
SNUG Boston 2003 1 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

SystemVerilog - Is This The Merging of Verilog & VHDL?

Clifford E. Cummings

Sunburst Design, Inc.

cliffc@sunburst-design.com

ABSTRACT

In his EE Times Industry Gadfly Column, ESNUG moderator, John Cooley, set off a firestorm
with his article entitled, “VHDL, the new Latin,[13]” in which he offers a quote from Aart de
Geus “that SystemVerilog will be the dominant language.”[14]

But comparing VHDL to Latin begs the question: Is VHDL “the new Latin” because it is a dead
language or because it contributed to the creation of a new language?

Although SystemVerilog[17][18] is a fully backward compatible superset of Verilog-2001[10], it
also incorporates many of the best features of VHDL. Indeed, one of the unspoken goals for
SystemVerilog was to incorporate more VHDL-like features to make translation into and co-
simulation with SystemVerilog easier. This paper shows how features that used to be unique to
VHDL have found their way into SystemVerilog.

SNUG-2003
Boston, MA

Voted Best Paper
3rd Place

SNUG Boston 2003 2 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

1.0 Introduction

I have been very active in Verilog design and standards activities for over a decade, have done
both Verilog and VHDL synthesis design and have done detailed examinations of the virtues and
pitfalls of Verilog and VHDL. Based on my experience, I believe that SystemVerilog is a
revolutionary step forward in the evolution of hardware description and verification languages.
In this paper I will discuss the many features of SystemVerilog that were inspired by VHDL.

VHDL is not a dead language. VHDL, along with Verilog, lives in a powerfully enhanced HDL
called SystemVerilog.

Should SystemVerilog really be called SystemHDL? Perhaps. But since the core syntax of the
language is rooted in the Verilog HDL, the name of the enhanced language bears the Verilog
moniker. Any VHDL engineer that claims that SystemVerilog should really be called
SystemHDL will receive little argument from me.

2.0 VHDL Features - Not in Verilog - Added to SystemVerilog

2.1 Strong Data Typing

Strong typing was never a feature of Verilog. Because it only supported scalar data types, it was
possible for the language to perform (most of the time) the correct type conversions
automatically, albeit with a potential loss of accuracy or precision. For example, integer, bit and
real values were correctly and automatically converted when needed. Incorrect conversion would
occur when large values had to be truncated or when the actual value did not have a numerical
interpretation – such as ASCII characters.

Design engineers appreciate the lack of strong typing. They like to deal with values and
expressions of various types and bit width without requiring complex conversion operations to
satisfy the compiler. This convenience comes at the risk of specifying expressions that may not
yield correct results for all possible input values. But these risks can be mitigated by the use of
linting or formal checking tools. SystemVerilog maintains the ability to automatically convert
between scalar and some aggregate types. Packed struct and union aggregate types have a well-
defined translation to and from scalar bit vectors and can thus be automatically converted.

SystemVerilog does offer strong data typing with the higher-level data types. Unpacked struct
and union as well as class cannot be freely mixed amongst themselves or with scalar data types.
The cast_assign operator allows a user to perform an explicit type conversion. Otherwise, only
instances of compatible types can be assigned to variables or specified as actual argument values.

2.2 Time Units

Time values in VHDL were always specified with explicit units. Verilog only allowed the
specification of time as a number of units, where units were determined by the last `timescale

SNUG Boston 2003 3 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

directive. To avoid compile-order timing problems, Verilog guidelines specified that any module
containing timing delays should have a `timescale directive.

SystemVerilog has the ability to add a VHDL-like unit to a time delay. There must be no space
between the time value and the unit suffix. For example “1ns” is correct whereas “1 ns” is
incorrect.

SystemVerilog also retains full backward capability with existing `timescale directives.
SystemVerilog also adds the new timeunit and timeprecision keywords, which can be added to a
module to replicate the `timescale functionality locally to a module.

2.3 Enumerated Types

Without enumerated types, Verilog engineers had to settle with parameters, which required
assignment when the parameters were declared or substitution with preprocessor symbols.
VHDL could always easily display enumerated names in a waveform display while Verilog
engineers had to test the contents of a bus in a case statement and assign string values to a string-
variable (a sized reg-variable) and then display the variable with an ASCII radix. This was
always awkward and more difficult in Verilog.

SystemVerilog has enumerated types similar to VHDL. Enumerals can be abstract symbolic
values or, unlike VHDL, be assigned specified numerical values that will be used in their
physical implementation or to automatically convert to and from other scalar values.

By default, SystemVerilog enumerated types are 2-state integers, but SystemVerilog allows an
enumerated type to be declared as a 4-state type, which can be very useful for certain types of
designs including FSM designs[4].

2.4 Records

SystemVerilog's struct is functionally equivalent to VHDL's record. Unique to SystemVerilog is
the concept of a packed struct. A packed struct is automatically mapped into an equivalent scalar
bit vector value. It allows either traditional field access into the structure or bit-select or a part
select of the structure as if it had been declared as a single scalar variable. It also allows
automatic conversion when assigning to and from scalar variables or other packed structures.

2.5 Multidimensional Arrays

Multidimensional arrays were added to Verilog-2001.

SystemVerilog also includes the VHDL-like array attribute functions $left, $right, $low, $high,
$increment, $length and $dimensions. SystemVerilog also adds the concept of multiple packed
dimensions for easier manipulation of multiple slices of an array or the entire array itself in a
single statement.

