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1.0  Introduction
The Accellera SystemVerilog 3.0 Standard[11], released at DAC 2002, includes many enhancements to the IEEE
Verilog-2001 hardware description language[7]. A few of these enhancements were added to assist in the efficient
development of Finite State Machine (FSM) designs.

The SystemVerilog enhancements were not only added to improve RTL coding capability, but also to improve
simulation debug and synthesis capabilities.

Before you can code an efficient FSM design using SystemVerilog 3.0 RTL enhancements, you need to know how
to code efficient Verilog-2001 FSM designs. Section 2.0 shows efficient Verilog-2001 styles for coding FSM
designs and Sections 10.0 shows and details SystemVerilog enhancements for FSM design.

Section 8.0 also details Synopsys DC 2002.05 FSM Compiler enhancements and their impact on standard FSM
designs.

1.1 FSM Coding Goals

To determine what constitutes an efficient FSM coding style, we first need to identify HDL coding goals and why
they are important. After the HDL coding goals have been identified, we can then quantify the capabilities of
various FSM coding styles.

The author has identified the following HDL coding goals as important when doing HDL-based FSM design:

• The FSM coding style should be easily modifiable to change state encodings and FSM styles.

• The coding style should be compact.

• The coding style should be easy to code and understand.

• The coding style should facilitate debugging.

• The coding style should yield efficient synthesis results.

1.2 Important coding style notes:

There are a few FSM coding guidelines that apply to all FSM coding styles[2]. The common guidelines are:

Guideline: Make each FSM design a separate Verilog module.

It is easier to maintain the FSM code if each FSM is a separate module, plus third-party FSM optimization tools
work best on isolated and self-contained FSM designs.

Guideline: Use parameters to define state encodings instead of the Verilog `define macro definition construct.

If an engineer creates a large ASIC or FPGA design with multiple state machines, it is not uncommon to reuse
state names such as IDLE or READ as shown in Figure 1. If `define macro definitions are used to code these
FSM designs, The compiler will report "macro redefinition" warnings and any testbench that probes the internal
FSM designs to extract state information will only have access to the last `IDLE or `READ state. Parameters are
constants that are local to a module and whenever a constant is added to a design, an engineer should think "use
parameters" first, and only use a global macro definition if the macro is truly needed by multiple modules or the
entire design.

Guideline: When creating Verilog constants, think parameters first, then find good justification before changing to
use a global `define macro.

Most Verilog constants should be coded using parameters0.
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Figure 1 - FSM design using `define macro definitions - NOT Recommended

Figure 2 - FSM design using parameters - Recommended
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After parameter definitions are created, the symbolic parameter names are used throughout the rest of the design,
not the state encodings. This means that if an engineer wants to experiment with different state encodings, only the
parameter values at the top of the module need to be modified while the rest of the Verilog code remains
unchanged.

Guideline: make state and next (next state) declarations right after the parameter assignments.

Some FSM-optimization tools require state parameter assignments to be declared before making the state and next
declarations. It is a good coding style and a good habit to make these declarations right after the state name
parameter declarations.

Guideline: Code all sequential always block using nonblocking assignments.

Guideline: Code all combinational always block using blocking assignments.

These two guidelines help to code a design that will not be vulnerable to Verilog simulation race conditions[4].

2.0 Review of standard Verilog FSM coding styles
There are proven coding styles to efficiently implement Verilog FSM designs. This section will show a two always
block style that implements an FSM design with combinational outputs and then five more styles will be shown to
implement an FSM design with registered outputs.

Figure 3 - fsm1 - Simple 4-state FSM design

The example used in this section to examine different FSM coding styles will be a simple 4-state fsm1 design,
with asynchronous low-true rst_n signal, a clock signal named clk, two inputs named go and ws (wait state)
and two outputs name rd (read) and ds (done strobe). Except where noted on the diagram, the outputs rd and ds
equal 0.

The state diagram for the fsm1 design is shown in Figure 3.

2.1 Two always block style with combinational outputs (Good Style)

The FSM block diagram for a two always block coding style is shown in Figure 4.
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Figure 4 - Moore FSM Block Diagram - two always block coding style

The two always block coding style, as shown in Example 1, uses one sequential always block (with assignments
coded using nonblocking assignments) and one combinational always block (with assignments coded using
blocking assignments). The sequential always block is typically just three lines of code.

The two always block style is an efficient coding style because output assignments are only required to be listed
once (at most) for each state in the case statement.

module fsm_cc1_2
  (output reg rd, ds,
   input      go, ws, clk, rst_n);

  parameter IDLE = 2'b00,
            READ = 2'b01,
            DLY  = 2'b11,
            DONE = 2'b10;

  reg [1:0] state, next;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) state <= IDLE;
    else        state <= next;

  always @(state or go or ws) begin
    next = 'bx;
    rd   = 1'b0;
    ds   = 1'b0;
    case (state)
      IDLE : if (go)      next = READ;
             else         next = IDLE;
      READ : begin
               rd = 1'b1;
                          next = DLY;



SNUG San Jose 2003 Synthesizable Finite State Machine Design Techniques
Rev 1.1 Using the New SystemVerilog 3.0 Enhancements

6

             end
      DLY  : begin
               rd = 1'b1;
               if (!ws)   next = DONE;
               else       next = READ;
             end
      DONE : begin
               ds = 1'b1;
                          next = IDLE;
             end
    endcase
  end
endmodule

Example 1 - fsm1 - two always block coding style (Recommended)

A summary of some of the important coding styles shown in the Example 1 code include:

• The combinational always block sensitivity list is sensitive to changes on the state variable and all of the
inputs referenced in the combinational always block.

• The combinational always block has a default next state assignment at the top of the always block.

• Default output assignments are made prior to the case statement (this eliminates latches and reduces the
amount of code required to code the rest of the outputs in the case statement and highlights in the case
statement exactly in which states the individual output(s) change).

• In the states where the output assignment is not the default value assigned at the top of the always block, the
output assignment is only made once for each state.

• There is an if-statement, an else-if-statement or an else statement for each transition arc in the FSM
state diagram. The number of transition arcs between states in the FSM state diagram should equal the number
of if-else-type statements in the combinational always block.

• For ease of scanning and debug, place all of the next assignments in a single column, as opposed to placing
inline next assignments that follow the contour of the RTL code.

A common trick that is used in all FSM coding styles is to make default X-assignments to the next variable at the
top of the always block, just under the sensitivity list.

2.1.1 X's help to debug the design during simulation
Simulation Trick: X-assignments help highlight bugs in the simulation because if you forget to make a next-
assignment somewhere in the combinational always block, the next state variable will go to all X's in the
waveform display at the point where the missing assignment should have occurred.

2.1.2 X's help to optimize the design during synthesis
Synthesis Tricks: X-assignments are treated as "don't cares" by synthesis tools so the X-assignment also informs
the synthesis tool that for any undefined state-encoding bit-pattern, the next state is a don't care. Some synthesis
tools also benefit from adding a case-default X-assignment to the next variable and all outputs to help
identify "don't cares" to the synthesis tool.

2.2 One sequential always block style with registered outputs - (Avoid this style!)

The FSM block diagram for a one always block coding style is shown in Figure 5.
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Figure 5 - Moore FSM Block Diagram - one always block coding style

The one always block coding style, as shown in Example 2, uses one large sequential always block (with
assignments coded using nonblocking assignments).

The one always block style is a verbose and somewhat error prone coding style because output assignments must be
made for every transition arc, as opposed to making output assignments just once for each state as was the case
with the two always block coding style.

When making output assignments, you need to think "when I transition to this next state, the output values will be
..."

For small FSM designs, this coding style is not too verbose, but it will be shown that for larger FSM designs, this
coding style may require 88% - 165% more code than equivalent three always block coding styles.

module fsm_cc1_1
  (output reg rd, ds,
   input      go, ws, clk, rst_n);

  parameter IDLE = 2'b00,
            READ = 2'b01,
            DLY  = 2'b11,
            DONE = 2'b10;

  reg [1:0] state;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) begin
      state <= IDLE;
      rd    <= 1'b0;
      ds    <= 1'b0;
    end
    else begin
      state <= 'bx;
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      rd    <= 1'b0;
      ds    <= 1'b0;
      case (state)
        IDLE : if (go) begin
                 rd <= 1'b1;
                              state <= READ;
               end
               else           state <= IDLE;
        READ : begin
                 rd <= 1'b1;
                              state <= DLY;
               end
        DLY  : if (!ws) begin
                 ds <= 1'b1;
                              state <= DONE;
               end
               else begin
                 rd <= 1'b1;
                              state <= READ;
               end
        DONE :                state <= IDLE;
      endcase
    end
endmodule

Example 2 - fsm1 - one always block coding style (NOT recommended!)

2.3 Three always block style with registered outputs (Good style)

The FSM block diagram for a three always block coding style is shown in Figure 6.

Figure 6 - Moore FSM Block Diagram - three always block coding style
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The three always block coding style, as shown in Example 3, uses two sequential always blocks (with assignments
coded using nonblocking assignments) and one combinational always block (with assignments coded using
blocking assignments). The first sequential always block is typically just three lines of code, the same as the two
always block coding style. The second always block is the combinational next state always block and is very
similar to the combinational always block of the two always block coding style, except that the output assignments
have been removed. The third always block tests the value of the next state assignment to determine what the
next registered output assignment should be.

The three always block style is an efficient coding style because output assignments are only required once for each
state and are placed into a separate sequential always block to register the outputs.

module fsm_cc1_3
  (output reg rd, ds,
   input      go, ws, clk, rst_n);

  parameter IDLE = 2'b00,
            READ = 2'b01,
            DLY  = 2'b11,
            DONE = 2'b10;

  reg [1:0] state, next;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) state <= IDLE;
    else        state <= next;

  always @(state or go or ws) begin
    next = 'bx;
    case (state)
      IDLE : if (go)  next = READ;
             else     next = IDLE;
      READ :          next = DLY;
      DLY  : if (!ws) next = DONE;
             else     next = READ;
      DONE :          next = IDLE;
    endcase
  end

  always @(posedge clk or negedge rst_n)
    if (!rst_n) begin
      rd <= 1'b0;
      ds <= 1'b0;
    end
    else begin
      rd <= 1'b0;
      ds <= 1'b0;
      case (next)
        READ : rd <= 1'b1;
        DLY  : rd <= 1'b1;
        DONE : ds <= 1'b1;
      endcase
    end
endmodule

Example 3 - fsm1 - three always block coding style (Recommended)
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2.4 Onehot coding styles

The index-parameter and encoded-parameter onehot FSM coding styles shown in this paper are variations of the
efficient three always block coding style shown in Section 2.3.

