
SystemVerilog 2-State Simulation
Performance and Verification Advantages

Clifford E. Cummings Lionel Bening

Sunburst Design, Inc. Hewlett-Packard

cliffc@sunburst-design.com lionel.bening@hp.com

ABSTRACT

VCS has had a proprietary 2-state simulation mode for years. SystemVerilog adds 2-state data
types that will allow engineers to take advantage of a standard 2-state simulation mode using any
compliant SystemVerilog simulator.

This paper will summarize the verification advantages related to 2-state simulation and address
4-state simulation problems that are alleviated by performing 2-state simulation.

Are there any simulation performance advantages to using 2-state simulation? How do other
Verilog data types impact 2-state simulation? Do 2-state vector simulations show more
improvement over 2-state scalar models? These questions will be quantified and addressed in
this paper.

This paper will also detail a new SystemVerilog approach to 2-state simulation and will discuss
potential Verilog language modifications that could further enhance 2-state simulation.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

2

Table of Contents

1 Introduction... 5
1.1 2-State Simulation - History ... 5

2 RTL 2-State Simulation Methods ... 6
2.1 2-State Power-On modeling.. 7
2.2 Power-On 2-State Randomization using $set_values... 8

2.2.1 $set_values Races .. 9
2.2.2 $set_values and VCS +2state.. 10
2.2.3 $set_values Repeatability ... 10

2.3 Library-Based Power-On 2-State Randomization .. 11
2.4 External inputs .. 12

2.4.1 Tri-state Bus Receivers. .. 13
2.4.2 Differential Receivers. .. 13
2.4.3 Testbenches... 13
2.4.4 HDL Intellectual Property (IP). .. 13

2.5 Disciplined modeling.. 14
2.5.1 Use casex or casez?... 14
2.5.2 Make X-assignments or avoid X-assignments?.. 14
2.5.3 Separation of Concerns ... 16

3 2-State Simulation... 17
3.1 Synopsys VCS +2state.. 17
3.2 Modeling 2-State HiZ? ... 18

4 Reproducible Power-On 0/1 Random... 22
5 Simulation Performance.. 22

5.1 Data representation ... 22
5.2 Native machine operations.. 22
5.3 Bit, byte & word boundaries... 23
5.4 Memory array representation.. 23

6 SystemVerilog 2-state RTL simulation .. 23
6.1 Designs without tri-state drivers ... 25
6.2 Designs with tri-state drivers .. 25
6.3 Clocks and resets .. 25
6.4 SystemVerilog optimization in VCS .. 26
6.5 Reproducible and random variable initialization.. 26
6.6 Register output modeling & randomization.. 27
6.7 SystemVerilog 2-state summary ... 27

7 VCS Verilog & SystemVerilog 2-state benchmarks .. 27
7.1 The inverter benchmark simulations... 28
7.2 The 2-input and-gate benchmark simulations... 29

8 2-State Simulation Realities.. 30
9 X-assignments versus other flawed RTL design practices ... 30
10 Conclusions... 30

10.1 casex/casez disagreement ... 31
10.2 X-assignment disagreement .. 32
10.3 Bening’s Conclusions ... 32

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

3

10.4 Cummings’ Conclusions... 33
11 Recommendations... 33
12 Job Interview Questions.. 34
13 Acknowledgements... 35
14 References... 35
15 Appendix... 36

15.1 SystemVerilog inverter models .. 36
15.2 Verilog reg-type inverter models .. 37
15.3 Verilog net-type inverter models .. 37
15.4 SystemVerilog 2-input and-gate models... 38
15.5 Verilog reg-type 2-input and-gate models .. 39
15.6 Verilog net-type 2-input and-gate models .. 40
15.7 Benchmark testbench file.. 41
15.8 The Verilog inverter & and-gate benchmark results .. 42

Author & Contact Information ... 45

Table of Figures

Figure 1 - Random initialization startup bug experience.. 7
Figure 2 - 4-state and 2-state resolution using Z->0 and X->1 conversions 19
Figure 3 - 4-state and 2-state resolution using Z->0 and X->0 conversions 20
Figure 4 - 4-state and 2-state resolution using Z->1 and X->0 conversions 20
Figure 5 - 4-state and 2-state resolution using Z->1 and X->1 conversions 21

Table of Examples

Example 1 - Repeating failed regression test run for debugging.. 10
Example 2 - Separating $set_values times to eliminate races .. 11
Example 3 - RTL Library modules with encapsulated initialization timings............................... 12
Example 4 - Commingled state machine and X assignment... 15
Example 5 - Bad coding style that causes automatic conversion to 4-state variables 17
Example 6 - SystemVerilog 2-state / 4-state types definitions file... 24
Example 7 - SystemVerilog 1-bit inverter model ... 24
Example 8 - SystemVerilog tri_t type declaration for potential 2-state / 4-state tri-stateable net

types .. 25
Example 9 - SystemVerilog 2-state / 4-state data types for registered outputs, nets, clocks and

resets ... 27
Example 10 - SystemVerilog 8-bit inverter model ... 36
Example 11 - SystemVerilog 32-bit inverter model ... 36
Example 12 - Verilog 1-bit inverter model - reg output ... 37
Example 13 - Verilog 8-bit inverter model - reg outputs ... 37
Example 14 - Verilog 32-bit inverter model - reg outputs ... 37
Example 15 - Verilog 8-bit inverter model - wire outputs ... 38
Example 16 - Verilog 32-bit inverter model - wire outputs ... 38
Example 17 - SystemVerilog 1-bit 2-intput and gate model .. 38

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

4

Example 18 - SystemVerilog 8-bit 2-intput and gate model .. 39
Example 19 - SystemVerilog 32-bit 2-intput and gate model .. 39
Example 20 - Verilog 1-bit 2-intput and gate model - reg output .. 39
Example 21 - Verilog 8-bit 2-intput and gate model - reg outputs... 40
Example 22 - Verilog 32-bit 2-intput and gate model - reg outputs... 40
Example 23 - Verilog 8-bit 2-intput and gate model - wire outputs... 40
Example 24 - Verilog 32-bit 2-intput and gate model - wire outputs... 40
Example 25 - benchmark testbench .. 42

Table of Tables

Table 1 - Linux inverter benchmark simulations - cycle CNT = 250 million 43
Table 2 - Linux inverter benchmark simulations - cycle CNT = 1 billion 43
Table 3 - Solaris inverter benchmark simulations - cycle CNT = 250 million............................. 43
Table 4 - Linux And-gate benchmark simulations - cycle CNT = 250 million............................ 44
Table 5 - Linux And-gate benchmark simulations - cycle CNT = 1 billion................................. 44
Table 6 - Solaris And-gate benchmark simulations - cycle CNT = 250 million 44

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

5

1 Introduction

This paper will show that there are two distinct reasons why engineers should consider 2-state
simulation:
1. Increased simulation speed.
2. Enhanced design-problem identification environment.

In this section, a brief history of 2-state simulation is presented. In later sections, the VCS 2-state
simulation capabilities, the 2-state simulation methodology used by HP large-scale server design
projects and the SystemVerilog 2-state simulation techniques are all described.