SNUG Boston 2003 4 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

2.6 Arrays of Arbitrary Type

VHDL has allowed arrays of arbitrary types, but Verilog did not permit arrays of non-integer
types, such as real data types. SystemVerilog permits declarations of arrays of arbitrary types
including real, object handles and events.

2.7 Named Array Subtypes

VHDL has the ability to pre-define “standard” array configurations by creating a subtype for
them. The type name can then be reused instead of always requiring the specification of an array
type for every variable.

subtype A_BYTE is STD_LOGIC_VECTOR(7 downto 0);

variable WORD: STD_LOGIC_VECTOR(15 downto 0);
variable BYTE: A_BYTE;

BYTE := WORD(15 downto 8);

The typedef statement in SystemVerilog can be used to accomplish the same thing.

typedef bit [7:0] byte_t;
bit [15:0] word;
byte_t a_byte;

initial begin
 a_byte = word[15:8];
 ...
end

2.8 Unconstrained Arrays

SystemVerilog includes one-dimensional dynamic arrays whose size can be changed at runtime
using the built-in functions new[] and delete(), and whose size can be queried using the built-in
function size().

2.9 Unresolved Signals

VHDL has a std_ulogic type, an unresolved type that reports an error if more than one driver is
attached to the same signal. Verilog only had resolved types in the form of nets, most notably the
wire, wand and wor types.

SystemVerilog has new unresolved data types logic and bit. SystemVerilog permits either a
single-driver assignment to any variable or one or more procedural assignments to the same
variable. For designs that are built using only unresolved signals, the logic or bit types can be
used for all continuously driven or procedurally assigned signals and variables.

The 4-state logic and the 2-state bit data types probably would be better understood if they had
been named ulogic and ubit. The logic data type is roughly equivalent to the VHDL std_ulogic
type. Unlike the Verilog wire that permits multiple resolved drivers, both logic and the 2-state bit

SNUG Boston 2003 5 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

SystemVerilog types only allow one driving source. The wire type can still be used for automatic
resolution of drivers.

The one potential confusion surrounding the logic and bit keywords is that they represent
unresolved logic types in Verilog while std_logic and bit represent resolved types in VHDL.

I personally would like to see the logic and bit SystemVerilog keywords changed to ulogic and
ubit, to more closely reflect the VHDL-like behavior of these data types. Unfortunately the
Accellera committee, made up mostly of EDA vendors, would prefer to make no changes. If you
support changing these keywords to ulogic and ubit, please send email to the SystemVerilog -
Basic Committee, the Accellera subcommittee responsible for this feature, and request that logic
and bit be changed to the more VHDL-like ulogic and ubit. Requests should be sent to the
following email address: sv-bc@eda.org

The Accellera committees pay attention to user requests, but unless users care enough to request
this change, logic and bit will most likely continue to be the new unresolved data type keywords
in SystemVerilog.

2.10 Separate Entity & Architecture

VHDL separates the entity (port list declarations) from the architecture (internal functionality of
the design). Verilog does not separate the port list from the body of the module.

SystemVerilog has a VHDL-like entity-architecture separation through the use of the interface
construct. The SystemVerilog interface capability goes much further than simply separating the
port list declaration from the module (see section 5.6).

2.11 Iterated Instantiations

Verilog-2001 already has a generate for-loop, which is also supported by SystemVerilog.

It should be noted that when instantiating a contiguous range of instances, such as 16 data pads
or 32 address pads at the top-level ASIC module, the Verilog-1995 Array of Instance (AOI) is a
much more concise and better supported Verilog construct.

Guideline: think Array of Instance first, think Verilog generate statement second.

2.12 Conditional Instantiation

VHDL has an if-generate statement for conditional instantiation. SystemVerilog supports the
conditional generation statements added in Verilog-2001: the generate if-else statement and the
generate case statement.

2.13 Configurations

Verilog-2001 added a powerful configuration capability that includes inheritance.

SNUG Boston 2003 6 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

2.14 “others =>” in Literals

VHDL had a fill operation with the use of the others => specification. SystemVerilog enhanced
the fill operation capabilities of Verilog with the fill operations: '0, '1, 'z and 'x.

Prior to the introduction of the fill operators, Verilog engineers had to explicitly assign a pattern
of all 1's (example: reg [63:0] ones = 64'hFFFF_FFFF_FFFF_FFFF;). This was inconvenient for
a large number of bits or when the number of bits was unknown.

Unlike VHDL, the fill operators cannot be used with more complex types. They can only be used
to fill bits in a scalar variables.

3.0 Notable VHDL Constructs Missing from SystemVerilog

The following features present in VHDL do not (currently) have an equivalent in SystemVerilog.
In some cases, the feature was not often used in VHDL models. In other cases, a simple work-
around exists. In others, one can hope that they will be included in future versions of the
SystemVerilog language.

3.1 Scalar subtypes

VHDL has the ability to define a new scalar subtype that restricts the range of values that can be
assigned to a variable of that type. The subtype remains compatible with the base type, so
conversion functions are not necessary. Run-time errors are issued if an out-of-range value is
assigned.

subtype BYTE is INTEGER range 0 to 255;
variable MY_BYTE: BYTE;

MY_BYTE := (...) mod 256;

The most common use of scalar subtypes was to help the synthesis tool use the minimum number
of bits to implement a register or signal. Declaring a bit, logic or reg variable with the
appropriate number of bits achieves the same goal.

reg [7:0] MY_BYTE;

MY_BYTE = ...;

However, there is no out-of-range value checking on assignment (although linting and formal
tools can detect those). Note that for performance reasons many VHDL simulators offered the
capability to disable run-time out-of-bound checking for subtypes. Furthermore, it is not possible
to define scalar subtypes that do not correspond to whole number of bits, such as the pre-defined
positive or natural integer subtypes.