2.4.1 Index-parameter style with registered outputs (Good style)
This coding style is unique to Verilog. This coding style uses a reverse case statement to test to see if a case item
is "true" by using a case header of the form case (1'b1). Using this type of case statement ensures
inference of efficient comparison logic that only does 1-bit comparisons against the onehot bits of the state and
next vectors.

The key to understanding this coding style is to recognize that the parameter values no longer represent the
state encoding of the onehot FSM, instead they represent an index into the state and next vectors. This is an
index to the onehot bit that is being tested in the design.

module fsm_cc1_3oh
  (output reg rd, ds,
   input      go, ws, clk, rst_n);

  parameter IDLE = 0,
            READ = 1,
            DLY  = 2,
            DONE = 3;

  reg [3:0] state, next;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) begin
                  state       <= 4'b0;
                  state[IDLE] <= 1'b1;
    end
    else          state       <= next;

  always @(state or go or ws) begin
    next = 4'b0;
    case (1'b1) // synopsys parallel_case
      state[IDLE] : if (go)  next[READ] = 1'b1;
                    else     next[IDLE] = 1'b1;
      state[READ] :          next[ DLY] = 1'b1;
      state[ DLY] : if (!ws) next[DONE] = 1'b1;
                    else     next[READ] = 1'b1;
      state[DONE] :          next[IDLE] = 1'b1;
    endcase
  end

  always @(posedge clk or negedge rst_n)
    if (!rst_n) begin
      rd <= 1'b0;
      ds <= 1'b0;
    end
    else begin
      rd <= 1'b0;
      ds <= 1'b0;
      case (1'b1) // synopsys parallel_case
        next[READ] : rd <= 1'b1;
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        next[ DLY] : rd <= 1'b1;
        next[DONE] : ds <= 1'b1;
      endcase
    end
endmodule

Example 4 - fsm1 - indexed onehot coding style (Recommended)

2.4.2 Encoded-parameter style with registered outputs (Avoid this style!)
This coding style is identical to the three always block coding style shown in Section 2.3 except that the
parameters now show the encoded onehot patterns.

module fsm_cc1_3parm_oh
  (output reg rd, ds,
   input      go, ws, clk, rst_n);

  parameter IDLE = 4'b0001,
            READ = 4'b0010,
            DLY  = 4'b0100,
            DONE = 4'b1000;

  reg [3:0] state, next;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) state <= IDLE;
    else        state <= next;

  always @(state or go or ws) begin
    next = 4'bx;
    case (state)
      IDLE : if (go)  next = READ;
             else     next = IDLE;
      READ :          next = DLY;
      DLY  : if (!ws) next = DONE;
             else     next = READ;
      DONE :          next = IDLE;
    endcase
  end

  always @(posedge clk or negedge rst_n)
    if (!rst_n) begin
      rd <= 1'b0;
      ds <= 1'b0;
    end
    else begin
      rd <= 1'b0;
      ds <= 1'b0;
      case (next)
        READ : rd <= 1'b1;
        DLY  : rd <= 1'b1;
        DONE : ds <= 1'b1;
      endcase
    end
endmodule

Example 5 - fsm1 - encoded onehot coding style (NOT recommended!)
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Using this coding style generally infers large and slow synthesized designs, because this coding style is forcing
full-vector comparisons for both the state and next vectors.

This coding style will be shown to be synthesis-inefficient and should be avoided.

2.5 Output encoded style with registered outputs (Good style)

The FSM block diagram for an output encoded coding style is shown in Figure 7.

The output encoded FSM coding style shown in this paper is a variation of the efficient three always block coding
style shown in Section 2.3. The techniques used to choose the encodings for this coding style are explained in a
separate paper[3].

Figure 7 - Moore FSM Block Diagram - output encoded coding style

The output encoded coding style, as shown in Example 6, uses one sequential always block (with assignments
coded using nonblocking assignments), one combinational always block (with assignments coded using blocking
assignments) and one continuous assignment to assign the significant state bits to the appropriate output signals.
The first sequential always block is typically just three lines of code, the same as the three always block coding
style. Second always block is the combinational next state always block and is the same as the combinational
always block of the three always block coding style. The continuous assignment assigns state bits to FSM outputs.
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module fsm_cc1_3oe
  (output rd, ds,
   input  go, ws, clk, rst_n);

  parameter IDLE = 3'b0_00,
            READ = 3'b0_01,
            DLY  = 3'b1_01,
            DONE = 3'b0_10;

  reg [2:0] state, next;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) state <= IDLE;
    else        state <= next;

  always @(state or go or ws) begin
    next = 'bx;
    case (state)
      IDLE : if (go)  next = READ;
             else     next = IDLE;
      READ :          next = DLY;
      DLY  : if (!ws) next = DONE;
             else     next = READ;
      DONE :          next = IDLE;
    endcase
  end

  assign {ds,rd} = state[1:0];
endmodule

Example 6 - fsm1 - output encoded coding style (Recommended)

Since the registered outputs are also shared as part of the state encoding, this coding style typically uses fewer flip-
flops than the equivalent three always block coding style and is therefore usually the most area-efficient design
style when synthesized.
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3.0 fsm7 Example - 2 inputs, 1 output, 10 states and 20 transition arcs
The fsm7 design is an example of a 10 state FSM design with an average number of transition arcs and one
output. The block diagram for the fsm7 design is shown in Figure 8.

Figure 8 - fsm7 - 10-state FSM design, some transition arcs, 1 output

3.1 fsm7 - one always blocks style (Avoid this style!)

The fsm_cc7_1 design is the fsm7 design implemented with one always block. The actual one always block
code for the fsm7 design is listed in Section 15.1.

The one always block version of the fsm7 design requires 79 lines of code (coding requirements are compared in
6.0).

3.2 fsm7 - three always blocks style (Good style)

The fsm_cc7_3 design is the fsm7 design implemented with three always blocks. The actual three always block
code for the fsm7 design is listed in Section 15.2.

The three always block version of the fsm7 design requires 56 lines of code (coding requirements are compared in
6.0).
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4.0 fsm8 Example - 4 inputs, 3 outputs, 10 states and 26 transition arcs
The fsm8 design is an example of a more complex 10 state FSM design with more transition arcs and three
outputs. The block diagram for the fsm8 design is shown in Figure 9.

Figure 9 - fsm8 - 10-state FSM design, multiple transition arcs, 3 outputs

4.1 fsm8 - one always blocks style (Avoid this style!)

The fsm_cc8_1 design is the fsm8 design implemented with one always block. The actual one always block
code for the fsm8 design is listed in Section 16.1.

The one always block version of the fsm8 design requires 146 lines of code (coding requirements are compared in
6.0).

4.2 fsm8 - three always blocks style (Good style)

The fsm_cc8_3 design is the fsm8 design implemented with three always blocks. The actual three always block
code for the fsm8 design is listed in Section 16.2.

The three always block version of the fsm8 design requires 82 lines of code (coding requirements are compared in
6.0).
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5.0 prep4 Example - 8-bit input, 8-bit output, 16 states and 40 transition arcs
The prep4 design is an example of a complex 16 state FSM design with multiple transition arcs and an 8-bit
output[9]. The block diagram for the prep4 design is shown in Figure 10.

Figure 10 - prep4 - 16-state FSM design, multiple transition arcs, 8-bit output

5.1 prep4 - one always blocks style (Avoid this style!)

The prep4_1 design is the prep4 design implemented with one always block. The actual one always block code
for the prep4 design is listed in Section 17.1.

The one always block version of the prep4 design requires 197 lines of code (coding requirements are compared
in 6.0).

5.2 prep4 - three always blocks style (Good style)

The prep4_3 design is the prep4 design implemented with three always blocks. The actual three always block
code for the prep4 design is listed in Section 17.2.

The three always block version of the prep4 design requires 105 lines of code (coding requirements are compared
in 6.0).
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6.0 Coding benchmarks for standard FSM coding styles
To evaluate the coding effort required to code the fsm1, fsm7, fsm8 and prep4 FSM designs using one always
block, two always blocks, three always blocks, three always blocks with indexed onehot style, three always blocks
with state-encoded onehot state, and output encoded (two always blocks an one continuous assignment), the
number of lines of code were measured and put into graph form as shown in Table 1.

Lines of Code

0

50

100

150

200

250

1 Always
2 Always
3 Always
Indexed Onehot
Parameter Onehot
Output Encoded

1 Always 43 79 146 197

2 Always 38 51 80 124

3 Always 42 56 82 105

Indexed Onehot 45 54 85 107

Parameter Onehot 42 54 82 104

Output Encoded 29 49 55 82

fsm1 fsm7 fsm8 prep4

Table 1 - RTL Coding Effort

Note that for small FSM designs, the number of lines of code for all coding styles is almost equal, except for the
very efficient output encoded style, but as FSM designs increase in size and complexity, we see from the examples
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chosen (fsm7, fsm8 and prep4) that the additional effort required to code a one always block FSM design
increases by 41%-165% over comparable three always block and output encoded FSM styles.

What does not show up in the graph is that the one always block FSM style is more error prone since output
assignments must be made for every transition arc instead of every state, and the output assignments always
correspond to output assignments for the next state that we are about to transition to, not the state that we are
currently in.

7.0 Synthesis benchmarks for standard FSM coding styles
To evaluate the synthesis efficiency of the fsm1, fsm7, fsm8 and prep4 FSM designs using one always block,
two always blocks, three always blocks, three always blocks with indexed onehot style, three always blocks with
state-encoded onehot state, and output encoded coding styles, each design was compiled with at least two different
timing goals and the resultant timing and area for each compiled design was reported and put into graph form.

