodings. Only the number of states and the number of
outputs affect the state encodings.

In general, the output patterns will not be unique to any one state and the following additional
steps will be required:

6. Circle the duplicate output patterns in the table as shown in Table 1.

7. If there are two output patterns that are the same, one additional state bit will be required to
create unique state encodings. If there are three or four output patterns that are the same, two
additional state bits will be required to create unique state encodings. If there are between
five and eight output patterns that are the same, three additional state bits will be required to
create unique state encodings, etc.

state x0 ds Rd
IDLE 0 0
READ 0 1
DLY 0 1
DONE 1 0

Table 2 - State table after adding extra state bit column

state
00

IDLE

READ
rd=1

DONE
ds=1

 DLY
rd=1

state
01

state
01

state
10

Redundant
states

Figure 9 - One-hot output encoded redundant states

Output columns

State
rows

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

10

8. Add a blank column between the state names
column and the first output column and label
this column "x0." Add another column for
each additional required state bit, labeling
each column "x1", "x2", etc.

state x0 ds rd
IDLE 0 0 0
READ 0 0 1
DLY 1 0 1
DONE 0 1 0

Table 3 - State table with unique state encodings

Fill the added columns with all zeros except for
the circled redundant-encodings rows. Add
binary encodings into the extra columns of the redundant-encoding rows to create unique state
encodings as shown in Figure 10.

module fsm1a_ffo1 (ds, rd, go, ws, clk, rst_n);
 output ds, rd;
 input go, ws;
 input clk, rst_n;

 // state bits = x0 _ ds rd
 parameter [2:0] IDLE = 3'b0_00,
 READ = 3'b0_01,
 DLY = 3'b1_01,
 DONE = 3'b0_10;

 reg [2:0] state, next;

 always @(posedge clk or negedge rst_n)
 if (!rst_n) state <= IDLE;
 else state <= next;

 always @(state or go or ws) begin
 next = 3'bx;
 case (state)
 IDLE: if (go) next = READ;
 else next = IDLE;
 READ: next = DLY;
 DLY: if (ws) next = READ;
 else next = DONE;
 DONE: next = IDLE;
 endcase
 end

 assign {ds,rd} = state[1:0];
endmodule

Example 4 - FSM Coding Style - Output Encoded FSM

state
0_00

IDLE

READ
rd=1

DONE
ds=1

 DLY
rd=1

state
0_01

state
1_01

state
0_10

Unique
states

Figure 10 - Output Encoded FSM with extra bits to create
unique state encodings

State register,
sequential

always block

Next state,
combinational
always block

Outputs are
assigned directly

from the state-
register bits

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

11

The state encodings in Table 3 will now be used to make Verilog parameter assignments to
define each state encoding.

Now that the outputs have been incorporated into the state encodings, one or more continuous
assignment statements can directly drive the outputs, where the actual state bits are used to drive
the outputs. Since no additional glue logic is required to drive the outputs, the outputs will now
be glitch-free.

The outputs of the Verilog state machine are now easily coded by making bit-select assignments
from the state vector to each output, or by concatenating all of the outputs together into one
continuous assignment and assigning all of the significant state bits to the outputs as shown in
Example 4. If extra state bits were required to create unique state encodings, the output bits will
be the LSBs of the state vector.

6.0 Mealy Outputs

Asynchronous Mealy outputs violate the synthesis guideline to partition a design into "cloud-
register" groupings. An asynchronous Mealy output is an output that is a function of the present
state and one or more inputs, which requires combinational logic to be placed on the Mealy
outputs, forming a cloud of combinational logic after the register, as shown on the FSM module
in the block diagram of Figure 11.

It is frequently feasible to move asynchronous Mealy outputs from an FSM module to the input
or inputs of one or more modules (such as modules C and D as shown in Figure 12) that would
have been driven by the Mealy outputs.

module D

module C

Mealy input

FSM module

Mealy
output

Figure 11 - FSM Mealy output driving combinational inputs

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

12

Transferring the Mealy logic from the output of the FSM module to the inputs of the driven
modules might cause extra logic to be inferred because the logic has to be taken from a single
output-"cloud" and added to potentially multiple input-"clouds." The undesirable, small increase
in area due to the addition of redundant logic is generally offset by significantly simplifying the
design effort and synthesis scripts.

7.0 Conclusions

• Partitioning designs so that there is no combinational logic on the outputs of an FSM
significantly simplifies the task of synthesizing a multi-module design.

• Coding FSMs with registered outputs eliminates combinational output logic.

• Coding FSMs with registered outputs insures that the outputs will be glitch-free.

• The Output Encoded FSM style is an efficient technique for coding FSMs to drive registered
outputs directly from the state register bits.

References

[1] S. Golson, "State Machine Design Techniques for Verilog and VHDL," Synopsys Journal
of High-Level Design, September 1994, pp. 1-48.

[2] C.E. Cummings, "State Machine Coding Styles for Synthesis," SNUG (Synopsys Users
Group) 1998 Proceedings, section-TB1 (3rd paper), March 1998.

[3] A. Ekstrandh, W. Bell, "Evolvable Makefiles and Scripts for Synthesis," SNUG (Synopsys
Users Group) 1997 Proceedings, section-C1 (2nd paper), February 1997.

module D

module CMealy input

FSM module

Mealy logic

Figure 12 - Mealy logic partitioned separate from the FSM output

SNUG Boston 2000 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

13

Revision 1.2 (May 2002) - What Changed?

Example 4 incorrectly showed the combinational assignment of next = 2'bx; The correct
assignment should have been next = 3'bx;

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 20 years of ASIC, FPGA and system design experience and 10 years of Verilog,
synthesis and methodology training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (VSG) since 1994, chaired
the VSG Behavioral Task Force, which was charged with proposing behavioral and synthesis
enhancements to the Verilog language. Mr. Cummings is also a member of the IEEE Verilog
Synthesis Interoperability Working Group, and the Accellera SystemVerilog Standards Group.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Email address: cliffc@sunburst-design.com
An updated version of this paper can be downloaded from the web site: www.sunburst-
design.com/papers

(Data accurate as of May 28th, 2002)