There is a general industry misconception that 2-state simulation is much faster than 4-state
simulation. This paper will show cases where this is and is not true.

Unfortunately, there are deficiencies related to doing VCS +2state simulation. Some
deficiencies are related to modifying the RTL code to support a full 2-state simulation
environment, and other deficiencies are related to important missing 2-state capabilities in the
VCS +2state mode.

Some of the 2-state simulation deficiencies can be addressed by new SystemVerilog capabilities
and methodologies, but unfortunately, not even the new SystemVerilog capabilities fully address
the requirements of an advanced 2-state simulation environment.

HP large-scale server design projects have assembled an advanced 2-state simulation
methodology. This methodology combines a vendor linting tool with 2-state RTL linting rules,
and a patented reproducible random reset initialization technology that is currently used with 4-
state simulators to replicate the design flaw removal capabilities of a 2-state simulation
environment. The methodology is described and a couple of the patent issues are addressed in
this paper. Whenever this paper mentions “the 2-state methodology” or “2-state discipline,” it is
with reference to the methodology described in this paragraph.

So why even write this paper if there are so many problems related to 2-state simulations and
methodologies? Because there is great potential to improve 2-state tools and capabilities once the
problems are understood.

1.1 2-State Simulation - History

Although both RTL and gate-level simulation began as thought exercises in the 1950’s,
engineers began applying gate-level simulations in the form of computer programs called
simulators to their designs in the 1960’s. RTL languages accompanied by simulators originated
in the 1960’s and began widening application in industry by the 1970’s. In those days, each
simulator had its own language, and the RTL and gate-level languages were generally separated
as well.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

6

The first gate-level simulation programs used 2-state modeling, but by the later 1960’s, many
gate-level simulators added an X-state [9]. Many RTL simulators continued using 2-state in a
more abstract simulation model, and applied what later came to be known as cycle-based
techniques for fast simulation.

As the VHSIC and Verilog HDLs emerged as open and standard in the early 1990’s, design
teams in several companies mapped their RTL 2-state cycle-based simulation language
techniques to these open and standard languages. Their application of open standard HDLs gave
these teams access to the broadening EDA vendor tool sets supporting these languages, while
retaining the advantages of the RTL disciplines supported by their earlier use of their in-house
proprietary languages and simulators.

In spite of repeated project success in applying the RTL disciplined design principles to arrive at
good silicon in separate design labs, efforts to spread the word about the disciplines have been
difficult, even within corporations. There are multiple reasons for the difficulties:

• Many designers have had successful experiences using an X in gate-level simulation and
some RTL simulations and have not had experience with bad silicon resulting from X-
optimism.

• 4-state simulation is still the most widely taught method in Verilog training classes and
training in RTL 2-state disciplined application is largely ignored.

• Understanding of successful 2-state simulation environments is not widely known in the
general design and verification user community.

• Reproducible randomized 2-state initialization technology is patented and not readily
available at any company without licensing the patented technology from HP.

The Bening DAC paper [10] and the Bening and Foster book [12] are efforts to enlighten design
projects about the high value of RTL 2-state disciplines. The papers by Cummings [1], Mills and
Cummings [6], and Turpin [13] illustrate many of the pitfalls that come from a lack of a 2-state
discipline.

The authors do not 100% agree on all of the proposed Verilog and SystemVerilog 2-state coding
and simulation guidelines, but where the authors disagree, both viewpoints are expounded and
the readers are left to choose the appropriate guidelines for their corporate design and
verification environments.

2 RTL 2-State Simulation Methods

The methods described in this section were derived from more than ten years of experience on
projects that were 100% committed to use of RTL 0/1 randomization in place of X. The
designers applied this RTL 0/1 randomization at anytime and anywhere that designers
earlier/elsewhere would think that X’s might originate. This includes power-on, primary inputs,
and special function module types, such as synchronizers, tri-state/differential receivers, etc.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

7

To those who have not had this 2-state project experience, it might seem that a randomized 2-
state discipline would be onerous and difficult to live with. Experience by HP large-scale server
design projects has shown that the randomized 2-state discipline sells itself to new designers
within an hour of their first using it. After that, these designers never want to go back to RTL
debugging designs without the 100% commitment to use of RTL 0/1 randomization in place of
X.

To build a successful 2-state simulation environment, “some assembly is required.” Tools that
the HP large-scale server design projects used to build a successful 2-state simulation
environment include:

• A lint rule checker, with a “no-exception” setting for 2-state-related rules

• A Boolean equivalence checking tool, to verify that the Verilog upgrades to 2-state identified
by the lint checks are functionally equivalent to the original Verilog.

2.1 2-State Power-On modeling

One of the keys to the 2-state methodology is an RTL reproducible 0/1 random technology that
projects apply to improve the likelihood of power-on reset success. It should be noted that the 2-
state techniques described in this paper do not compensate for bad reset-logic design or bad
multi-clock design techniques and engineers still need to follow good reset and multi-clock
design techniques in addition to the 2-state techniques described in this paper[2][3].

At first glance, the 2200,000 or more state bit combinations in the chips designed today may appear
to overwhelm the few millions (220) of simulation random start-up states that are typically
simulated on HP large-scale server design projects; however, project experience with simulations
using random startup states shows that this class of design errors is discovered in the earliest
simulations.

Figure 1 - Random initialization startup bug experience

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

8

Figure 1 illustrates how most of this class of problems are discovered within the first hundred
simulations. Subsequent design errors of this type are discovered in the following hundreds of
simulations, and then do not show up at all in the remaining millions of simulations.

Note that in Figure 1, the horizontal axis counts simulations on a log scale. If the axis were
linear, all of the design errors would be squashed against the vertical axis on the left.

Simulated logic designs run tens of millions of times slower than actual hardware. A million
hours of logic simulation runs represent about five seconds of actual hardware operation;
however, simulation models are far superior to actual logic hardware for verifying power-on
reset functionality.

HP large-scale server design projects run millions of simulations on a server farm consisting of
hundreds of CPU’s to test:

• using millions of start-up states

• applying reproducible [11] and high quality random distribution.

The reproducible simulation technology supported by the Bening and Chaney patent [11]
extends seed-based duplication of startup states through a design change (except for the state bits
added or deleted by the change). After designers change logic to fix a problem that were
discovered in one of the simulations based on time-of-day seeds, they can take a seed associated
with the problem, and repeat the same state conditions that caused the failure before their fix.

Using actual hardware for power-on reset verification is typically not as efficient simulated
power-on verification, because:

• power-on tests with real hardware can typically only be conducted thousands of times instead
of millions of simulated power-on resets.

• repeatability of power-on failures either on the same chip or from chip-to-chip, is
problematic.

• power-on testing with prototypes typically uses a small set of devices with similar process
characteristics, so there likely will be poor-quality random distribution. Simulations will
randomly initialize state variables, which also simulates manufactured devices with random
process variations.