The timing goals were arrived at experimentally and chosen as follows:

• fsm1 design: create_clock clk with periods of 3.0ns and 4.0ns.

• fsm7 design: create_clock clk with periods of 3.0ns and 4.5ns.

• fsm8 design: create_clock clk with periods of 3.0ns, 5.5ns and 6.0ns.

• prep4 design: create_clock clk with periods of 6.0ns and 7.5ns.

To quickly measure the worst case clock period for each design, a script was setup that would set the desired clock
period, compile the design, then set the clock period to 0 and report timing. Setting the clock period to 0 after
compiling the design meant that every design would report VIOLATION warnings (very easy to search for this
keyword in report files) and the worst case period would be reported as a negative number. All I had to do was
search for VIOLATION and change the value from negative to positive to extract the timing values I was
interested in.

No effort was made to set input and output timing constraints. All designs were compiled after issuing a single
create_clock command. This obviously is not good enough for real designs but it gave a good idea of the
synthesizable qualities of the various FSM coding styles chosen for this paper.

It should also be noted that the two always block coding style always showed some of the best results, but those
numbers should be viewed with some skepticism. Remember that the combinational outputs for those designs will
consume a significant portion of the next clock period, leaving less time for the input-logic that is driven by the
FSM outputs. This is one reason we generally try to register outputs from modules when doing RTL coding, to
ensure that the down-stream design still has most of the clock period to synthesize efficient input hardware.

7.1 fsm1 synthesis results

The fsm1 design was compiled using clock periods of 3ns and 4ns. case-default-X assignments were also
added to the design to see if any timing and area improvements could be achieved.
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fsm1 - Synthesis Timing (Period)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

fsm1 (3ns) fsm1 (4ns) fsm1 def-X (3ns) fsm1 def-X (4ns)

fsm1 (3ns) 3.98 3.87 3.54 3.67 4.61 4.03

fsm1 (4ns) 3.94 3.92 4.14 3.94 4.61 4.03

fsm1 def-X (3ns) 3.98 3.87 3.54 3.67 4.98 3.69

fsm1 def-X (4ns) 3.94 3.92 4.14 3.88 4.98 3.95

1 Always 2 Always 3 Always Indexed Onehot
Parameter 

Onehot
Output Encoded

Table 2 - fsm1 - Synthesis Timing (Period)

fsm1 - Synthesis Area

0

20

40

60

80

100

120

fsm1 (3ns) fsm1 (4ns) fsm1 def-X (3ns) fsm1 def-X (4ns)

fsm1 (3ns) 55 27 50 67 99 50

fsm1 (4ns) 49 26 53 66 99 48

fsm1 def-X (3ns) 55 27 50 67 66 37

fsm1 def-X (4ns) 49 26 53 66 64 41

1 Always 2 Always 3 Always Indexed Onehot
Parameter 

Onehot
Output Encoded

Table 3 - fsm1 - Synthesis Area
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From Table 2 and Table 3 for the fsm1 design, we can see that the encoded parameter onehot FSM style was
inefficient in both timing and area. The superior area efficiencies of the two always block and output encoded styles
is not too surprising because the two always block style does not register the outputs and the output encoded style
shares output registers with state bits.

Aside from the parameter encoded onehot style, the timing values are comparable using any of the coding styles,
with small improvements noted using a clock period goal of 3ns and case-default-X coding added to the three
always block, indexed onehot and output encoded styles.

7.2 fsm7 synthesis results

The fsm7 design was compiled using clock periods of 3ns and 4.5ns. case-default-X assignments were also
added to the design to see if any timing and area improvements could be achieved.

From Table 4 and Table 5 for the fsm7 design, we can see that the encoded parameter onehot FSM style was
inefficient in both timing and area; however, both area and timing did improve when case-default-X
assignments were added to the RTL code. The two always block style again has slightly better area efficiency but
for this design the output encoded style did not demonstrate any area advantage over most coding styles.

For the fsm7 design, timing was slightly better using the one always block, two always block and indexed onehot
coding styles; however, neither changes to the clock period goal or case-default-X addition or omission could
consistently account for better results.

fsm7 - Synthesis Timing (Period)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

fsm7 (3ns) fsm7 (4.5ns) fsm 7 def-X (3ns) fsm7 def-X (4.5ns)

fsm7 (3ns) 5.54 4.95 5.22 4.93 6.35 5.84

fsm7 (4.5ns) 4.78 4.54 5.30 4.50 6.22 5.18

fsm 7 def-X (3ns) 4.59 4.27 5.22 4.93 5.30 5.27

fsm7 def-X (4.5ns) 4.54 4.41 5.30 4.76 4.97 5.54

1 Always 2 Always 3 Always Indexed Onehot
Parameter 

Onehot
Output Encoded

Table 4 - fsm7 - Synthesis Timing (Period)
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fsm7 - Synthesis Area

0

50

100

150

200

250

300

fsm7 (3ns) fsm7 (4.5ns) fsm7 def-X (3ns) fsm7 def-X (4.5ns)

fsm7 (3ns) 106 95 111 149 250 125

fsm7 (4.5ns) 104 71 108 145 239 136

fsm7 def-X (3ns) 85 67 111 147 153 101

fsm7 def-X (4.5ns) 92 57 108 138 160 107

1 Always 2 Always 3 Always Indexed Onehot
Parameter 

Onehot
Output Encoded

Table 5 - fsm7 - Synthesis Area

fsm8 - Synthesis Timing (Period)

0.00

2.00

4.00

6.00

8.00

fsm8 (3ns) fsm8 (5.5ns) fsm8 (6.0ns)

fsm8 def-X (3ns) fsm8 def-X (5.5ns) fsm8 def-X (6.0ns)

fsm8 (3ns) 5.93 6.09 6.90 5.49 7.24 6.82

fsm8 (5.5ns) 6.09 6.04 6.90 5.46 7.24 6.12

fsm8 (6.0ns) 6.14 6.09 7.56 5.98 7.56 6.13

fsm8 def-X (3ns) 5.73 5.51 6.85 5.48 6.73 5.83

fsm8 def-X (5.5ns) 5.80 5.62 6.85 5.49 6.71 5.79

fsm8 def-X (6.0ns) 5.99 6.00 6.85 5.98 7.04 6.00

1 Always 2 Always 3 Always
Indexed 
Onehot

Parameter 
Onehot

Output 
Encoded

Table 6 - fsm8 - Synthesis Timing (Period)
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7.3 fsm8 synthesis results

The fsm8 design was compiled using clock periods of 3ns, 5.5ns and 6ns. case-default-X assignments were
also added to the design to see if any timing and area improvements could be achieved.

From Table 6 and Table 7 for the fsm8 design, we can see that the encoded parameter onehot FSM style was
inefficient in both timing and area. When case-default-X assignments were added to the design, the timing
did not improve but the area did improve. For this design, the three always block style had timing results that were
somewhat poor. The two always block and output encoded styles had better area efficiency.

For the fsm8 design, timing was slightly better using the two always block and indexed onehot coding styles,
while adding case-default-X assignments helped improve the area efficiency of the encoded onehot style.

fsm8 - Synthesis Area

0

100

200

300

400

fsm8 (3ns) fsm8 (5.5ns) fsm8 (6.0ns)

fsm8 def-X (3ns) fsm8 def-X (5.5ns) fsm8 def-X (6.0ns)

fsm8 (3ns) 223 167 209 213 349 191

fsm8 (5.5ns) 192 192 204 198 362 187

fsm8 (6.0ns) 221 150 209 208 378 185

fsm8 def-X (3ns) 203 124 195 223 212 145

fsm8 def-X (5.5ns) 217 122 185 196 207 132

fsm8 def-X (6.0ns) 184 108 186 208 216 124

1 Always 2 Always 3 Always
Indexed 
Onehot

Parameter 
Onehot

Output 
Encoded

Table 7 - fsm8 - Synthesis Area

7.4 prep4 synthesis results

The prep4 design was compiled using clock periods of 6ns and 7.5ns. case-default-X assignments were also
added to the design to see if any timing and area improvements could be achieved.

From Table 8 and Table 9 for the prep4 design, we can see that the encoded parameter onehot FSM style was
inefficient in both timing and area and neither area nor timing improved when case-default-X assignments
were added to the RTL code. The two always block and output encoded styles again had better area efficiency.

For the prep4 design, timing was slightly better using the two always block and indexed onehot coding styles;
however, neither changes to the clock period goal or case-default-X addition or omission could consistently
account for better results.



SNUG San Jose 2003 Synthesizable Finite State Machine Design Techniques
Rev 1.1 Using the New SystemVerilog 3.0 Enhancements

23

prep4 - Synthesis Timing (Period)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

prep4 (6ns) prep4 (7.5ns) prep4 def-X (6ns) prep4 def-X (7.5ns)

prep4 (6ns) 7.69 7.60 8.68 6.79 9.18 8.41

prep4 (7.5ns) 7.97 7.50 8.69 7.49 8.89 8.15

prep4 def-X (6ns) 7.04 6.34 8.68 6.79 10.48 7.05

prep4 def-X (7.5ns) 7.49 7.46 8.69 7.45 10.57 7.49

1 Always 2 Always 3 Always Indexed Onehot
Parameter 

Onehot
Output Encoded

Table 8 - prep4 - Synthesis Timing (Period)

prep4 - Synthesis Area

0

100

200

300

400

500

600

700

800

prep4 (6ns) prep4 (7.5ns) prep4 def-X (6ns) prep4 def-X (7.5ns)

prep4 (6ns) 487 338 496 564 711 452

prep4 (7.5ns) 463 285 466 499 672 451

prep4 def-X (6ns) 553 290 496 581 703 473

prep4 def-X (7.5ns) 514 292 466 480 729 386

1 Always 2 Always 3 Always Indexed Onehot
Parameter 

Onehot
Output Encoded

Table 9 - prep4 - Synthesis Area
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8.0 DC-Ultra 2002.05 FSM Tool
Starting with DC-Ultra 2002.05, an enhanced FSM tool capability was added to the synthesis tools[8]. The DC-
Ultra version of the FSM tool replaced the old FSM tool that had additional RTL coding requirements and more
steps to achieve FSM optimizations.