SNUG Boston 2003 7 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

3.2 New scalar types

VHDL can define new scalar types that are incompatible with the original base type. This can be
used to define values that are interpreted differently, such as a scaled fixed-point value. The
strong typing can ensure that scalar values with different interpretations are not accidentally
mingled.

type FIXPNT is INTEGER range 0 to 255;
variable SAMPLE: FIXPNT;

SAMPLE := FIXPNT(0.5 * 256);

In my experience, this is a rarely-used feature of VHDL. The same can be accomplished by using
one of the strongly-typed types, such as a struct or a class, to encapsulate the scalar value.

3.3 Enumeral Overloading

VHDL supports the reuse of the same symbols in different enumerated types. For example, the
enumeral '1' is used in the predefined CHARACTER, BIT and STD_ULOGIC types, each with a
different semantic. If the type of the overloaded enumeral cannot be determine by context, a
qualifying expression is necessary to indicate which particular enumeral is being specified.

SystemVerilog enumerated types cannot share the same enumeral symbol if they are in the same
scope level. Because they are in different scope, class-level enumerated types can reuse an
enumeral symbol used in a different class.

3.4 Subprogram Overloading

In VHDL, different subprograms can be defined with the same name. As long as their signature
(i.e. the type or number of their argument and return value) is unique, the compiler will be able
to determine which subprogram is called based on the context.

This useful feature is not readily available in SystemVerilog. Non-virtual methods in classes can
be overloaded with a different signature but they still hide the original declaration in the base
class; they do not co-exist at the same scope level.

3.5 Operator Overloading

A consequence of the lack of subprogram overloading is the absence of operator overloading in
SystemVerilog. Although useful for creating concise descriptions. they often create confusion if
used outside of an arithmetic context.

When operator overloading is used to create a completely new algebra, it is very difficult for
someone familiar with the language but unfamiliar with the functionality of the overloaded
operators to understand a model. For example, WAVES is a standard for modeling
manufacturing test vectors using pre-defined VHDL types and overloaded operators. Anyone not

SNUG Boston 2003 8 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

intimately familiar with the WAVES semantics of common VHDL operators (such as “+”) will
be unable to understand even the simplest model, despite being written in a familiar language.

Although operator overloading provides a convenient way to define concise operators to execute
user-defined operations, the same functionality can be captured in a Verilog function with no
misunderstanding or confusion with the pre-defined semantics of the language. It is my opinion
and the opinion of VHDL expert Janick Bergeron[12] that operator overloading is a worm better
left in the can.

3.6 Packages

The concept of packages as containers for shared declarations does not exist in SystemVerilog.
Packages can be emulated by locating variable declarations and subprograms in a port-less
module. The module need not be instantiated (if the variables need to be globally unique) and the
variables and subprograms it contains can be accessed using a hierarchical reference.

module pkg;
 task t;
 ...
 end_task;
endmodule

module model(...);
 initial begin
 ...
 pkg.t(...);
 ...
 end
endmodule;

Furthermore, with the availability of an object-oriented programming model, the package
encapsulation mechanism can be implemented using classes to encapsulate types, data and
methods. If a single global instance of the data members are required, similar to shared variables
or global signals in a VHDL package, static data members can be used as well as a singleton
pattern[8].

4.0 Features requested for VHDL-200x

There are features that have been requested by VHDL engineers that are readily available in
SystemVerilog. Most of these features have reasonable work-arounds in VHDL through the use
of a package or more verbose coding tricks, but a concise implementation of these features or a
higher-level of abstraction is often the desired solution. Otherwise, I would all still be coding
using assembler.

4.1 `ifdef conditional compilation

Conditional compilation is a simple and frequently used feature of Verilog or C to select between
different design implementations, different testbench options and to enable selective debug
monitors and code.

SNUG Boston 2003 9 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

The VHDL “if-generate” statement does offer limited conditional compilation capabilities but is
not as powerful as the `ifdef ability to conditionally compile any block of HDL code.

4.2 fork-join

The fork-join statement allows for the spawning of multiple processes and optionally waiting for
all of the processes to complete before continuing execution of other processes and code. VHDL
cannot dynamically spawn multiple processes.

SystemVerilog adds even more capability to the original Verilog fork-join statement by adding
two new join options: join_any and join_none.

The fork-join_any combination spawns multiple processes but only waits for the first process to
complete before continuing execution of following sequential code. The fork-join_none
combination spawns multiple processes but does not wait for any of the processes to complete
before continuing execution of the following sequential code.

4.3 Hierarchical Referencing

Verilog hierarchical referencing (also referred to as cross-module-referencing or XMR or CMR),
is a feature that is extensively used in Verilog testbenches. This feature allows simple probing
into or monitoring of buried signals without requiring that the signals be routed to the top of
design for observation. No declaration of global signals in a package is required to take
advantage of this feature nor any modification of the original monitored code is required.

4.4 Bitwise Reduction Operators

Verilog has the concise C-like unary reduction operators built into the language. VHDL
engineers use a package like the Synopsys-copyrighted std_logic_misc to introduce the
equivalent functionality via the pre-defined functions AND_REDUCE, NAND_REDUCE,
OR_REDUCE, NOR_REDUCE, XOR_REDUCE and XNOR_REDUCE.