2.2 Power-On 2-State Randomization using $set_values

To simulate the random 0/1 conditions after power-on in 2-state RTL modeling, projects set up
the simulation environment to initialize all storage elements to random 0/1 values, including
memory arrays, flip-flops, and latches.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

9

One approach to randomizing storage elements is to adapt a PLI system task called
$set_values. Source code for $set_values system task and its supporting sub-functions has
been part of the PLI [7] (and now VPI [8]) example set delivered with vendor simulation
products going back to Verilog-XL.

Engineers using $set_values specify the scope and the type of initialization that they want,
“random”, or a specified value string. When called at power-on time in a simulation, the
$set_values user task traverses the design from the specified scope and downward.

$set_values("random", top0_i0.CORE.gclkg)

$set_values("0", top0_i0.CORE.gclkg)

In each “visit” to a memory array, reg, or UDP, $set_values pokes in a call-order-sequence-
based random, or specified value.

Although $set_values is excellent as a example to illustrate PLI usage for a useful purpose,
projects using $set_values need to be aware of its limitations and understand the adaptations
required for its use in production.

2.2.1 $set_values Races

One of the limitations of $set_values is that it pokes values into all elements at one time
cycle. The events resulting from these pokes into interdependent logic may race with one another
and propagate into other logic. With Verilog simulators, the outcome from simultaneous event
ordering is unstable. Examples of logic races resulting from the initializing pokes include:

• arrays and the address registers that reference the arrays.

• clock divider, clock enable flip-flops, and the registers controlled by these flip-flops. The
$set_values 0/1 initialization of a read address may read out and propagate X’s from the
array before the array has completed its “at the same time” initialization.

The outcome of these races is that X’s may propagate and persist, even after the $set_values
system task has poked its 0/1’s into all of the logic.

To check whether X’s persist after a $set_values task call, some project teams set up their test
environment to wait a minimum time step and call a $check_values function. The
$check_values function traverses all of the regs and UDPs, and instead of poking, queries to
see whether any X’s are left after the $set_values traversal, and pokes in 0/1’s to replace the X
residue. The initialization repeats the $set_values/$check_values cycle until the
$check_values reports no more X’s. Based on experience, project reports have shown that
three cycles have been enough to eliminate all of the X’s.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

10

2.2.2 $set_values and VCS +2state

As written, $set_values is oblivious to whether it is poking into storage elements or
combinational logic regs. If everything starts at an X, its 0/1 pokes will produce events. In
combinational logic, these events will propagate, and cause the combinational logic terms to
“relax” into self-consistent 0/1 values within each logic cone.

If everything starts at 0 as in +2state, and we poke in 0/1’s, combinational logic within a cone
will have 0/1’s with inconsistent values, and cause tests to fail at the start of simulation.

This can be overcome by extending $set_values to recognize storage elements, for example
using an _r flip-flop suffix naming convention. In this way, $set_values focuses its 0/1
poking on storage elements, and leaves combinational logic regs alone.

2.2.3 $set_values Repeatability

To a large degree, with some simple extensions, $set_values can support seed-based
repeatability. To do this, all simulation runs log the time-of-day based seed. If a test shows an
error, an engineer turns on debugging and repeats the test by entering the seed associated with
the failing test. This seed supercedes the time-of-day based seed that $set_values ordinarily
uses, with largely the same 0/1 startup values poked into the test that failed.

...

simv +test=early_tag
*** +rseed=61248222, based on time-of-day
*** Test 'early_tag' PASSED

simv +test=early_tag
*** +rseed=97249740, based on time-of-day
*** Test 'early_tag' PASSED

simv +test=early_tag
*** +rseed=61300869, based on time-of-day
*** Test 'early_tag' FAILED

(a) Test passes then fails in regression runs, depending on seed

simv +test=early_tag +rseed=61300869
*** +rseed=61300869, based on command line
*** Test 'early_tag.run' FAILED

(b) Engineer repeats failed run, entering the failing test and seed

Example 1 - Repeating failed regression test run for debugging

With inherent races associated with state independencies, $set_values cannot be guaranteed
to reproduce the exact same state in the move from the regression simulation run that detected an
error, and a debug simulation run with debugging turned on.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

11

By extending $set_values and its usage to recognize flip-flops and some of the special clock
controlling flip-flop variants, a test environment can call $set_values at separate times and
have it successively initialize classes of storage elements in a manner that eliminates races in
interdependent logic interactions, as shown in Example 2.

initial begin
 #0.004;
 $set_values_mem("random", top);
end

initial begin
 #0.005;
 $set_values_ff("random", top);
end

initial begin
 #0.006;
 $set_values_latch("random", top);
end

initial begin
 #0.007;
 $set_values_ffcken("random", top);
end

Example 2 - Separating $set_values times to eliminate races

2.3 Library-Based Power-On 2-State Randomization

To overcome the entanglements associated with power-on 2-state randomizations using
$set_values (and for other reasons), many engineers believe that library-based instantiated
storage elements (advocated by Bening and Foster [12] and others) provides a simple method for
encapsulating random initialization.

These library-based modules encapsulate all of the detail about the race-free timing of
initialization, and capture the nature of the storage element where the designers instantiate the
storage element modules. Example 3 shows initialization timings for various storage element
types

module dff (q, d, clk);
 parameter W=1;
 output [W-1:0] q;
 input [W-1:0] d;
 input clk;
 reg [W-1:0] q;

 always @(posedge clk)
 q <= d;

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

12

 `ifdef INITSTATE
 initial
 `TIMEINIT $InitReg(q);
 `endif
endmodule

(a) RTL D flip-flop module dff

...
 `ifdef INITSTATE
 initial begin
 `TIMEINITMEM
 // InitReg is smart enough to init the whole
 // array with only 1 call
 $InitReg(dataarray[0]);
 end

 initial begin
 `TIMEINIT
 $InitReg(waddr_r);
 $InitReg(raddr_r);
 $InitReg(wdata_r);
 end
 `endif
endmodule

(b) Memory array address/data register initialization

module dff_cken (q, d, clk);
 < dff model as in (a)>
 `ifdef INITSTATE
 initial
 `TIMEINITCKEN $InitReg(q);
 `endif
endmodule

(c) RTL D flip-flop module dff_cken clock control register

Example 3 - RTL Library modules with encapsulated initialization timings

By having random initialization built into library models, the library-based method eliminates
the multiple traversals of the design associated with $set_values, where it has to locate
memory arrays, ordinary flip-flops, latches, and clock-control flip-flops.

2.4 External inputs

Projects adhering to a 2-state simulation discipline in their chip design have to deal with the
external world, where testbenches and other chip designs in the system model put Z’s or X’s on
the inputs of a design, or have basic bugs in their signal connections, states, or timing.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

13

2.4.1 Tri-state Bus Receivers.

Where the input may be tri-state Z (or X), designs simulated with a 2-state methodology need to
0/1 randomize the receiver output.

2.4.2 Differential Receivers.

As with tri-state receivers with Z states at their inputs, differential receivers with non-differential
values (or X’s) need to 0/1 randomize their outputs.

2.4.3 Testbenches.

In setting up the test environment, verification engineers may have loose ends in the timing or
completeness of the test input. Common testbench oversights include applying input stimulus
prior to the hardware power-on initialization, and starting the clock before setting 0/1 data
values on the inputs.