The new switches added to DC-Ultra are:

fsm_auto_inferring = true
set_ultra_optimization

These commands basically tell DC to automatically recognize and optimize FSM designs from the Verilog RTL
source code.

There is one more FSM optimization switch that directs the DC FSM tools to look for reductions in the number of
states required by the FSM design. This switch is:

fsm_enable_state_minimization = true

These commands were used on the fsm8 and prep4 designs with the results shown in Table 10, Table 11, Table
12 and Table 13.

fsm8 - FSM Tool (Period)

0.00

2.00

4.00

6.00

8.00

fsm8 FSM-Tool (3ns) fsm8 FSM-Tool (5.5ns) fsm8 FSM-Tool (6.0ns)

fsm8 FSM-min (3ns) fsm8 FSM-min (5.5ns) fsm8 FSM-min (6.0ns)

fsm8 FSM-Tool (3ns) 5.83 5.09 5.83 5.49 5.01 6.82

fsm8 FSM-Tool (5.5ns) 5.76 5.42 5.76 5.46 5.34 6.12

fsm8 FSM-Tool (6.0ns) 5.95 6.00 6.00 5.98 5.98 6.13

fsm8 FSM-min (3ns) 5.31 5.09 5.31 5.49 4.98 6.82

fsm8 FSM-min (5.5ns) 5.49 5.42 5.49 5.46 5.50 6.12

fsm8 FSM-min (6.0ns) 5.98 6.00 5.98 5.98 5.95 6.13

1 Always 2 Always 3 Always
Indexed 
Onehot

Parameter 
Onehot

Output 
Encoded

Table 10 - fsm8 - FSM Tool (Timing)
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fsm8 - FSM Tool (Area)

0

50

100

150

200

250

fsm8 FSM-Tool (3ns) fsm8 FSM-Tool (5.5ns) fsm8 FSM-Tool (6.0ns)

fsm8 FSM-min (3ns) fsm8 FSM-min (5.5ns) fsm8 FSM-min (6.0ns)

fsm8 FSM-Tool (3ns) 196 116 196 213 194 191

fsm8 FSM-Tool (5.5ns) 197 97 197 198 170 187

fsm8 FSM-Tool (6.0ns) 181 95 176 208 190 185

fsm8 FSM-min (3ns) 164 116 164 213 177 191

fsm8 FSM-min (5.5ns) 158 97 156 198 173 187

fsm8 FSM-min (6.0ns) 154 95 156 208 178 185

1 Always 2 Always 3 Always
Indexed 
Onehot

Parameter 
Onehot

Output 
Encoded

Table 11 - fsm8 - FSM Tool (Area)

Comparing the results of the fsm8 design with and without the DC-Ultra FSM tool shows that the FSM tool made
small improvements in timing and area for the one always, two always and three always block designs. The
indexed onehot and output encoded designs experienced no improvement, probably because they were not
recognized as standard FSM coding styles. The parameter onehot design made significant improvements in both
timing and area.

It is also interesting that using the DC-Ultra FSM switches appears to have created equivalent designs for the one
always and three always block coding styles. This appears to indicate that the FSM tool will build the same FSM
designs from a standard FSM coding style whether it is the much more verbose one always block style or the much
more concise three always block coding style.

Enabling the fsm_enable_state_minimization switch on the fsm8 design reported messages that one of
the states had been deleted. I ran the gate-level simulation to ensure that the design still functioned the same (and
it did) but I have not taken the time to analyze exactly how DC-ultra modified the original design and why it still
works. This may be a future research topic worthy of exploration. It should be noted that the Synopsys equivalence
checking tool, Formality, does not support state minimization checking[10]. It is not likely that any tool would
easily  support equivalence checking of a modified and state-reduced FSM design.

Before writing out the compiled gate-level design, it is a good idea to set the following switch:

verilogout_show_unconnected_pins = true

This switch writes forces DC to write out the gate level netlist so that all of the unused pins, such as the inverted
QN outputs from flip-flops as shown below, are listed in the netlist, which eliminates unnecessary warnings about
"unconnected pins" or "different number of ports."

FD2 y1_reg ( .D(N153), .CP(clk), .CD(rst_n), .Q(y1), .QN() );
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The same optimizations were run on the prep4 design, with similar improvements. The only difference was that
the fsm_enable_state_minimization switch did not cause any notable difference. The
fsm_enable_state_minimization switch did not issue any messages about states being deleted, so I
assume no such optimization was possible and therefore the optimization with and without this switch being set
were the same.

prep4 - FSM Tool (Period)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

prep4 FSM-Tool (6ns) prep4 FSM-Tool(7.5ns) prep4 FSM-min (6ns) prep4 FSM-min (7.5ns)

prep4 FSM-Tool (6ns) 7.10 6.57 7.10 6.79 7.01 8.41

prep4 FSM-Tool(7.5ns) 7.49 7.49 7.49 7.49 7.49 8.15

prep4 FSM-min (6ns) 7.10 6.57 7.10 6.79 7.01 8.41

prep4 FSM-min (7.5ns) 7.49 7.49 7.49 7.49 7.49 8.15

1 Always 2 Always 3 Always Indexed Onehot
Parameter 

Onehot
Output 

Encoded

Table 12 - prep4 - FSM Tool (Timing)

prep4 - FSM Tool (Area)

0

100

200

300

400

500

600

700

800

900

prep4 FSM-Tool (6ns) prep4 FSM-Tool (7.5ns) prep4 FSM-min (6ns) prep4 FSM-min (7.5ns)

prep4 FSM-Tool (6ns) 606 289 606 564 800 452

prep4 FSM-Tool (7.5ns) 578 285 578 499 739 451

prep4 FSM-min (6ns) 606 289 606 564 800 452

prep4 FSM-min (7.5ns) 578 285 578 499 739 451

1 Always 2 Always 3 Always
Indexed 
Onehot

Parameter 
Onehot

Output 
Encoded

Table 13 - prep4 - FSM Tool (Area)
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9.0 Verliog-2001 Enhanced Coding Styles
Verilog-2001 is an IEEE Standard that includes multiple enhancements to the IEEE Verilog-1995 Standard, to
increase RTL and verification capabilities. Many of the enhancements have been implemented by vendors.

9.1 Verilog-2001 combined declarations

Verilog-2001 enhances port declarations to permit combined port direction and data type in the same declaration.
This enhancement reduces some of the redundancy associated with module port declarations. Example 7 shows an
8-bit register model where the q-port declaration combines both the output direction and reg data type into the
same declaration.

module regset1_n (q, d, clk, set_n);
  output reg [7:0] q;
  input      [7:0] d;
  input            clk, set_n);

  always @(posedge clk or negedge set_n)
    if (!set_n) q <= {8{1'b1}};
    else        q <= d;
endmodule

Example 7 - Verilog-2001 combined declarations

VCS, SystemSim and Design Compiler all support this enhancement.

9.2 Verilog-2001 ANSI style module ports

Verilog-2001 also enhances port declarations to permit combined port list, port direction and data type in the same
declaration. This is often referred to as ANSI-C style module port declarations and reduces some of the redundancy
associated with module port declarations. Example 8 shows an 8-bit register model where the q-port declaration
combines the module port, the output direction and the reg data type into the same declaration. This example
also combines the module port and the input direction declarations for all of the module inputs.

This Verilog-2001 enhancement significantly reduces the verbosity and redundancy of module port lists.

module regset2_n
  (output reg [7:0] q,
   input      [7:0] d,
   input            clk, set_n);

  always @(posedge clk or negedge set_n)
    if (!set_n) q <= {8{1'b1}};
    else        q <= d;
endmodule

Example 8 - Verilog-2001 ANSI style module ports

VCS and SystemSim support this enhancement but Design Compiler does not support this enhancement yet.

In order to test Verilog-2001 enhancements with all of the Synopsys tools, conditionally compiled module headers
(as shown in Example 9 for the fsm1 design) were added to each of the sample FSM designs, where the default
was to use non-ANSI-C style ports when the files were read by Design Compiler, but to use ANSI-C style ports
whenever the simulation switch +define+RTL was added to the command line.

`ifdef RTL
module fsm_cc1_1 (
  (output reg rd, ds,
   input      go, ws, clk, rst_n);
`else
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module fsm_cc1_1 (rd, ds, go, ws, clk, rst_n);
  output reg rd, ds;
  input      go, ws, clk, rst_n;
`endif
...

Example 9 - Conditionally compiled module headers to accommodate Synopsys DC ANSI port limitations

9.3 Verilog-2001 ANSI style parameters

To create a parameterized model using Verilog-2001 ANSI-C style ports, parameter values are often required
before the port declaration is made. Verilog-2001 added enhanced ANSI style declarations to allow parameters to
be declared and then used in the ANSI-C style port declaration. Example 10 shows an 8-bit register model where a
SIZE parameter is declared and used in the q and d-port declarations.

module regset3_n #(parameter SIZE=8)
  (output reg [SIZE-1:0] q,
   input      [SIZE-1:0] d,
   input                 clk, set_n);

  always @(posedge clk or negedge set_n)
    if (!set_n) q <= {SIZE{1'b1}};
    else        q <= d;
endmodule

Example 10 - Verilog-2001 ANSI style parameters

This Verilog-2001 enhancement supports the capability to code parameterized models with ANSI-C style ports.

9.4 Verilog-2001 implicit internal 1-bit nets

Prior to Verilog-2001, Verilog-1995[6] required that all internal 1-bit nets, driven by a continuous assignment, be
explicitly declared. This requirement was inconsistent with the fact that Verilog allowed any other identifier to
default to be a 1-bit wire if not declared. Verilog-2001 eliminated this annoying inconsistency in the Verilog
language. Example 11 shows a model where the low-true set_n module input signal is inverted to drive an
undeclared, high-true preset control signal to the 8-bit register.

module regset4_n (q, d, clk, set_n);
  parameter SIZE=8;
  output reg [SIZE-1:0] q;
  input      [SIZE-1:0] d;
  input                 clk, set_n);

  assign preset = ~set_n;

  always @(posedge clk or posedge preset)
    if (!preset) q <= {SIZE{1'b1}};
    else         q <= d;
endmodule

Example 11 - Verilog-2001 implicit internal 1-bit nets

9.5 Verilog-2001 @* combinational sensitivity list

Verilog-2001 added the much acclaimed @* combinational sensitivity list. The primary intent of this enhancement
was to create concise, error-free combinational always blocks. The @* basically means, "if Synopsys DC wants the
combinational signal in the sensitivity list, so do we!"