4.5 Left-Hand Concatenation

The ability to do left-hand-side (LHS) concatenation is a feature that facilitates the modeling of
several functions. A classic example of opportune LHS concatenation is in the RTL modeling of
a barrel shifter. After making the appropriate declarations, a very simulation and synthesis
efficient parameterized barrel shifter model can be coded using one line of code, as shown in
Example 1.

SNUG Boston 2003 10 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

module barrel_shifter
 #(parameter shiftSIZE = 8, cntSIZE = 3)
 (output [(shiftSIZE-1):0] y,
 input [(cntSIZE-1):0] rotate_cnt,
 input [(shiftSIZE-1):0] a);

 wire [(shiftSIZE-1):0] tmp; // discarded unused-bits

 // The shifted MSBs will be truncated upon assignment to y
 assign {y,tmp} = {a,a} << rotate_cnt;
endmodule

Example 1 - Verilog-2001 barrel shifter model

In addition to the above barrel shifter model, Verilog arithmetic operations are often efficiently
coded using LHS concatenation.

4.6 Multiple Concatenation or Replication {{}}

Another operator that would be a nice addition to VHDL is the Verilog replication operator.
Verilog has the ability to replicate the contents of a bit or range of multiple bits using the
replication operator. The operation {8{inv}} is equivalent to the multiple concatenation of
{inv,inv,inv,inv,inv,inv,inv,inv}; The inv identifier could be a single bit replicated into an
equivalent 8-bit vector, or it could be multiple bits, such as 4-bit vector replicated into a 32-bit
vector

A simple bus inversion can be implemented with either of the following assignments:

assign busout = inv ? ~busin : busin; // using ternary if-else operator
assign busout = {8{inv}} ^ busin; // using replication operator

The {{}} operator is often used to do manual sign extension for an RTL model.

assign value16[15:0] = { {8{value[7]}, value[7:0] };

4.7 Repeat loops

Iterating for a constant number of iterations is a common operation. Although it can be easily
modeled using a for-loop construct, the intent is more easily conveyed (and the function
correctly coded) using a repeat loop.

4.8 Object Oriented Programming

SystemVerilog's class provides an object-oriented programming model. It supports virtual
methods and classes, single inheritance, data and method overloading, static data members and
constructors.

SNUG Boston 2003 11 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

4.9 Constraint Solving

The apparition of Hardware Verification Languages such as e, Vera and the SCV library
demonstrated the need for the ability to randomly generate coherent and interesting input stimuli.
“Randomly generate” is the easy part, which can be done using $random in Verilog or by using
one of the pre-defined random generation packages in VHDL. “Coherent and interesting” is the
hard part. It requires that the randomly generated values be subjected to constraints to ensure that
the set of random values creates valid stimulus. It also requires the ability to cross-constrain
multiple instances of those same variable sets to create interesting scenarios. Furthermore, it is
also necessary to be able to modify or add to those constraints to create corner cases or inject
errors[12].

SystemVerilog has a powerful constraint specification and control mechanism. Built on top of
the object-oriented framework, constraints are declarative and can be overloaded in user or test-
specific class extensions. Constraint blocks can also be defined out-of-file or turned off. All of
these offer much better control than the simple semantic of soft constraints and are more flexible
because no constraint is ever truly hard. Virtual methods can also be overloaded to insert directed
procedural data generation statements before or after the randomization process.

The constraint solving mechanism or technology is not specified in the language. It is left to the
implementers of the language. But directives, such as solve before, can be used to help the solver
provide better distribution of solutions for a given variable.

4.10 Standard C Interface

For as long as there have been models, engineers have wanted the ability to compile their C-
algorithms directly with their HDL simulations.

VCS has had the ability to compile C-code with Verilog for years, but users have been reluctant
to use the feature, fearing that any code written to take advantage of this feature would not be
portable to other simulators, if needed.

SystemVerilog has standardized the C-interface to the SystemVerilog language making it
possible for Verilog code to call C-functions and C-code to call SystemVerilog functions. With
the C-interface standardized to SystemVerilog, users can now compile their C-code and
SystemVerilog code together to take advantage of the high-level algorithmic and architectural
capabilities of C programs and the efficient HDL styles of a Verilog-VHDL-like language.

5.0 Additional SystemVerilog Features Not Found in VHDL

5.1 Logic-Specific Processes

VHDL has the process statement, Verilog has the equivalent always block, and SystemVerilog
adds a few nice logic-specific variations of the always block that will permit better linting and
checking of desired functionality by simulators, synthesis tools and formal tools.

SNUG Boston 2003 12 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

The always_comb block conveys the designer's intent to model combinational logic without the
need to expand the required combinational sensitivity list. In the following example a simulation
or synthesis tool may warn: “Combinational logic requested but latch was inferred.”

module ao1b (
 output bit_t q,
 input bit_t en, d);

 always_comb
 if (en) q <= d;
endmodule

Example 2 - Erroneous combinational logic example modeled using always_comb and detected by the SystemVerilog
compiler

The always_latch block conveys the designer's intent to model latched logic, again without the
need to expand the required latch sensitivity list. In the following example a simulation or
synthesis tool may warn: “Latch requested but combinational logic feedback loop inferred.”

module lat1b (
 output bit_t q,
 input bit_t en, d);

 always_latch
 if (en) q <= d;
 else q <= q;
endmodule

Example 3 - Erroneous latch-logic example modeled using always_latch and detected by the SystemVerilog compiler