A sign of trouble in projects using power-on 0/1 randomization is when testbenches apply 0/1
inputs at time zero. In addition to likely time zero races that time zero inputs create on their own,
there is loss of power-on test integrity where the time zero values that propagate through edge-
triggered logic either:

• get wiped out by power-on 0/1 randomization pokes, or

• supercede power-on 0/1 randomization pokes

2.4.4 HDL Intellectual Property (IP).

Projects nowadays frequently reuse design blocks, either from prior projects within their own
company, or as IP from external sources. IP may be from design teams that did not follow 0/1
disciplines. It may produce X’s at its outputs in a manner that conflicts with the 0/1 protocols at
the inputs to the designs adhering to a 2-state design discipline.

One way that projects have dealt with this is to add buffers that produce randomized 0/1 outputs
whenever there is a X at their inputs that receive signals from the IP.

Another way projects have used is to upgrade the IP to use the 2-state discipline. To upgrade the
Verilog IP, the engineers first apply lint rules that diagnose departures from a 2-state convention,
and then edit the IP Verilog as suggested by the lint rule diagnostic messages. The edits may
include:

• Change implicit flip-flops and memories to instantiated library modules, where library
modules include $InitReg() random initialization calls.

• Convert case/casex/casez statements to fully specified case or casex.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

14

• Eliminate designer logic X tests/assignments.

• Add assertion X-tests.

Projects using the upgrade path apply lint rules to ensure that all of the IP HDL 2-state adherence
is 100% complete, and then apply Boolean equivalence to prove that the upgrade preserves the
original IP function.

2.5 Disciplined modeling

For more than a decade, the HP designs produced by large-scale server projects following a
100% 2-state discipline have shown full awareness of the warnings about the Evil Twins [1], the
dangers of living with an X [13], and more. With this full awareness, designers completely
specify the Boolean 0/1 output for all 0/1 inputs, even “don’t care” input conditions. This
practice ensures that the behavior in the power-on state prior to reset maps to realities of the reset
process.

These projects (this is not an exaggeration) deliberately avoid bringing in consultants to do
Verilog training for their new designers. There is well-grounded concern that external
consultants will teach Verilog without a commitment to the 2-state 0/1 discipline, and talk about
generating X’s, and co-mingling X trapping with state machine and mux casez statements.

2.5.1 Use casex or casez?

HP large-scale server design projects committed to the 2-state discipline use casex instead of
casez . In response to 0/1 inputs, casex and casez are Boolean equivalent. Bening has
pointed out that the casez statement allows designers to craft special responses to X inputs,
which both authors agree is both counterproductive and a poor coding style. Cummings has
noted that this same argument applies to plain old case statements.

Both authors agree that testing for X’s in the case items is absurd and error prone. The solution
to this problem seems to be reasonably simple, linting tools should report errors if X’s are found
in ANY case items (case/casez/casex).

Cummings knows of severe design problems that have been masked by casex during 4-state
simulation, so he continues to insist that recommending the use of casex to be a very dangerous
practice in 4-state simulation, even if its use is safe in 2-state simulation [6].
2.5.2 Make X-assignments or avoid X-assignments?

The HP 2-state discipline prohibits the use of X-assignments altogether, even in state machine
designs. The 2-state discipline dictates that where speed is important, designers apply the one-
hot FSM coding technique shown on page 142 of Bening’s book [12] to overcome potential
synthesis inefficiencies that could occur due to the lack of “don’t-care” X-assignments for

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

15

unused FSM states. Bening notes that where speed is not as important, “gates are cheaper than
bugs.”

Using the 2-state discipline, Engineers can apply lint checks to ensure that designers fully
specify their case/casexs. There are no “don’t care” assignments in the 2-state Verilog code.
The 2-state discipline designers use other ways to generate optimum gates where needed, and
where not needed, the overriding assumption is that gates are cheaper than bugs hiding in “you
should have cared” branches.

Bening points out that just as stray X’s can wipe out 2-state assumptions, stray X-assignments can
wander into if-elses or cases with case-defaults. Unlike 2-state checking through linting
and formal checks, there is no help for designers to check the correctness or completeness of
their X-crafting, or where it goes. This is a fair point that Cummings acknowledges that he will
have to further consider when formulating X-assignment guidelines and prohibitions.

Although the 2-state discipline prohibits X-assignments, Cummings has found the practice of
making X-assignments to be very useful, especially in Finite State Machine (FSM) design.
Consider the code fragment in Example 4:

always @* begin
 next = 3'bx;
 case (state)
 IDLE: ...
 READ: ...
 ...
 default: begin
 next = 3'bx;
 <outputs> = 'bx;
 end
 encase
end

Example 4 - Commingled state machine and X assignment

In this example, Cummings claims that the X-assignments serve two purposes:

(1) If there is a missing a next-assignment inside of the case statement, the error will be
obvious and easily trapped. The X-assignment basically acts like an assertion, “I assert that if
I am missing any state assignments, the FSM behavior will be unknown.” When this type of
bug shows up in training labs, it immediately points to the problem and is among the easiest
to debug. If the X-assignment is omitted, frequently another valid (but wrong) state value is
assigned and it can be difficult and time-consuming to find the bug.

(2) X-assignments are treated as “don’t cares” by the synthesis tool, so better synthesis results
are usually achieved making X-assignments (again, Bening has a coding style in his book that
may be equally efficient, but benchmarking between the coding styles was not performed for
this paper).

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

16

If an engineer adds next = state or next = IDLE at the top of the combinational always
block, the state machine will always be in a valid state, the bug will not be detected by a lint tool,
and it may be many clock cycles before the problem manifests itself. Cummings claims that
making X-assignments is like an immediate assertion. As soon as a missing state assignment
occurs, the design will suffer an immediate catastrophic failure that is easily identified in a
waveform display as the next variable takes on all X’s (the next variable in the waveform
display “bleeds red”).

The concept behind X-assignments is that the X-assignment should always be replaced by a valid
update-assignment within the same time-step and that if the valid update-assignment is missing,
the X-assignment sticks out like a red flag in a 4-state simulation. A true 2-state simulator would
convert all X-assignments to 0’s, 1’s or randoms, so they would likely cause similar failures in 2-
state simulations. In the absence of an X-assignment, engineers often rely on the last assigned
value to be correct, which may not be a wise assumption. If a old-valid assignment strays into
other logic, it may be multiple clock cycles before the bug causes an error and a waveform
display will not immediately reveal the point of initial failure. Cummings claims this type of bug
can be time consuming to trace.

Cummings has had lots of experience in training classes with bugs that are easily found by using
X-assignments. For FSM designs, missing states are very quickly identified and easily debugged
if an initial X-assignment is made. All other next-assignment errors are typically much more
time-consuming to find during execution of labs.

Bening notes that Cummings’ use of 0/1-randomized X-assignments is an interesting technology,
which may be useful after some more study. Bening’s first thought on this concept is that this
coding style puts a bigger burden on the “random state space” to be explored by the notoriously
slow speed of logic simulators.