Example 12 and Example 13 show the Verilog-1995 and Verilog-2001 versions respectively of combinational
sensitivity lists for the combinational always block of any of the three always block fsm1 coding styles.



always @(state or go or ws)
begin
  ...
end

Example 12 - Verilog-1995 - combinational
sensitivity list

always @*
begin
  ...
end

Example 13 - Verilog-2001 - @* combinational
sensitivity list

The @* combinational sensitivity list as defined in the IEEE Verilog-2001 Standard can be written with or without
parentheses and with or without spaces as shown in Example 14. Unfortunately (* is the token that is used to open
a Verilog-2001 attribute, so there is some debate about removing support for all but the always @* form of this
combinational sensitivity list. In-house tools would probably also be easier to write if the in-house tools did not
have to parse anything but the most concise @* form. For these reasons, I recommend that users restrict their usage
of the combinational sensitivity list to the @* form.

        always @*
        always @ *
        always @(*)
        always @ ( * )

Example 14 - Legal Verilog-2001 @* combinational sensitivity lists

10.0 SystemVerilog enhancements
SystemVerilog 3.0 is an Accellera Standard conceived to make architectural, abstraction, RTL and verification
enhancements to IEEE Verilog-2001.

10.1 Enumerated types

Enumerated types allow a designer to implement an FSM design without thinking about the actual state encodings
that will be used in the design. SystemVerilog enumerated types then permit useful assignment of values to the
enumerated names to apply designer requirements to the FSM design.

10.1.1 Abstract enumerated names
Enumerated types can be declared without assigned values. This is useful early in a design project. Note that the
enum declaration in Example 15 defines the state names, IDLE, READ, DLY and DONE, but does not assign state
encodings to these state names. At this point in the design, the encoded state values are left unassigned or abstract.

module fsm_sv1a_3
  (output reg rd, ds,
   input      go, ws, clk, rst_n);

  enum {IDLE,
        READ,
        DLY,
        DONE,
        XX  } state, next;

  always @(posedge clk, negedge rst_n)
    if (!rst_n) state <= IDLE;
    else        state <= next;

  always @* begin
    next = XX;
    case (state)
      IDLE : if (go)  next = READ;
             else     next = IDLE;
      READ :          next = DLY;
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      DLY  : if (!ws) next = DONE;
             else     next = READ;
      DONE :          next = IDLE;
    endcase
  end

  always @(posedge clk, negedge rst_n)
    if (!rst_n) begin
      rd <= 1'b0;
      ds <= 1'b0;
    end
    else begin
      rd <= 1'b0;
      ds <= 1'b0;
      case (next)
        READ : rd <= 1'b1;
        DLY  : rd <= 1'b1;
        DONE : ds <= 1'b1;
      endcase
    end
endmodule

Example 15 - fsm1 example coded with SystemVerilog abstract enumerated types

10.1.2 Enumerated names with assigned state encodings
SystemVerilog enumerated type declarations can be updated to include user-defined values. This helps when trying
to define specific state encodings for an FSM design. Using a default enum declaration, the user-defined values
must be integer (non-4-state) values.

module fsm_sv1b_3
  ...
  enum {IDLE = 3'b00,
        READ = 2'b01,
        DLY  = 2'b10,
        DONE = 2'b11,
        XX   = 3'b111} state, next;
  ...
endmodule

Example 16 - fsm1 example modifications to use SystemVerilog assigned integer enumerated values

10.1.3 Enumerated names that permit X-assignments
As noted in Section 2.1.1 and Section 2.1.2, X-assignments help both simulation and synthesis. SystemVerilog
enumerated types permit non-integer values to be assigned, such as all X's to assist in design. To use non-integer
values, the enum type must be set to something like the reg type with a size, as shown in Example 17.

module fsm_sv1b_3
  ...
  enum reg [1:0] {IDLE = 2'b00,
                  READ = 2'b01,
                  DLY  = 2'b10,
                  DONE = 2'b11,
                  XX   = 'x   } state, next;
  ...
endmodule

Example 17 - fsm1 example modifications to use SystemVerilog assigned 4-state enumerated values
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10.1.4 Waveform display of enumerated names
A good reason to include enumerated types in a design is to permit useful display of the enumerated names and/or
values in a waveform display during design debug.

Figure 11 - Waveform display of enumerated types

At the time this paper was written, the exact mechanism for showing enumerated names and values in a waveform
display had not yet been fully defined in the SystemVerilog 3.0 or SystemVerilog 3.1 standards. The representation
shown in Figure 11 is one potential implementation.

10.2 @* and always_comb

Users can miss warnings from synthesis tools about missing combinational sensitivity list entries. @* is both a nice
shorthand for combinational sensitivity lists and it will help prevent bugs due to missing sensitivity list entries.

Verilog-2001 added the much anticipated @* combinational sensitivity list as described in Section 9.5.
SystemVerilog 3.0 added the always_comb procedural block which does almost the same thing as @* but also
descends functions and tasks to extract sensitivity list entries. Example 18 shows partial code from a Verilog-2001
version of the fsm1 design using the @* combinational sensitivity list while Example 19 shows the same partial
code from a SystemVerilog version of the fsm1 design using the always_comb combinational sensitivity list.

module fsm_sv1b_3
  ...
  always @* begin
    next = 'x;
    case (state)
    ...
  end
  ...
endmodule

Example 18 - @* combinational sensitivity list

module fsm_sv1b_3
  ...
  always_comb begin
    next = 'x;
    case (state)
    ...
  end
  ...
endmodule

Example 19 - always_comb combinational
sensitivity list



Differences that exist between @* and always_comb include:

• always_comb is sensitive to changes within the contents of a function.

• always_comb may allow checking for illegal latches.

• always_comb triggers once automatically at the end of time 0.

• @* permitted within an always block while always_comb is not.

Whether or not the functionality of @* and always_comb should merge or not is still a topic of debate in both
the IEEE Verilog and Accellera SystemVerilog committees.

10.3 'x, 'z, '0 and '1 assignments

SystemVerilog has a simple enhancement to make assignments of all 1's, all 0's, all X's and all Z's.

'x is a syntactically more pleasing version of the equivalent 'bx Verilog-2001 syntax.

'z is a syntactically more pleasing version of the equivalent 'bz Verilog-2001 syntax.

'1 assigns all 1's and replaces the common Verilog-2001 practices of either making all 1's assignments by either
assigning -1 (2's complement of -1 is all 1's) or using the replication operator with a SIZE parameter to
generate all 1's.

'0 is an orthogonal addition that is equivalent to assigning an unsized 0. Whether or not engineers will ever use
the new syntax for all 0's is questionable. The '0 simply fills out the 'x , 'z , '1 sequence.

In Example 20, the next = 'bx assignment has been replaced with next = 'x

module fsm_sv1b_3
  ...
  always @* begin
    next = 'x;
    case (state)
  ...
endmodule

Example 20 - SystemVerilog coding using 'x assignment

11.0 Implicit port connections
SystemVerilog adds two new concise ways to instantiate modules when port names and sizes match the signals that
are attached to those ports. These enhancements are referred to as "implicit .name port connections" and "implicit
.* port connections."

These enhancements will be very valuable when instantiating multiple sub-modules into a top-level module for
large ASIC and FPGA designs, but they are also convenient when instantiating modules into block-level
testbenches.

11.1 Implicit .name port connection capability

The testbench shown in Example 21 instantiates six different versions for the fsm1 design using six different
coding styles. The outputs are compared to ensure that the models are functionally equivalent, and all of the
instantiated module inputs (go, ws, clk and rst_n) match the stimulus variables that are assigned in the
testbench. Named port connections are required for the FSM outputs (because the signal name sizes do not match)
but all of the inputs can use the abbreviated .name syntax because the signal names and sizes match the port
names and sizes.

module tb_name1;
  wire [6:1] rd, ds;
  reg        go, ws, clk, rst_n;
  ...
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  fsm_cc1_1         u1  (.rd(rd[ 1]), .ds(ds[ 1]), .go, .ws, .clk, .rst_n);
  fsm_cc1_2         u2  (.rd(rd[ 2]), .ds(ds[ 2]), .go, .ws, .clk, .rst_n);
  fsm_cc1_3         u3  (.rd(rd[ 3]), .ds(ds[ 3]), .go, .ws, .clk, .rst_n);
  fsm_cc1_3oh       u4  (.rd(rd[ 4]), .ds(ds[ 4]), .go, .ws, .clk, .rst_n);
  fsm_cc1_3parm_oh  u5  (.rd(rd[ 5]), .ds(ds[ 5]), .go, .ws, .clk, .rst_n);
  fsm_cc1_3oe       u6  (.rd(rd[ 6]), .ds(ds[ 6]), .go, .ws, .clk, .rst_n);

  initial begin // Stimulus
  ...

  initial begin // Verification
  ...
endmodule

Example 21 - Testbench with instantiated fsm designs using .name implicit ports

The .name implicit instantiation syntax saves a lot of redundant typing.

11.2 Implicit .* port connection capability

Very efficient way to instantiate modules in a top-level design

The testbench shown in Example 22 instantiates six different versions for the fsm1 design using six different
coding styles. The outputs are compared to ensure that the models are functionally equivalent, and all of the
instantiated module inputs (go, ws, clk and rst_n) match the stimulus variables that are assigned in the
testbench. Named port connections are required for the FSM outputs (because the signal name sizes do not match)
but all of the inputs can be connected using the abbreviated .* syntax because the signal names and sizes match
the port names and sizes.

module tb_star;
  wire [6:1] rd, ds;
  reg        go, ws, clk, rst_n;
  ...

  fsm_cc1_1         u1  (.rd(rd[ 1]), .ds(ds[ 1]), .*);
  fsm_cc1_2         u2  (.rd(rd[ 2]), .ds(ds[ 2]), .*);
  fsm_cc1_3         u3  (.rd(rd[ 3]), .ds(ds[ 3]), .*);
  fsm_cc1_3oh       u4  (.rd(rd[ 4]), .ds(ds[ 4]), .*);
  fsm_cc1_3parm_oh  u5  (.rd(rd[ 5]), .ds(ds[ 5]), .*);
  fsm_cc1_3oe       u6  (.rd(rd[ 6]), .ds(ds[ 6]), .*);

  initial begin // Stimulus
  ...

  initial begin // Verification
  ...
endmodule

Example 22 - Testbench with instantiated fsm designs using .* implicit ports

The .* implicit instantiation syntax is even more concise than the .name syntax, which makes rapid-generation
of block-level testbenches easy to do.