The always_ff block conveys the designer's intent to model registered logic, but a sensitivity list
is required to show if sets and resets are synchronous or asynchronous and to also name the clock
and clock polarity. In the following example a simulation or synthesis tool may warn: “Incorrect
sensitivity list, flip-flop not inferred.”

module dff1b (
 output bit_t q,
 input bit_t d, clk, rst_n);

 always_ff @(clk, rst_n)
 if (!rst_n) q <= 0;
 else q <= d;
endmodule

Example 4 - Erroneous sequential logic example modeled using always_ff and detected by the SystemVerilog compiler

One potentially exciting enhancement related to the always_ff block is the future possibility to do
RTL modeling of Dual-Data Rate (DDR) flip-flops. Consider the following example, which
would be illegal with current synthesis tools (because the clk signal does not have a required
posedge or negedge qualifier):

SNUG Boston 2003 13 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

module ddrff (
 output bit_t q,
 input bit_t d, clk, rst_n);

 always_ff @(clk, negedge rst_n)
 if (!rst_n) q <= 0;
 else q <= d;
endmodule

Example 5 - DDR flip-flop modeled using the new SystemVerilog always_ff construct

Future synthesis tools could read this example, determine the design intent (always_ff ==
registered logic), recognize that the clk signal is not part of any “if” or “if-else” tests and must
therefore be a clock that triggers on both edges of the clock and the resulting logic should
therefore be a DDR flip-flop. Naturally, the synthesis tool would only permit one signal in an
always_ff block to be listed without a corresponding posedge or negedge qualifier. If this were a
typical always block, the synthesis tool would not know if combinational or sequential logic was
intended and would simply report an error.

The always_comb, always_latch and always_ff logic-specific processes are small but very useful
enhancements for RTL coders.

5.2 Implicit Port Connections

Verilog and VHDL have both had the ability to instantiate modules using either positional or
named port connections. Positional ports are subject to mis-ordered incorrect connections, which
is why most experienced companies have internal guidelines requiring the use of named port
connections. Unfortunately the use of named port connections in a top-level ASIC or FPGA
design is typically a very verbose and redundant set of connections that requires multiple pages
of coding to describe. Often, most of the top-level module port names match the equivalent net
or bus connections.

Whenever a design review is conducted using a verbose top-level model, the reviewing engineers
always ask the same question, “did you simulate it?” The instantiations are so tedious and
verbose that nobody intends to read and verify every connection in the HDL design.

SystemVerilog addresses the top-level verbosity issue with two new implicit port connection
enhancements that have no equal in VHDL: .name and .* connection.

5.2.1 The .name implicit port connection enhancement

Whenever the port name and size matches the connecting net or bus name and size, the port
name can be listed just once with a leading period as shown below.

cpu u1 (.data(data), .addr(addr), .dval(dval),
 .aval(aval), .clk(clk), .rst_n(rst_n)); // Verilog-2001 style

cpu u1 (.data, .addr, .dval, .aval, .clk, .rst_n); // SystemVerilog style

SNUG Boston 2003 14 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

5.2.2 The .* implicit port connection enhancement

Just like the .name implicit port connection enhancement, whenever port names and sizes match
the connecting net or bus names and sizes, all like-named ports can be replaced with .* as shown
below.

cpu u1 (.data(data), .addr(addr), .dval(dval),
 .aval(aval), .clk(clk), .rst_n(rst_n)); // Verilog-2001 style

cpu u1 (.*); // SystemVerilog .* style

5.2.3 Important implicit port connection rules

There are six important rules related to the implicit port connection enhancements. They are:

(1) .name and .* implicit ports are not allowed to be mixed in the same instantiation.
Instantiating one module with .name implicit ports and another module with .* implicit ports
is permitted.

(2) .name or .* implicit ports are not allowed to be mixed in the same instantiation with
positional port connections.

(3) A named port connection is required if the port size does not match the size of the connecting
net or bus. For example: a 16-bit data bus connected to an 8-bit data port requires a named
port connection to show which of the 16 bits are connected to the 8-bit data port.

(4) A named port connection is required if the port name does not match the connecting net or
bus name. For example the 32-bit pad address named paddr connecting to a 32-bit addr port
would require a named port connections (... .addr(paddr), ...);

(5) A named port connection is required if the port is unconnected. For example. if the above
instantiations have an unconnected bus error (berr) port, the unconnected port must be listed
as a named empty port (... .berr(), ...);

(6) All nets or variables connected to the implicit ports must be declared in the instantiating
module, either as explicit net or variable declarations or as explicit port declarations.

Rule #6 requires that 1-bit nets be declared if the net is to be implicitly connected to a port of the
instantiated module. Similarly, multi-bit buses must still be declared. Implicit port connection
does not support automatic 1-bit net declaration.

My experience so far has shown that typically only a few dozen additional wire declarations are
required to take advantage of the .name and .* implicit port connection enhancements. The .*
enhancement can reduce 10 pages of top-level ASIC or FPGA instantiation code down to three
pages of equivalent code while highlighting the differences in the port connections.

5.2.4 Stronger port connection-typing

An interesting side-effect of the implicit port connection enhancements is that not only are the
coding styles more concise and less error prone, but the coding style actually imposes some
VHDL-like stronger typing on the port connections that did not previously exist in Verilog.

SNUG Boston 2003 15 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

Verilog allows connections of unequal sizes and then issues a port-size mismatch warning when
the design is elaborated. The .name and .* implicit instantiation enhancements require that all
sizes be matched; hence, reducing port-size instantiation errors.