As a side note, recent experimentation conducted by Cummings with 2003 and 2004 versions of
Synopsys’ Design Compiler seem to show the best synthesis optimizations are achieved only
after adding case default X-assignments. This did not seem to be true with older versions of
Synopsys DC and more experimentation is required to verify this observation.

2.5.3 Separation of Concerns

Projects applying the 2-state discipline separate their 2-state functional correctness verification
concerns from stray X concerns.

Where engineers have concerns about stray X’s, an assert_no_X (or a $check_values
sweep) might be in order. The casex addresses the Boolean function. The 2-state methodology
linting rules out use of the casez and whatever X/Z-trapping baggage might have accompanied
it. Cummings believes a good linting tool would report errors whenever a case-item tries to test
for X’s and thereby would also identify the poor X/Z-trapping coding style.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

17

Designers on projects applying the 2-state discipline quickly come to believe in it, and apply
their awareness of its value in their Verilog designs. For example, it is a widely used practice to
propagate an X during potentially metastable periods in synchronizers. Applying the 2-state
discipline, designers propagate 0/1 random values instead during the synchronizer potentially
metastable period.

3 2-State Simulation
3.1 Synopsys VCS +2state

The Synopsys VCS +2state simulation mode generally converts Z’s to 0 and X’s to 1. One
important exception is at time-0 when uninitialized variables that assume an X-value in 4-state
simulation, actually are set to 0 in +2state simulations [18].

VCS allows a user to specify that certain variables will always be 4-state variables by including
a /* 4state */ pragma in the variable declaration. For example:

reg /* 4state */ [7:0] q;

In this example, the q-variable will always be a 4-state variable.

VCS also has a configuration file capability to indicate that entire files should be treated as either
4-state or 2-state simulation blocks (see the VCS User Guide for more details) [18].

VCS +2state simulation mode also automatically converts many nets and variables to 4-state
types in order to reduce potential simulation mismatches between 4-state and 2-state simulations.

A couple of the more notable conversions include the use of a case (casex/casez) statement
that does comparisons to X and Z values. For example:

always @*
 case (a)
 1'b0: y = 2'b00;
 1'b1: y = 2'b01;
 1'bz: y = 2'b10;
 1'bx: y = 2'b11;
 endcase

Example 5 - Bad coding style that causes automatic conversion to 4-state variables

In this example, the a variable is converted to a 4-state variable to ensure that 4-state and 2-state
simulations will yield the same assignment to the y-variable. As noted earlier both authors agree
that testing X’s and Z’s in case items is a terrible coding style, so this conversion should never
occur in a well-coded model.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

18

Similarly, the case-equality (===) and case-inequality (!==) Verilog comparison operators
may force a variable to become a 4-state variable to preserve similar 2-state and 4-state
simulation results.

While some block-level simulations on some projects have successfully applied the VCS
+2state for simulations, other projects doing chip and system-level simulations that included
tri-state buses found that the need to accurately specify all of the /* 4value */ signal
declarations was too much extra work. Any required /* 4value */ declaration that a designer
accidentally omitted required another debugging cycle.

As noted earlier (see section 2.2.2), projects that applied the oblivious $set_values that poked
0/1’s into sequential and combinational variables (typically, Verilog reg-variables) found that
using the +2state caused their simulations to fail. The problem is that $set_values will try
to assign random values to combinational reg-variables (bad) and try to assign random values to
clocked reg-variables (good). As a result, combinational paths have inconsistent values.

3.2 Modeling 2-State HiZ?

Trying to model HiZ nets with 2-state representation does not always work. Why?

At first glance the problem seems to be simple, anytime a net goes to HiZ, model it as a 0 or a 1,
after all, a real logic gate input will interpret the HiZ input as either a 0 or 1; although, different
inputs on different gates might interpret the HiZ differently with some input thresholds
recognizing the HiZ as a logic 1 and other input thresholds interpreting the logic input as a 0.
Still, it seems like modeling a net at HiZ as either a 1 or 0 would be reasonable.

The problem with HiZ nets is that almost 100% of nets that allow HiZ drivers have two or more
drivers, otherwise there would be no need for driving HiZ. When there are multiple drivers, the
design objective is to ensure that only one driver is enabled at any time, and in most cases the
design objective is to ensure that one driver IS enabled at all times, or to connect “weak keepers”
or “bus sustainers (busus)” devices to the net to make sure the net never floats to a HiZ state
(HiZ is very bad for CMOS devices because CMOS devices consume the most power during
switching and HiZ is in the switching voltage range, which will cause the greatest power
dissipation).

If the problem were as simple as looking at the resolved HiZ value and changing it to a 1 or 0,
then HiZ 2-state net modeling would be practical, but the reality is that each HiZ contributor
would be changed to 0 or 1 and then be combined with an enabled and valid 0 or 1 to generate
potential X-values which are also converted to 0’s or 1’s.

VCS 2-state mode converts all Z’s to 0 and all X’s to 1 (except at time-0 when even uninitialized
X-variables are converted to 0 [18]).

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

19

The entries in the following table show the 4-state values and, where applicable, the
corresponding 2-state resolution. For example, when the 4-state a and b drivers are both Z, the
resolved 4-state y-output is also Z. For these same entries, the resolved 2-state a and b drivers
are both 0(Z) (zero after conversion from Z) and the corresponding 2-state y-output is simply 0,
because the a and b inputs were both 0 after conversion from Z and no trace of the original Z-
values exist; hence, a solid 0 on the 2-state y-output.

a4 a2 b4 b2 y4 y2
0 0 0 0 0 0
0 0 1 1 X 1(X)
0 0 Z 0(Z) 0 0
0 0 X 1(X) X 1(X)
1 1 0 0 X 1(X)
1 1 1 1 1 1
1 1 Z 0(Z) 1 1(X)
1 1 X 1(X) X 1
Z 0(Z) 0 0 0 0
Z 0(Z) 1 1 1 1(X)
Z 0(Z) Z 0(Z) Z 0
Z 0(Z) X 1(X) X 1(X)
X 1(X) 0 0 X 1(X)
X 1(X) 1 1 X 1
X 1(X) Z 0(Z) X 1(X)
X 1(X) X 1(X) X 1
a4 - 4-state a driver / b4 - 4-state b driver / y4 - 4-state y driver
a2 - 2-state a driver / b2 - 2-state b driver / y2 - 2-state y driver

Figure 2 - 4-state and 2-state resolution using Z->0 and X->1 conversions

From the above table, it can be seen that resolved nets would be equal to the corresponding 4-
state resolved value after making the Z->0 and X->1 conversions.

What if Z and X were both converted to 0’s for 2-state simulation? This actually proves to be
problematic when trying to match 4-state simulations to 2-state simulations. As shown in Figure
3, there are two places where converting both Z and X to 0’s will cause corresponding 2-state and
4-state simulations to have a mismatch.

Consider the Figure 3 case where a drives 1 (in both 4-state and 2-state simulations) and where
b drives Z (Z for 4-state and 0(Z) for state). After resolving the 4-state drivers, the 4-state value
will be 1, while the 2-state resolution will be X, which will change to a 0 (X->0). Now there is a
4-state/2-state simulation mismatch. The same type of mismatch happens later in the table.