The rules and restrictions for using .name and .* are very logical:

1. mixing .* and .name ports in the same instantiation is prohibited.

2. .name and .name(signal) connections in the same instantiation are permitted.

3. .* and .name(signal) connections in the same instantiation are permitted.

4. .name(signal) connections are required for size-mismatch, name-mismatch or unconnected ports.
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12.0 FSM coding with SystemVerilog 3.0
It should be noted that SystemVerilog 3.0 coding enhancements do not significantly reduce FSM coding efforts but
thy do offer very nice syntax and debugging advantages, including:

• Abstract-to-defined enumerated state names

• Enhanced debugging through enumerated-name waveform display

• @* or always_comb combinational sensitivity lists

• Nice syntax for specifying, 'x = all X's, 'z = all Z's and '1 = all 1's

• .name and .* implicit port connections offer a very nice abbreviated and concise syntax for coding the
instantiation of top-level modules in large ASIC and FPGA designs, as well as an easy way to generate a
block-level testbench. The .name and .* implicit port connection enhancements do reduce coding efforts.

Overall, SystemVerilog enhancements will reduce coding efforts and provide powerful and improved architectural,
verification and RTL coding capabilities.

13.0 Ask your vendor to support SystemVerilog, NOW!
Users unite! Vendors generally wait to hear users request features before they will implement the enhancements
into their tools. If these enhancements look like something you would like to use in real designs, we (the IEEE
Verilog Standards Group and the Accellera SystemVerilog Group) need you to ask all vendors to support these
features. If you ask, they will build it!

14.0 Conclusions
Of the Verilog-2001 FSM coding styles and the FSM designs shown in this paper, the one always block coding
style required up to 88% more lines of Verilog code than equivalent three always block coding styles and up to
165% more lines of code than equivalent output encoded FSM coding styles. For only the smallest FSM designs is
the one always block coding style somewhat comparable in size to the equivalent three always block coding styles.

Guideline: do not use the one always block FSM coding style.

Coding a onehot FSM design using parameters with state encodings is generally very inefficient when synthesized.
Adding case-default X-assignments to the case statements in the combinational and output always blocks or using
the DC Ultra FSM Compiler may help improve the results, but in general follow this guideline:

Guideline: do not use state-encoded parameters to code a onehot FSM design. Use the index-encoded parameter
style to implement an efficient onehot FSM design.

The Verilog-2001 @* combinational sensitivity list is a recommended enhancement to concisely indicate the
combinational always block in a three always block coding style, but more importantly, it will help reduce pre-
synthesis to post-synthesis simulation mismatch errors that can occur when input signals are missing from the
combinational sensitivity list[5].

SystemVerilog enhancements are not yet supported by VCS and DC and cannot be used for real designs.

SystemVerilog will not appreciably reduce the amount of code required to code FSM designs, but the quality of
synthesis and debugging will improve.

Continue to encourage all vendors to support enhancements that will facilitate FSM and system design using
SystemVerilog.

The DC-Ultra 2002.05 FSM Compiler enhancements appear to offer significant advantages to most FSM designs
in both area usage and timing improvements. Once SystemVerilog enumerated types are fully supported in both
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VCS and DC, the FSM Compiler enhancements may prove even more valuable to Verilog designs with abstract
enumerated FSM state definitions.

Overall, SystemVerilog adds abstraction enhancements that will facilitate design, enhance productivity and enable
advanced Verification capability.

Learn what is in the SystemVerilog Standard and bug you vendors until they implement the enhancements.
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15.0 fsm7 Verilog & SystemVerilog code

15.1 fsm7 - one always blocks style (Avoid this style!)
module fsm_cc7_1
  (output reg y1,
   input      jmp, go, clk, rst_n);

  parameter S0  = 4'b0000,
            S1  = 4'b0001,
            S2  = 4'b0011,
            S3  = 4'b0010,
            S4  = 4'b0110,
            S5  = 4'b0111,
            S6  = 4'b0101,
            S7  = 4'b0100,
            S8  = 4'b1100,
            S9  = 4'b1000;

  reg [3:0] state;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) begin
      state <= S0;
      y1 <= 1'b0;
    end
    else begin
      y1 <= 1'b0;
      state <= 4'bx;
      case (state)
        S0 : if (!go)       state <= S0;
             else if (jmp) begin
               y1 <= 1'b1;
                            state <= S3;
             end
             else           state <= S1;
        S1 : if (jmp) begin
               y1 <= 1'b1;
                            state <= S3;
             end
             else           state <= S2;
        S2 : begin
               y1 <= 1'b1;
                            state <= S3;
             end
        S3 : if (jmp) begin
               y1 <= 1'b1;
                            state <= S3;
             end
             else           state <= S4;
        S4 : if (jmp) begin
               y1 <= 1'b1;
                            state <= S3;
             end
             else           state <= S5;
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        S5 : if (jmp) begin
               y1 <= 1'b1;
                            state <= S3;
             end
             else           state <= S6;
        S6 : if (jmp) begin
               y1 <= 1'b1;
                            state <= S3;
             end
             else           state <= S7;
        S7 : if (jmp) begin
               y1 <= 1'b1;
                            state <= S3;
             end
             else           state <= S8;
        S8 : if (jmp) begin
               y1 <= 1'b1;
                            state <= S3;
             end
             else           state <= S9;
        S9 : if (jmp) begin
               y1 <= 1'b1;
                            state <= S3;
             end
             else           state <= S0;
      endcase
    end
endmodule

Example 23 - fsm7 - one always block coding style (NOT recommended!)

15.2 fsm7 - three always blocks style (Good style)
module fsm_cc7_3
  (output reg y1,
   input      jmp, go, clk, rst_n);

  parameter S0  = 4'b0000,
            S1  = 4'b0001,
            S2  = 4'b0011,
            S3  = 4'b0010,
            S4  = 4'b0110,
            S5  = 4'b0111,
            S6  = 4'b0101,
            S7  = 4'b0100,
            S8  = 4'b1100,
            S9  = 4'b1000;

  reg [3:0] state, next;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) state <= S0;
    else        state <= next;

  always @(state or go or jmp) begin
    next = 4'bx;
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    case (state)
      S0 : if (!go)      next = S0;
           else if (jmp) next = S3;
           else          next = S1;
      S1 : if (jmp)      next = S3;
           else          next = S2;
      S2 :               next = S3;
      S3 : if (jmp)      next = S3;
           else          next = S4;
      S4 : if (jmp)      next = S3;
           else          next = S5;
      S5 : if (jmp)      next = S3;
           else          next = S6;
      S6 : if (jmp)      next = S3;
           else          next = S7;
      S7 : if (jmp)      next = S3;
           else          next = S8;
      S8 : if (jmp)      next = S3;
           else          next = S9;
      S9 : if (jmp)      next = S3;
           else          next = S0;
    endcase
  end

  always @(posedge clk or negedge rst_n)
    if (!rst_n) y1 <= 1'b0;
    else begin
      y1 <= 1'b0;
      case (next)
        S3 : y1 <= 1'b1;
      endcase
    end
endmodule

Example 24 - fsm7 - three always block coding style (Recommended)

15.3 fsm7 - three always blocks SystemVerilog style (Good style)
module fsm_sv7b_3
  (output reg y1,
   input  jmp, go, clk, rst_n);

  enum reg [3:0] {S0  = 4'b0000,
                  S1  = 4'b0001,
                  S2  = 4'b0010,
                  S3  = 4'b0011,
                  S4  = 4'b0100,
                  S5  = 4'b0101,
                  S6  = 4'b0110,
                  S7  = 4'b0111,
                  S8  = 4'b1000,
                  S9  = 4'b1001,
                  XX  = `x     } state, next;

  always @(posedge clk, negedge rst_n)
    if (!rst_n) state <= S0;
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    else        state <= next;

  always @* begin
    next = XX;
    case (state)
      S0 : if (!go)      next = S0;
           else if (jmp) next = S3;
           else          next = S1;
      S1 : if (jmp)      next = S3;
           else          next = S2;
      S2 :               next = S3;
      S3 : if (jmp)      next = S3;
           else          next = S4;
      S4 : if (jmp)      next = S3;
           else          next = S5;
      S5 : if (jmp)      next = S3;
           else          next = S6;
      S6 : if (jmp)      next = S3;
           else          next = S7;
      S7 : if (jmp)      next = S3;
           else          next = S8;
      S8 : if (jmp)      next = S3;
           else          next = S9;
      S9 : if (jmp)      next = S3;
           else          next = S0;
    endcase
  end

  always @(posedge clk, negedge rst_n)
    if (!rst_n) y1 <= 1'b0;
    else begin
      y1 <= 1'b0;
      case (next)
        S3 : y1 <= 1'b1;
      endcase
    end
endmodule

Example 25 - fsm7 - three always block SystemVerilog coding style (Recommended)
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16.0 fsm8 Verilog & SystemVerilog code