Verilog allows unconnected ports to be omitted from the instantiation port list. The .name and .*
implicit instantiation enhancements require that all unconnected ports be listed; hence, reducing
instantiation errors related to accidental omission of ports.

Verilog does not require declaration of 1-bit nets and declaring 1-bit nets does not increase the
name checking of 1-bit nets. The .name and .* implicit instantiation enhancements require that
connections be made to declared nets and variables in the instantiating module. This means that
declarations will be required and tested in the instantiating module without the onerous use of the
Verilog-2001 `default_nettype none directive (which also requires the keyword wire to be added
to all net-ports).

The SystemVerilog designer will now get stronger size and declaration checking with an
enhancement that reduces top-level RTL coding by as much as 70%. A very nice trade-off!

The .* implicit port instantiation enhancement not only offers better port checking, it also makes
the code more concise and highlights net-connections that are exceptions to like-named
connections. Reviewers will more easily focus on the important parts of an upper-level netlist as
opposed to pages of redundant and error-prone verbose connections.

5.2.5 Potential implicit port connection problems

There is a new type of potential error associated with implicit port connections: what if a port
name accidentally and unintentionally matches a net name in the instantiating module? The .*
implicit connection enhancement will erroneously connect the same-named port and net together
and it will have to be debugged (a bug which may not be easy to find). This problem is similar to
the potential misconnection caused by scripts that automatically generate named port lists. In
both cases, the wrong port may be connected to a same-name net

This enhancement was actually added at the request of Intel engineers that had a very similar
capability with Intel's internal IHDL language. The SystemVerilog committee took the
opportunity to ask Intel engineers if they had encountered significant difficulties debugging the
problem described above. Intel engineers responded that they had seen the above problems but
that they were rare and relatively easy to find and correct.

5.2.6 Use it right! Don't blame the EDA tools!

Editorial note from Cliff Cummings - Some EDA tool developers are worried about this
enhancement because they are concerned that engineers will use it wrong, blame the EDA tools
when errors are reported and tie up EDA support resources to debug engineering mistakes. This
is a valid concern - stupid engineers doing stupid things and blaming the EDA tools.

SNUG Boston 2003 16 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

To all engineers that intend to use this extremely powerful enhancement - when EDA tools
report compile errors, please examine your code carefully before pointing the finger at the EDA
vendor. I do not want to give EDA tool development engineers reason to reject future powerful
enhancements due to a few stupid engineers!

I believe that the stronger port-typing will actually remove more support problems than will be
introduced by stupid engineers using the .* enhancement in a stupid way.

5.3 The SystemVerilog 3.1 Event Scheduler

SystemVerilog extends the Verilog event scheduler and adds event regions targeted at enhancing
verification and further standardizing PLI access into the event queue. These regions enable
functionality similar to that provided by VHDL postponed processes. Existing recommendations
and guidelines for RTL coding to avoid Verilog race conditions will remain the same when
coding with SystemVerilog[3][5][11].

The content and complexity of the new event scheduler is beyond the scope of this paper, but it
should be noted that the new event scheduler is 100% backward compatible with the IEEE
Verilog event queues and offers new event regions that will further reduce any potential race
conditions that could have occurred between assertions, testbench code and RTL models without
any degradation of simulation performance.

5.4 Unions

SystemVerilog has the concept of a union. Like C's union, they provide a mechanism to store
and manipulate different data representations in a single storage area. Unions can be packed to
enable automatic conversion to and from scalar variables or access the content of the union using
bit slicing[1].

5.5 Sparse Arrays

SystemVerilog has associative arrays that are ideal for modeling sparse arrays, such as very large
memory spaces. This capability previous was handled in some Verilog simulators using a
pragma or by using the DAMEM PLI code to model memories as dynamics sparse arrays[2].
Sparse arrays had to be similarly modeled using linked lists of records in VHDL.

5.6 Interfaces

SystemVerilog introduces the interface, a construct that, at it's lowest level, is a record-like
bundle of signals encapsulated in a common interface block. It can be extended in advanced
interfaces to include legal testing tasks, and powerful interface assertion checking.

One significant advantage related to the use of an interface is that now, “somebody owns the
bus!”

SNUG Boston 2003 17 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

Using interfaces means that instead of multiple engineers defining port connections at opposite
ends of a bus, one engineer will encapsulate the bus connectivity and functionality into an
interface and allow other team members to connect the interface to their piece of the design.

The concept and use of an interface by designers will take time to absorb and fully exploit.

5.6.1 Interface Data Types

Since an interface generally describes a variable that is driven from one module and read by
another, in general, interface signals should be declared using variable types and not nets.
Declaring wires in an interface is almost always an error. The exceptions are bi-directional buses
or multiply driven signals as used in specific logic designs like one-hot multiplexers or bus
crossbars.

5.6.2 Modports

Once a bundle of signals has been added to an interface, the keyword modport can be used to add
port direction information to those signals that will be connected to modport-specified modules.
The modport defines the direction of the signals with respect to the module that instantiates the
interface into the module port header.

Typically, there will be two (or more) modports in each interface. In the case of standard bus
interfaces, there will typically be one modport to describe the initiator device and another
modport to describe the target device. Both use the same signals but the direction of the signals
are typically reversed between the two devices.

Standard interfaces will frequently have sender-modport signals and receiver-modport signals.
There may also be unusual bus interfaces that describe a three-way connection using three
different subsets of a collection of signals, each with a unique modport description. It probably
will be rare to build an interface with only one modport.