It should be noted that SystemVerilog 2-state variables convert all X’s and Z’s to 0 (see Section
6). This conversion is fine for 2-state simulation except for tri-state drivers.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

20

a4 a2 b4 b2 y4 y2
0 0 0 0 0 0
0 0 1 1 X 0(X)
0 0 Z 0(Z) 0 0
0 0 X 0(X) X 0
1 1 0 0 X 0(X)
1 1 1 1 1 1
1 1 Z 0(Z) 1 0(X)
1 1 X 0(X) X 0(X)
Z 0(Z) 0 0 0 0
Z 0(Z) 1 1 1 0(X)
Z 0(Z) Z 0(Z) Z 0
Z 0(Z) X 0(X) X 0
X 0(X) 0 0 X 0
X 0(X) 1 1 X 0(X)
X 0(X) Z 0(Z) X 0
X 0(X) X 0(X) X 0
a4 - 4-state a driver / b4 - 4-state b driver / y4 - 4-state y driver
a2 - 2-state a driver / b2 - 2-state b driver / y2 - 2-state y driver

Figure 3 - 4-state and 2-state resolution using Z->0 and X->0 conversions

a4 a2 b4 b2 y4 y2
0 0 0 0 0 0
0 0 1 1 X 0(X)
0 0 Z 1(Z) 0 0(X)
0 0 X 0(X) X 0
1 1 0 0 X 0(X)
1 1 1 1 1 1
1 1 Z 1(Z) 1 1
1 1 X 0(X) X 0(X)
Z 1(Z) 0 0 0 0(X)
Z 1(Z) 1 1 1 1
Z 1(Z) Z 1(Z) Z 1
Z 1(Z) X 0(X) X 0(X)
X 0(X) 0 0 X 0
X 0(X) 1 1 X 0(X)
X 0(X) Z 1(Z) X 0(X)
X 0(X) X 0(X) X 0
a4 - 4-state a driver / b4 - 4-state b driver / y4 - 4-state y driver
a2 - 2-state a driver / b2 - 2-state b driver / y2 - 2-state y driver

Figure 4 - 4-state and 2-state resolution using Z->1 and X->0 conversions

PROBLEM
2-state does not

match 4-state

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

21

What if Z->1 and X->0 as shown in Figure 4. As can be seen in the table, all 4-state simulations
for multiple drivers will match the 2-state simulations for the same drivers. Using the Z->1 and
X->0 conversion would be a safe representation for 2-state simulations. No simulation
mismatches.

And finally, consider the 2-state conversion case where Z->1 and X->1 as shown in Figure 5
below.

a4 a2 b4 b2 y4 y2
0 0 0 0 0 0
0 0 1 1 X 1(X)
0 0 Z 1(Z) 0 1(X)
0 0 X 1(X) X 1(X)
1 1 0 0 X 1(X)
1 1 1 1 1 1
1 1 Z 1(Z) 1 1(X)
1 1 X 1(X) X 1
Z 1(Z) 0 0 0 1(X)
Z 1(Z) 1 1 1 1
Z 1(Z) Z 1(Z) Z 1
Z 1(Z) X 1(X) X 1
X 1(X) 0 0 X 1(X)
X 1(X) 1 1 X 1
X 1(X) Z 1(Z) X 1
X 1(X) X 1(X) X 1

a4 - 4-state a driver / b4 - 4-state b driver / y4 - 4-state y driver
a2 - 2-state a driver / b2 - 2-state b driver / y2 - 2-state y driver

Figure 5 - 4-state and 2-state resolution using Z->1 and X->1 conversions

Examine the Figure 5 case where a drives 0 (same in both 4-state and 2-state simulations) and
where b drives Z (Z for 4-state and 1(Z) for state). After resolving the 4-state drivers, the 4-state
value will be 0, while the 2-state resolution will be X, which will change to a 1 (X->1). Now
again there is a 4-state/2-state simulation mismatch. The same type of mismatch also happens
later in the table.

From these four tables, it can be seen that modeling HiZ using 2-state representations only works
if the either the (Z->0 / X->1) or the (Z->1 / X->0) conversions are used. VCS does use the
first conversion for 2-state simulations but it does not use these 2-state conversions for tri-
stateable drivers.

PROBLEM
2-state does not

match 4-state

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

22

4 Reproducible Power-On 0/1 Random

From its early days of project application at HP, it was realized that the reproducible random
simulation method described in Bening and Chaney [11] was a technology that should really be
supported by vendors.

In 2002, some EDA vendors expressed interest in licensing the random-state repeatability patent
[11]. In spite of HP’s efforts to publicize the technology and start wheels in motion for the
licensing to EDA simulation vendors, to our knowledge, the licensing still has not happened.

5 Simulation Performance

When most engineers explore the concept of 2-state simulation, an initial reason for considering
this technique is the perception of increased simulation performance. This paper has discussed
important coding and design techniques using 2-state simulation to avoid problems related to X-
optimism and X-pessimism, but what about simulation performance?

First, let’s look at some of the theoretical performance enhancements that might be possible
using 2-state versus 4-state simulation.

5.1 Data representation

4-state data requires at least 2 bits to represent a logic value. In addition to 2 bits for logic values,
some Verilog variables may also carry strength information for the logic value. The Verilog
HDL has 8-levels of built-in strength, ranging from the highest strength, level-7 for the supply
strength, down to level-0 for the HiZ strength. If unspecified, the default strength is level-6 or
strong strength.

The signal strength can also be different for 0 and 1 values, which means that 3 bits each (to
represent 8 strength levels) may be required to represent the logic-1 strength and the logic-0
strength.

With 2 bits for the logic value (0, 1, X, Z) and 3-bits for the logic-1 strength and 3 bits for the
logic-0 strength, Verilog may require 8-bits of compute storage to represent each individual
simulated logic bit.

By representing each logic bit as a 0 or 1 with no strength information, there is a theoretical one-
to-one mapping of simulation bits to compute storage bits.

5.2 Native machine operations

When using 4-state logic, simulators require some type of lookup or calculation method to
perform Verilog operations. Consider a simple 2-input and operation.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

23

The simulator must calculate or lookup the resultant and operation for every 4-state bit
combination.

Most if not all computers have built-in and-ing capability where two bits can be and-ed together
using native computer instructions, so no calculation or lookup operation is needed.

5.3 Bit, byte & word boundaries

A scalar 2-state and operation may not be much more efficient than a 4-state and-lookup
operation, but there may be significant benefits if a simulator can perform and-operations on
multi-bit vectors.

Theoretically, a simulator may be able to do vector Boolean 2-state operations much quicker
than equivalent 4-state lookup for each bit in a pair of vectors. The subsequent question is
whether computers can perform 8-bit, 16-bit, 32-bit and 64-bit operations very quickly because
of native word operation-capabilities of computers.