16.1 fsm8 - one always blocks style (Avoid this style!)
module fsm_cc8_1
  (output reg y1, y2, y3,
   input      jmp, go, sk0, sk1, clk, rst_n);

  parameter S0  = 4'b0000,
            S1  = 4'b0001,
            S2  = 4'b0010,
            S3  = 4'b0011,
            S4  = 4'b0100,
            S5  = 4'b0101,
            S6  = 4'b0110,
            S7  = 4'b0111,
            S8  = 4'b1000,
            S9  = 4'b1001;

  reg [3:0] state;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) begin
                           state <= S0;
      y1 <= 1'b0;
      y2 <= 1'b0;
      y3 <= 1'b0;
    end
    else begin
                           state <= 'bx;
      y1 <= 1'b0;
      y2 <= 1'b0;
      y3 <= 1'b0;
      case (state)
        S0 : if (!go)      state <= S0;
             else if (jmp) begin
                           state <= S3;
               y1 <= 1'b1;
               y2 <= 1'b1;
             end
             else begin
                           state <= S1;
               y2 <= 1'b1;
             end
        S1 : if (jmp) begin
                           state <= S3;
               y1 <= 1'b1;
               y2 <= 1'b1;
             end
             else          state <= S2;
        S2 : if (jmp) begin
                           state <= S3;
               y1 <= 1'b1;
               y2 <= 1'b1;
             end
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             else begin
                           state <= S9;
               y1 <= 1'b1;
               y2 <= 1'b1;
               y3 <= 1'b1;
             end
        S3 : if (jmp) begin
                           state <= S3;
               y1 <= 1'b1;
               y2 <= 1'b1;
             end
             else          state <= S4;
        S4 : if (jmp) begin
                           state <= S3;
               y1 <= 1'b1;
               y2 <= 1'b1;
             end
             else if (sk0 && !jmp) begin
                           state <= S6;
               y1 <= 1'b1;
               y2 <= 1'b1;
               y3 <= 1'b1;
             end
             else          state <= S5;
        S5 : if (jmp) begin
                           state <= S3;
               y1 <= 1'b1;
               y2 <= 1'b1;
             end
             else if (!sk1 && !sk0 && !jmp) begin
                           state <= S6;
               y1 <= 1'b1;
               y2 <= 1'b1;
               y3 <= 1'b1;
             end
             else if (!sk1 && sk0 && !jmp) begin
                           state <= S7;
               y3 <= 1'b1;
             end
             else if (sk1 && !sk0 && !jmp) begin
                           state <= S8;
               y2 <= 1'b1;
               y3 <= 1'b1;
             end
             else begin
                           state <= S9;
               y1 <= 1'b1;
               y2 <= 1'b1;
               y3 <= 1'b1;
             end
        S6 : if (jmp) begin
                           state <= S3;
               y1 <= 1'b1;
               y2 <= 1'b1;
             end
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             else if (go && !jmp) begin
                           state <= S7;
               y3 <= 1'b1;
             end
             else begin
                           state <= S6;
               y1 <= 1'b1;
               y2 <= 1'b1;
               y3 <= 1'b1;
             end
        S7 : if (jmp) begin
                           state <= S3;
               y1 <= 1'b1;
               y2 <= 1'b1;
             end
             else begin
                           state <= S8;
               y2 <= 1'b1;
               y3 <= 1'b1;
             end
        S8 : if (jmp) begin
                           state <= S3;
               y1 <= 1'b1;
               y2 <= 1'b1;
             end
             else begin
                           state <= S9;
               y1 <= 1'b1;
               y2 <= 1'b1;
               y3 <= 1'b1;
             end
        S9 : if (jmp) begin
                           state <= S3;
               y1 <= 1'b1;
               y2 <= 1'b1;
             end
             else          state <= S0;
      endcase
    end
endmodule

Example 26 - fsm8 - one always block coding style (NOT recommended!)

16.2 fsm8 - three always blocks style (Good style)
module fsm_cc8_3
  (output reg y1, y2, y3,
   input      jmp, go, sk0, sk1, clk, rst_n);

  parameter S0  = 4'b0000,
            S1  = 4'b0001,
            S2  = 4'b0010,
            S3  = 4'b0011,
            S4  = 4'b0100,
            S5  = 4'b0101,
            S6  = 4'b0110,
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            S7  = 4'b0111,
            S8  = 4'b1000,
            S9  = 4'b1001;

  reg [3:0] state, next;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) state <= S0;
    else        state <= next;

  always @(state or jmp or go or sk0 or sk1) begin
    next = 'bx;
    case (state)
      S0 : if      (!go)                  next = S0;
           else if (jmp)                  next = S3;
           else                           next = S1;
      S1 : if (jmp)                       next = S3;
           else                           next = S2;
      S2 : if (jmp)                       next = S3;
           else                           next = S9;
      S3 : if (jmp)                       next = S3;
           else                           next = S4;
      S4 : if      (jmp)                  next = S3;
           else if (sk0 && !jmp)          next = S6;
           else                           next = S5;
      S5 : if      (jmp)                  next = S3;
           else if (!sk1 && !sk0 && !jmp) next = S6;
           else if (!sk1 &&  sk0 && !jmp) next = S7;
           else if ( sk1 && !sk0 && !jmp) next = S8;
           else                           next = S9;
      S6 : if      (jmp)                  next = S3;
           else if (go && !jmp)           next = S7;
           else                           next = S6;
      S7 : if (jmp)                       next = S3;
           else                           next = S8;
      S8 : if (jmp)                       next = S3;
           else                           next = S9;
      S9 : if (jmp)                       next = S3;
           else                           next = S0;
    endcase
  end

  always @(posedge clk or negedge rst_n)
    if (!rst_n) begin
      y1 <= 1'b0;
      y2 <= 1'b0;
      y3 <= 1'b0;
    end
    else begin
      y1 <= 1'b0;
      y2 <= 1'b0;
      y3 <= 1'b0;
      case (next)
        S7     :   y3 <= 1'b1;
        S1     :   y2 <= 1'b1;
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        S3     : begin
                   y1 <= 1'b1;
                   y2 <= 1'b1;
                 end
        S8     : begin
                   y2 <= 1'b1;
                   y3 <= 1'b1;
                 end
        S6, S9 : begin
                   y1 <= 1'b1;
                   y2 <= 1'b1;
                   y3 <= 1'b1;
                 end
    endcase
  end
endmodule

Example 27 - fsm8 - three always block coding style (Recommended)

16.3 fsm8 - three always blocks SystemVerilog style (Good style)
module fsm_sv8b_3
  (output reg y1, y2, y3,
   input      jmp, go, sk0, sk1, clk, rst_n);

  enum reg [3:0] {S0  = 4'b0000,
                  S1  = 4'b0001,
                  S2  = 4'b0010,
                  S3  = 4'b0011,
                  S4  = 4'b0100,
                  S5  = 4'b0101,
                  S6  = 4'b0110,
                  S7  = 4'b0111,
                  S8  = 4'b1000,
                  S9  = 4'b1001,
                  XX  = `x     } state, next;

  always @(posedge clk, negedge rst_n)
    if (!rst_n) state <= S0;
    else        state <= next;

  always @* begin
    next = XX;
    case (state)
      S0 : if      (!go)                  next = S0;
           else if (jmp)                  next = S3;
           else                           next = S1;
      S1 : if (jmp)                       next = S3;
           else                           next = S2;
      S2 : if (jmp)                       next = S3;
           else                           next = S9;
      S3 : if (jmp)                       next = S3;
           else                           next = S4;
      S4 : if      (jmp)                  next = S3;
           else if (sk0 && !jmp)          next = S6;
           else                           next = S5;
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      S5 : if      (jmp)                  next = S3;
           else if (!sk1 && !sk0 && !jmp) next = S6;
           else if (!sk1 &&  sk0 && !jmp) next = S7;
           else if ( sk1 && !sk0 && !jmp) next = S8;
           else                           next = S9;
      S6 : if      (jmp)                  next = S3;
           else if (go && !jmp)           next = S7;
           else                           next = S6;
      S7 : if (jmp)                       next = S3;
           else                           next = S8;
      S8 : if (jmp)                       next = S3;
           else                           next = S9;
      S9 : if (jmp)                       next = S3;
           else                           next = S0;
    endcase
  end

  always @(posedge clk, negedge rst_n)
    if (!rst_n) begin
      y1 <= 1'b0;
      y2 <= 1'b0;
      y3 <= 1'b0;
    end
    else begin
      y1 <= 1'b0;
      y2 <= 1'b0;
      y3 <= 1'b0;
      case (next)
        S7     :   y3 <= 1'b1;
        S1     :   y2 <= 1'b1;
        S3     : begin
                   y1 <= 1'b1;
                   y2 <= 1'b1;
                 end
        S8     : begin
                   y2 <= 1'b1;
                   y3 <= 1'b1;
                 end
        S6, S9 : begin
                   y1 <= 1'b1;
                   y2 <= 1'b1;
                   y3 <= 1'b1;
                 end
    endcase
  end
endmodule

Example 28 - fsm8 - three always block SystemVerilog coding style (Recommended)
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17.0 prep4 Verilog & SystemVerilog code