In the absence of modport declarations, net types default to inout ports and variables default to a
rather unusual new SystemVerilog port type called a ref-port. Ref ports are not described in this
paper but their behavior is somewhat non-intuitive, which is why I give the following guideline:

Guideline: Declare and use modports for all interface signals.

Declaring modports will assign commonly understood port directions to all signals in an
interface.

5.6.3 Generic Interfaces

SystemVerilog also introduces the concept of a generic interface. Instead of instantiating a
specific interface, a module header can generically instantiate an interface using the keyword
interface, followed by an instance name. When the module is instantiated within another module,

SNUG Boston 2003 18 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

the interface that is connected to the instantiated module becomes the inherited interface within
the lower-level module.

Using generic interfaces requires careful planning to make sure that all interface port signals and
task names that are referenced from the module, exist in the interface that will be generically
connected.

5.6.4 Interface Testing Tasks and Functions

Adding low-level, pre-tested, read and write tasks and other useful verification tasks and
functions to an interface can make block-level verification and interface-connected designs
easier to test. Instead of writing the read and write routines within each block-level test, the block
test can be allowed to call the read and write tasks that are pre-coded and known to work with an
interface.

5.6.5 Interface Assertions

One very nice feature of interfaces is that assertions can be added to the interface. This means
that any design engineer or IP developer can add signal dependency and sequencing checks to an
interface to report a violation when the interface is being used incorrectly.

This can help an IP user or a verification engineer to quickly spot problems in how IP is being
used or in how a design is being tested. This reduces frustration on the part of the user or
verification engineer while simultaneously reducing the number of support calls or interruptions
related to simple and easily correctable mistakes.

5.7 Vera-Like Testbench Features

SystemVerilog adds Vera-like capabilities with a Verilog-like syntax. Powerful testbench
features include program blocks, clocking domains for well-timed signal sampling and stimulus
driving, semaphores, mailboxes, event sequencing and more.

5.8 Assertion Capabilities

SystemVerilog adds PSL-compatible assertion capabilities with a Verilog-like syntax. Assertion
capabilities include immediate and concurrent assertions, sequences, properties, multi-clock
support and binding properties to scopes or instances.

Useful assertion severity system tasks, assertion control system tasks and built-in assertion
functions are all part of SystemVerilog.

Accellera has announced its intention to merge SystemVerilog assertion and PSL assertion
capabilities and syntax in the next year.

SNUG Boston 2003 19 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

6.0 EDA Tool Support

One argument often posted against SystemVerilog is that it took years for vendors to support
VHDL-1993 and no vendor currently supports all of the Verilog-2001 features (by the time this
paper is published, one or more vendors may have full Verilog-2001 support). SystemVerilog
includes multiple complex new enhancements. Certainly it will take years for vendors to fully
support these features!

I believe this argument is flawed. Both VHDL-1993 and Verilog-2001 included new features that
had never been tried within their respective languages. The Standards bodies for both languages
proposed enhancements that they wanted without knowing exactly how the features would be
implemented. Similarly, vendors experienced some difficulty implementing new features with no
reference model.

The complex SystemVerilog enhancements were based on donations of working and successful
technologies. SystemVerilog 3.0 was largely based on the donation of the Superlog syntax and
SystemVerilog 3.1 was largely based on multiple donations from multiple sources, including the
Open Vera Assertions (OVA), Open Verification Library (OVL) assertions, additional Superlog
features and even Intel HDL (IHDL) syntax and capabilities. The fact that so many
SystemVerilog proposed features have already been implemented by one tool or another, has
contributed to unprecedented implementation of new features into a standard language product.

I fully expect vendors to implement SystemVerilog enhancements in record time and both
myself and noted VHDL expert, Janick Bergeron[12], are looking forward to using the new
features on near-future design and verification projects.

6.1 Linting Tools

SystemVerilog's scalar types are still not strongly typed or strongly sized. For many design
teams, a good linting tool and accompanying methodology will continue to make sense when
using SystemVerilog.

6.2 Legacy VHDL Code

I hope I have been successful at showing VHDL users that SystemVerilog possesses all of the
necessary features and capabilities to write models and testbenches without significant changes
in methodology or approaches. By following a few well-known modeling guidelines, it is
possible to write SystemVerilog models that are as reliable and as high-level as any VHDL
model. Companies and individuals who decide to adopt SystemVerilog for new projects should
have little difficulty in making the transition.

It is clear that the major difficulty will be in dealing with legacy VHDL models. SystemVerilog's
backward compatibility with Verilog does not present similar difficulties for legacy Verilog
designs. To that effect, two solutions are immediately apparent: translation and co-simulation.

SNUG Boston 2003 20 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

The VHDL-inspired features that are available in SystemVerilog will make translation of VHDL
models and verification suites into SystemVerilog easier to implement than past efforts to
translate VHDL into Verilog. However, the effort required to translate and debug working
VHDL designs may not be worth the investment. Given the current challenges in translating
RTL models – which have a simple and well-defined semantics in both language, it is unlikely
that an automated process will reliably translate arbitrary VHDL code, even with the availability
of similar language constructs.

It is more likely that users will require (and tool vendors will provide) SystemVerilog-VHDL co-
simulation environments to support simulation of new SystemVerilog code with existing VHDL
designs and testbenches. It will be important for such co-simulation environments to be able to
support VHDL designs embedded in SystemVerilog designs or testbenches, as well as
SystemVerilog designs embedded in VHDL designs or testbenches.