5.4 Memory array representation

One of the reported benefits of using 2-state array representations is that it would reduce the
amount of compute memory required to simulate arrays, such as those that are declared to model
RAMs and ROMs[5]. The compute memory savings can be significant for certain designs and
may allow the simulator to work more efficiently during simulation.

This capability was not tested for this paper.

6 SystemVerilog 2-state RTL simulation

SystemVerilog has built-in 2-state data types. One of the most useful 2-state data types is the
bit type, which can be sized to meet the needs of RTL design variables. SystemVerilog 2-state
types currently have one limitation, X-state and Z-state both are converted to a logic 0. This
limitation is fine for non-tri-state variable representation, but it means that SystemVerilog 2-state
types still do not have the flexibility of the HP reproducible random initialization.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

24

SystemVerilog also has a new VHDL-like unresolved 4-state type called logic. Unlike Verilog
wires, where multiple drivers can be assigned and Verilog performs an automatic resolution
function, a compliant SystemVerilog simulator will report an assignment error if more than one
source attempts to drive a logic data type variable. This feature helps to identify mistakes
related to accidentally making multiple driver assignments to the same variable.

The logic variable also serves as a variable type in SystemVerilog so if an engineer changes an
RTL description from a continuous assignment to a procedural assignment, no declaration
change is required (unlike Verilog, which frequently requires that the declaration change from
and implicit or explicit wire declaration to a reg declaration).

The bit type is also an unresolved type that allows either one driver assignment or one or more
procedural assignments.

Using SystemVerilog’s new typedef capability, the new bit and logic data types make it
possible to declare re-configurable 4-state/2-state data types that will simulate the same on any
SystemVerilog simulator.

Consider the following data types declaration example.

`ifdef STATE2
 typedef bit bit_t;
`else
 typedef logic bit_t;
`endif

Example 6 - SystemVerilog 2-state / 4-state types definitions file

This declaration example defines a new user defined data type called bit_t. When using this
definitions file, by default, the simulation will be run using the SystemVerilog 4-state logic
data type, but to switch to a SystemVerilog 2-state bit data type, one simply adds
+define+STATE2 to the simulation command line.

The user defined bit_t data type is used in the following simple 1-bit inverter example. This
simple SystemVerilog example file (plus other SystemVerilog models, shown in the Appendix,
section 15) are used in benchmark simulations described in section 7.

module sv_scalar (
 output bit_t y,
 input bit_t a
);

 always @(a)
 y = ~a;
endmodule

Example 7 - SystemVerilog 1-bit inverter model

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

25

6.1 Designs without tri-state drivers

There are some designs that prohibit the use of tri-state buses and bi-directional buses. For this
type of design, there is no need for 4-state resolved data types because there is no need to model
Z and multiple drivers on a common net. For this type of design, the SystemVerilog logic (4-
state) and bit (2-state) data types can be used as universal data types.

6.2 Designs with tri-state drivers

Some designs do use tri-state and bi-directional buses. For these designs, the question becomes
what should be the 2-state strategy for these buses?

There are two strategies related to tri-stateable nets in RTL design. The first strategy is to have
all tri-state nets simulate using 4-state semantics. In SystemVerilog, 4-state tri-state nets will
continued to be modeled using the automatically resolved Verilog wire type.

The second strategy is to model tri-state nets as a 2-state type using conversions similar to those
shown in either Figure 2 or Figure 4. At present, SystemVerilog has not been defined to model 2-
state net types and more study of the 2-state net ramifications are required before making a 2-
state net enhancement proposal for SystemVerilog.

For now, it may be useful to declare a tri-stateable net type for SystemVerilog designs that could
be easily modified if SystemVerilog is enhanced with 2-state net types. The following
declaration would create a tri_t that would simulate like a wire for both 2-state and 4-state
simulations.

`ifdef STATE2
 typedef wire tri_t;
`else
 typedef wire tri_t;
`endif

Example 8 - SystemVerilog tri_t type declaration for potential 2-state / 4-state tri-stateable net types

In the future, the 2-state portion of this declaration could be modified to accommodate a
potential new SystemVerilog 2-state net type.

Unlike Verilog, where the wire and tri net types are identical, this SystemVerilog
methodology now separates tri-stateable nets (tri_t - with automatic resolution) from non-tri-
state nets (bit_t - with multi-driver checking and error reporting).

6.3 Clocks and resets

Clock and reset are frequently inputs to a design, For these designs it is reasonable to model
these nets using pure 2-state types

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

26

typedef bit clk_t;

module myasic (
 <port list declaration>,
 ...,
 input clk_t clk, rst_n);

 ...
endmodule

6.4 SystemVerilog optimization in VCS

As will be seen in section 7, there is no significant current simulation performance improvement
when using the SystemVerilog 2-state types versus the SystemVerilog 4-state types. Considering
that the SystemVerilog language was just recently standardized, it is a fair assumption that the
VCS SystemVerilog developers are concentrating first on implementing all of the new and
powerful SystemVerilog features and that 2-state optimizations may occur with a later release. A
quick email to a Synopsys SystemVerilog expert confirmed this theory [5].

Bottom line, SystemVerilog 2-state simulations will not increase SystemVerilog simulation
performance at this time but 2-state performance enhancements may be coming in a later release
of VCS.

One interesting side-note that is discussed in greater detail in the summary of the benchmarks of
section 7 is that the simple 32-bit SystemVerilog inverter models simulated almost %1,300 faster
than equivalent Verilog procedural block inverters. This result was completely unexpected.

For the simple and-gate benchmarks that are also discussed in section 7, the Verilog models ran
30-50% faster than the equivalent SystemVerilog models.

The performance numbers between SystemVerilog and Verilog data types will probably change
drastically over the next few years as more optimization effort is put into more mature
SystemVerilog simulators. It would be a mistake to quote the performance figures from this
paper even 6 months from now.

It should also be noted that SystemVerilog’s greatest advantage over Verilog is not its current
performance, but its current features, many which have already been implemented in VCS.

6.5 Reproducible and random variable initialization

SystemVerilog does not currently have reproducible random initialization of variables.
SystemVerilog does not even currently have random 2-state initialization of variables. Both of
these capabilities would be required to match the 2-state discipline simulation environment.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

27

6.6 Register output modeling & randomization

One of the problems experienced with the 2-state methodology was the random initialization of
variable types (typically reg-variables), some of which were actual clocked logic outputs and
some which represented combinational logic generated from a procedural block. One way
engineers addressed this problem was to use library-based flip-flop and register/latch array
models.

A similar concept may prove useful as a SystemVerilog data types strategy. Users may choose to
declare three different types: clk_t (permanent 2-state types used for clk and resets), bit_t
(compile-time selectable 2-state/4-state type for non-registered outputs) and reg_t (to be used
for actual registered outputs). There may be a way to find and repeatably randomize all of the
registered outputs in a design, leaving the combinational and interconnect bit_t variables to
settle to a predictable initial state.