17.1 prep4 - one always blocks style (Avoid this style!)
module prep4_1
  (output reg [7:0] out,
   input      [7:0] in,
   input            clk, rst_n);

  parameter S0  = 4'b0000,
            S1  = 4'b0001,
            S2  = 4'b0010,
            S3  = 4'b0011,
            S4  = 4'b0100,
            S5  = 4'b0101,
            S6  = 4'b0110,
            S7  = 4'b0111,
            S8  = 4'b1000,
            S9  = 4'b1001,
            S10 = 4'b1010,
            S11 = 4'b1011,
            S12 = 4'b1100,
            S13 = 4'b1101,
            S14 = 4'b1110,
            S15 = 4'b1111;

  reg [3:0] state;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) begin
                                               state <= S0;
      out <= 8'h00;
    end
    else begin
      state <= 'bx;
      case (state)
        S0 : if (in == 0) begin
               out <= 8'h00;
                                               state <= S0;
             end
             else if (in <  4) begin
               out <= 8'h06;
                                               state <= S1;
             end
             else if (in < 32) begin
               out <= 8'h18;
                                               state <= S2;
             end
             else if (in < 64) begin
               out <= 8'h60;
                                               state <= S3;
             end
             else begin
               out <= 8'h80;
                                               state <= S4;
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             end
        S1 : if (in[0] & in[1]) begin
               out <= 8'h00;
                                               state <= S0;
             end
             else begin
               out <= 8'h60;
                                               state <= S3;
             end
        S2 : begin
               out <= 8'h60;
                                               state <= S3;
             end
        S3 : begin
               out <= 8'hF0;
                                               state <= S5;
             end
        S4 : if (in[0] | in[2] | in[4]) begin
               out <= 8'hF0;
                                               state <= S5;
             end
             else begin
               out <= 8'h1F;
                                               state <= S6;
             end
        S5 : if (in[0]) begin
               out <= 8'h3F;
                                               state <= S7;
             end
             else begin
               out <= 8'hF0;
                                               state <= S5;
             end
        S6 : if ( in[6] &  in[7]) begin
               out <= 8'h06;
                                               state <= S1;
             end
             else if (!in[6] &  in[7]) begin
               out <= 8'hFF;
                                               state <= S9;
             end
             else if ( in[6] & !in[7]) begin
               out <= 8'h7F;
                                               state <= S8;
             end
             else begin
               out <= 8'h1F;
                                               state <= S6;
             end
        S7 : if ( in[6] &  in[7]) begin
               out <= 8'h80;
                                               state <= S4;
             end
             else if (!in[6] & !in[7]) begin
               out <= 8'h60;
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                                               state <= S3;
             end
             else begin
               out <= 8'h3F;
                                               state <= S7;
             end
        S8 : if (in[4] ^ in[5]) begin
               out <= 8'hFF;
                                               state <= S11;
             end
             else if (in[7]) begin
               out <= 8'h06;
                                               state <= S1;
             end
             else begin
               out <= 8'h7F;
                                               state <= S8;
             end
        S9 : if (in[0]) begin
               out <= 8'hFF;
                                               state <= S11;
             end
             else begin
               out <= 8'hFF;
                                               state <= S9;
             end
        S10: begin
               out <= 8'h06;
                                               state <= S1;
             end
        S11: if (in == 64) begin
               out <= 8'h7F;
                                               state <= S15;
             end
             else begin
               out <= 8'h7F;
                                               state <= S8;
             end
        S12: if (in == 255) begin
               out <= 8'h00;
                                               state <= S0;
             end
             else begin
               out <= 8'hFD;
                                               state <= S12;
             end
        S13: if (in[1] ^ in[3] ^ in[5]) begin
               out <= 8'hFD;
                                               state <= S12;
             end
             else begin
               out <= 8'hDF;
                                               state <= S14;
             end
        S14: if (in == 0) begin
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               out <= 8'hDF;
                                               state <= S14;
             end
             else if (in < 64) begin
               out <= 8'hFD;
                                               state <= S12;
             end
             else begin
               out <= 8'hFF;
                                               state <= S10;
             end
        S15: if (!in[7]) begin
               out <= 8'h7F;
                                               state <= S15;
             end
             else case (in[1:0])
               2'b00: begin
                        out <= 8'hDF;
                                               state <= S14;
                      end
               2'b01: begin
                        out <= 8'hFF;
                                               state <= S10;
                      end
               2'b10: begin
                        out <= 8'hF7;
                                               state <= S13;
                      end
               2'b11: begin
                        out <= 8'h00;
                                               state <= S0;
                      end
             endcase
      endcase
    end
endmodule

Example 29 - prep4 - one always block coding style (NOT recommended!)

17.2 prep4 - three always blocks style (Good style)
module prep4_3
  (output reg [7:0] out,
   input      [7:0] in,
   input            clk, rst_n);

  parameter S0  = 4'b0000,
            S1  = 4'b0001,
            S2  = 4'b0010,
            S3  = 4'b0011,
            S4  = 4'b0100,
            S5  = 4'b0101,
            S6  = 4'b0110,
            S7  = 4'b0111,
            S8  = 4'b1000,
            S9  = 4'b1001,
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            S10 = 4'b1010,
            S11 = 4'b1011,
            S12 = 4'b1100,
            S13 = 4'b1101,
            S14 = 4'b1110,
            S15 = 4'b1111;

  reg [3:0] state, next;

  always @(posedge clk or negedge rst_n)
    if (!rst_n) state <= S0;
    else        state <= next;

  always @(state or in) begin
    next = 'bx;
    case (state)
      S0 : if      (in == 0)                 next = S0;
           else if (in <  4)                 next = S1;
           else if (in < 32)                 next = S2;
           else if (in < 64)                 next = S3;
           else                              next = S4;
      S1 : if      (in[0] && in[1])          next = S0;
           else                              next = S3;
      S2 :                                   next = S3;
      S3 :                                   next = S5;
      S4 : if      (in[0] || in[2] || in[4]) next = S5;
           else                              next = S6;
      S5 : if      (!in[0])                  next = S5;
           else                              next = S7;
      S6 : case (in[7:6])
             2'b00:                          next = S6;
             2'b01:                          next = S8;
             2'b10:                          next = S9;
             2'b11:                          next = S1;
           endcase
      S7 : case (in[7:6])
             2'b00:                          next = S3;
             2'b01, 2'b10:                   next = S7;
             2'b11:                          next = S4;
           endcase
      S8 : if      (in[4] ^ in[5])           next = S11;
           else if (in[7])                   next = S1;
           else                              next = S8;
      S9 : if      (!in[0])                  next = S9;
           else                              next = S11;
      S10:                                   next = S1;
      S11: if      (in == 64)                next = S15;
           else                              next = S8;
      S12: if      (in == 255)               next = S0;
           else                              next = S12;
      S13: if      (in[5] ^ in[3] ^ in[1])   next = S12;
           else                              next = S14;
      S14: if      (in == 0)                 next = S14;
           else if (in < 64)                 next = S12;
           else                              next = S10;
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      S15: if (!in[7])                       next = S15;
           else case (in[1:0])
             2'b00:                          next = S14;
             2'b01:                          next = S10;
             2'b10:                          next = S13;
             2'b11:                          next = S0;
           endcase
      default:                               next = 'bx;
    endcase
  end

  always @(posedge clk or negedge rst_n)
    if (!rst_n) out <= 8'h00;
    else begin
      out = 'bx;
      case (next)
        S0:       out <= 8'h00;
        S1:       out <= 8'h06;
        S2:       out <= 8'h18;
        S3:       out <= 8'h60;
        S4:       out <= 8'h80;
        S5:       out <= 8'hF0;
        S6:       out <= 8'h1F;
        S7:       out <= 8'h3F;
        S8:       out <= 8'h7F;
        S9:       out <= 8'hFF;
        S10:      out <= 8'hFF;
        S11:      out <= 8'hFF;
        S12:      out <= 8'hFD;
        S13:      out <= 8'hF7;
        S14:      out <= 8'hDF;
        S15:      out <= 8'h7F;
      endcase
    end
endmodule

Example 30 - prep4 - three always block coding style (Recommended)

17.3 prep4 - three always blocks SystemVerilog style (Good style)
module prep4b_3
  (output reg [7:0] out,
   input      [7:0] in,
   input            clk, rst_n);

  enum reg [3:0] {S0  = 4'b0000,
                  S1  = 4'b0001,
                  S2  = 4'b0010,
                  S3  = 4'b0011,
                  S4  = 4'b0100,
                  S5  = 4'b0101,
                  S6  = 4'b0110,
                  S7  = 4'b0111,
                  S8  = 4'b1000,
                  S9  = 4'b1001,
                  S10 = 4'b1010,
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                  S11 = 4'b1011,
                  S12 = 4'b1100,
                  S13 = 4'b1101,
                  S14 = 4'b1110,
                  S15 = 4'b1111,
                  XX  = 'x     } state, next;

  always @(posedge clk, negedge rst_n)
    if (!rst_n) state <= S0;
    else        state <= next;

  always @* begin
    next = XX;
    case (state)
      S0 : if      (in == 0)                 next = S0;
           else if (in <  4)                 next = S1;
           else if (in < 32)                 next = S2;
           else if (in < 64)                 next = S3;
           else                              next = S4;
      S1 : if      (in[0] && in[1])          next = S0;
           else                              next = S3;
      S2 :                                   next = S3;
      S3 :                                   next = S5;
      S4 : if      (in[0] || in[2] || in[4]) next = S5;
           else                              next = S6;
      S5 : if      (!in[0])                  next = S5;
           else                              next = S7;
      S6 : case (in[7:6])
             2'b00:                          next = S6;
             2'b01:                          next = S8;
             2'b10:                          next = S9;
             2'b11:                          next = S1;
           endcase
      S7 : case (in[7:6])
             2'b00:                          next = S3;
             2'b01, 2'b10:                   next = S7;
             2'b11:                          next = S4;
           endcase
      S8 : if      (in[4] ^ in[5])           next = S11;
           else if (in[7])                   next = S1;
           else                              next = S8;
      S9 : if      (!in[0])                  next = S9;
           else                              next = S11;
      S10:                                   next = S1;
      S11: if      (in == 64)                next = S15;
           else                              next = S8;
      S12: if      (in == 255)               next = S0;
           else                              next = S12;
      S13: if      (in[5] ^ in[3] ^ in[1])   next = S12;
           else                              next = S14;
      S14: if      (in == 0)                 next = S14;
           else if (in < 64)                 next = S12;
           else                              next = S10;
      S15: if (!in[7])                       next = S15;
           else case (in[1:0])
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             2'b00:                          next = S14;
             2'b01:                          next = S10;
             2'b10:                          next = S13;
             2'b11:                          next = S0;
           endcase
    endcase
  end

  always @(posedge clk, negedge rst_n)
    if (!rst_n) out <= 8'h00;
    else begin
      out = 'bx;
      case (next)
        S0:       out <= 8'h00;
        S1:       out <= 8'h06;
        S2:       out <= 8'h18;
        S3:       out <= 8'h60;
        S4:       out <= 8'h80;
        S5:       out <= 8'hF0;
        S6:       out <= 8'h1F;
        S7:       out <= 8'h3F;
        S8:       out <= 8'h7F;
        S9:       out <= 8'hFF;
        S10:      out <= 8'hFF;
        S11:      out <= 8'hFF;
        S12:      out <= 8'hFD;
        S13:      out <= 8'hF7;
        S14:      out <= 8'hDF;
        S15:      out <= 8'h7F;
      endcase
    end
endmodule

Example 31 - prep4 - three always block SystemVerilog coding style (Recommended)