7.0 Conclusions

Engineers with VHDL experience may have last compared VHDL to Verilog-1995[9] syntax and
capabilities, unaware that Verilog-2001 added many VHDL-like features to the Verilog HDL.
VHDL engineers that want to run an updated comparison would do well to compare VHDL to
SystemVerilog 3.1. Not all SystemVerilog 3.1 features have been fully implemented yet, but
should be mostly available in by Q1 2004 from Synopsys[14].

VHDL is not dead. For better or for worse, U.S. military contracts still require contractors to
submit RTL-based designs using VHDL. But even better, the best features from VHDL have
been combined with the best features and syntax of Verilog to form a near-superset of both
languages. Engineers with a Verilog background will unknowingly benefit from VHDL features
that have been added to SystemVerilog and engineers with a VHDL background may do well to
call this new SystemVerilog language, SystemVHDL!

In addition to the best-of-class features from both Verilog and VHDL, SystemVerilog includes
powerful enhancements for even more powerful RTL coding, improved assertion based dynamic
and formal verification and an easy interface to C-coded architectural, algorithmic and
verification algorithms.

8.0 Acknowledgements
My sincere thanks to Paul Stein and Brian Kane for reviewing, correcting and offering
recommendations to improve the quality of this paper.

A special thanks to respected Verilog, VHDL and verification expert, Janick Bergeron, who
contributed significant information and answered important VHDL and Object Oriented
questions to help me compile this paper.

SNUG Boston 2003 21 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

References

[1] Brian W. Kernighan and Dennis M. Ritchie, “The C Programming Language, Second Edition,”
Prentice Hall, Upper Saddle River, NJ, 1988.

[2] Clifford E. Cummings, “Efficient Verilog Memory Modeling Using DAMEM,” International
Cadence Users Group Conference 1995.

[3] Clifford E. Cummings, “Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!,”
SNUG (Synopsys Users Group) 2000 User Papers, section-MC1 (1st paper), March 2000.

Also available at www.sunburst-design.com/papers

[4] Clifford E. Cummings, “Synthesizable Finite State Machine Design Techniques Using the New
SystemVerilog 3.0 Enhancements,” SNUG (Synopsys Users Group San Jose, CA 2003)
Proceedings, March 2003. Also available at www.sunburst-design.com/papers

[5] Clifford E. Cummings, “Verilog Nonblocking Assignments with Delays, Myths & Mysteries,”
SNUG (Synopsys Users Group Boston, MA 2002) Proceedings, September 2002.

Also available at www.sunburst-design.com/papers

[6] Don Mills and Clifford E. Cummings, “RTL Coding Styles That Yield Simulation and Synthesis
Mismatches,” SNUG (Synopsys Users Group) 1999 Proceedings, section-TA2 (2nd paper), March
1999. Also available at www.lcdm-eng.com/papers.htm and www.sunburst-design.com/papers

[7] Douglas J. Smith, “HDL Chip Design,” Doone Publications, Madison, AL., January 1997.

[8] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns - Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994, ISBN 0-20163361-2

[9] IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language, IEEE Computer Society, IEEE, New York, NY, IEEE Std 1364-1995

[10] IEEE Standard Verilog Hardware Description Language, IEEE Computer Society, IEEE, New York,
NY, IEEE Std 1364-2001

[11] Janick Bergeron, Writing Testbenches, Functional Verification of HDL Models, 2nd edition, Kluwer
Academic Publishers, 2003

[12] Janick Bergeron, personal communication

[13] John Cooley, “VHDL, The New Latin,” EE Design, April 7, 2003,
www.eedesign.com/columns/industry_gadfly/OEG20030407S0056 &
www.deepchip.com/gadfly/gad040703.html

[14] Michael Santarini, “DVCon: SystemVerilog key to new design paradigm,” EE Design, February 24,
2003, www.eedesign.com/printableArticle?doc_id=OEG20030224S0068

[15] Stephen Bailey, “Comparison of VHDL, Verilog and SystemVerilog,” Available for download from
www.model.com

[16] Stuart Sutherland, “Interfacing C-Language Models to Verilog Simulations Using the Verilog PLI,”
IHDL (International HDL Conference) 2000, Tutorial 7, March 2000.

[17] SystemVerilog 3.0 Accellera's Extensions to Verilog, Accellera, 2002, freely downloadable from:
www.systemverilog.org

[18] SystemVerilog 3.1 Accellera's Extensions to Verilog, Accellera, 2003 freely downloadable from:
www.systemverilog.org

SNUG Boston 2003 22 SystemVerilog - Is This The Merging
Rev 1.1 of Verilog & VHDL?

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 21 years of ASIC, FPGA and system design experience and 11 years of Verilog,
synthesis and methodology training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (VSG) since 1994, is the
only Verilog and SystemVerilog trainer to co-develop and co-author the IEEE 1364-1995 &
IEEE 1364-2001 Verilog Standards, the IEEE 1364.1-2002 Verilog RTL Synthesis Standard and
the Accellera SystemVerilog 3.0 & 3.1 Standards.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Sunburst Design, Inc. offers Verilog, Verilog Synthesis and SystemVerilog training courses. For
more information, visit the www.sunburst-design.com web site.

Email address: cliffc@sunburst-design.com

An updated version of this paper can be downloaded from the web site: www.sunburst-
design.com/papers

(Data accurate as of September 8th, 2003)