`ifdef STATE2
 typedef bit bit_t; // for 2-state interconnect
 typedef bit reg_t; // for 2-state registered outputs
 typedef wire tri_t; // for potential 2-state resolved net
types
`else
 typedef logic bit_t; // for 4-state interconnect
 typedef logic reg_t; // for 4-state registered outputs
 typedef wire tri_t; // for 4-state resolved net types
`endif

typedef bit clk_t; // for clk and reset nets

Example 9 - SystemVerilog 2-state / 4-state data types for registered outputs, nets, clocks and resets

6.7 SystemVerilog 2-state summary

SystemVerilog features and methodologies may help address some of the issues and limitations
related Verilog-based 2-state simulation, but in its current form [17] it still lacks a few important
features for a robust 2-state simulation methodology, such as reproducible random state
initialization, ability to define the runtime resolution of 2-state X and Z to be 0, 1 or random, and
resolved 2-state net types.

If a design does not require tri-state nets, then the only missing capabilities are reproducible
random state initialization and the ability to define the runtime resolution of 2-state X and Z to be
0, 1 or random.

7 VCS Verilog & SystemVerilog 2-state benchmarks

To test some of the optimization theories discussed in section 5, a few benchmark VCS
simulations were run on an in-house IBM Thinkpad T30 laptop with VMware workstation - Red
Hat Linux 7.3 OS and VCS version 7.1-R16. Benchmarks were also run on an in-house SUN

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

28

Ultra-80 with Solaris 8 OS and VCS version 7.1-R12. Relative simulation speeds for the
different models on the same platform are the benchmarks that we were most interested in.

The benchmark files selected were intentionally trivial. The authors tried to choose best-case
operations that would demonstrate the anticipated optimal performance gains that could be
achieved by using 2-state variables with machine-optimized operations.

The two benchmark operations selected were a series of simple inverters of different sizes and 2-
input and-gates of different sizes. By running these simple benchmarks with millions and
billions of stimulus vectors, it was hoped that start-up and non-optimized operations would be
filtered, leaving pure optimized performance.

The results were most interesting and non-intuitive! (All of the benchmark model and testbench
files are shown in the Appendix, section 15.1).

For real designs with millions of gates and diverse operations, your results will be very different.

For reasons that will be discussed in section 8, HP’s large scale server design projects have not
used the VCS +2state option on a full-sized model in about three years. In March 2001, the
last time +2state benchmarks were performed (using VCS 6.0) on a ~2.4M gate-equivalent
RTL chip model, the recorded simulation performance was:

• Without +2state - 2045.96 CPU seconds
• With +2state - 1928.97 CPU seconds

About a 6% performance improvement.

7.1 The inverter benchmark simulations

The first set of benchmarks used simple inversion operations. By running millions of toggling
stimulus input vectors to simple inverter designs, it was hoped that the compiled designs would
use very efficient built-in native inversion operations; hence, show a high-percentage difference
between 2-state and 4-state simulations.

SystemVerilog configurable 4-state/2-state procedural-block inverter models (1-bit, 8-bit and 32-
bit) were compared to Verilog reg-output procedural-block inverter models (1-bit, 8-bit and 32-
bit) and to wire-output continuous-assignment inverter models (8-bit and 32-bit). The Verilog
models were run both with and without the +2state switch.

Using a cycle CNT of 250 million to run the benchmarks on both the Linux and Solaris
machines, and a subsequent cycle CNT of 1 billion on the Linux machine, the captured
simulation times are recorded in Table 1, Table 2 and Table 3 (Appendix - section 15.8).

The most interesting result was that all of the SystemVerilog inverter models ran faster than the
Verilog procedural block inverter models.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

29

The biggest surprise was how slow the 8-bit and 32-bit procedural block inverters ran compared
to the equivalent SystemVerilog models and equivalent Verilog continuous assignment models.
The Verilog 8-bit and 32-bit procedural block inverters ran about %1,300 slower than the
equivalent SystemVerilog and Verilog continuous assignment models.

We do not have a good explanation for the poor performance of the Verilog procedural inverters.
In fact, the results are very counter intuitive. We expected the 8-bit and 32-bit 2-state Verilog
models to be efficiently packed and simulated using native machine word sizes and operations.
We may have just selected and unlucky operation to test for this benchmark. Nonetheless, these
results were a real surprise.

Other observations from the inverter benchmarks were that the SystemVerilog models, whether
they were 2-state or 4-state and whether they were scalar, 8-bit or 32-bit, made very little
performance difference.

The Verilog non-scalar 2-state inverter models did run 5-50% faster than the equivalent 4-state
models. The Verilog 2-state and 4-state inverter models simulated about the same (as was
expected)

7.2 The 2-input and-gate benchmark simulations

Another simple operation, one that would likely have a machine-native equivalent operation is a
2-input and-ing operation. The Verilog and SystemVerilog files for this benchmark are included
in the Appendix of section 15.

For the 2-input and-gate benchmarks, SystemVerilog configurable 4-state/2-state procedural-
block and-gate models (1-bit, 8-bit and 32-bit) were compared to Verilog reg-output
procedural-block and-gate models (1-bit, 8-bit and 32-bit) and to wire-output continuous-
assignment and-gate models (8-bit and 32-bit). The Verilog models were run both with and
without the +2state switch.

Using a cycle CNT of 250 million to run the benchmarks on both the Linux and Solaris
machines, and a subsequent cycle CNT of 1 billion on the Linux machine, the captured
simulation times are recorded in Table 4, Table 5 and Table 6 (Appendix - sectionError!
Reference source not found.).

The first observation is that all of the Verilog and-gate models simulated faster than the
equivalent SystemVerilog and-gate models.

Also, there were no surprises this time with the 8-bit and 32-bit procedural and-gates and the
+2state Verilog model simulations generally ran faster than equivalent 4-state Verilog models.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

30

8 2-State Simulation Realities

HP’s large scale server design projects have developed an advanced 2-state simulation
methodology with accompanying tools.

However, these projects have not routinely used VCS +2state simulation. These project
continue to apply a two-state Verilog design methodology enforced by Lint rules, supported by
random initializations, assertions and $check_values, but they currently run on 4-state vendor
Verilog simulators. Except for the X-assertions, $check_values, and incomplete /* 4state
*/, the logic would behave the same in 2-state RTL simulation, if any vendor fully supported the
full 2-state methodology capabilities.

The HP large scale server design lab phased away from running 99% of their simulation cycles
on in-house simulation models to all VCS and other Verilog simulators in the later 1990’s. But,
they retained the 2-state RTL design style in its Verilog designs. This design style continues into
2004 and beyond, through the power of lint rules leveraged from one project to the next.

In the early 1990’s, this HP in-house RTL Verilog simulator was 20X-80X faster than vendor
simulators, but by the later 1990’s it was only 0.8X - 2.3X faster than commercial tools, so
commercial tools largely replaced in-house simulators.

It should be noted that this in-house simulator ran in half the memory: 0.7 GB for RTL ~200M
gate-equivalent system model, compared with 1.4 GB for their largest systems now.

9 X-assignments versus other flawed RTL design practices

Much emphasis in this paper has been placed on design failures related to stray X-assignments,
reset X-startup problems, and X-optimism and X-pessimism. Although 4-state simulation with X-
related failures can and do occur, the authors believe that more startup and design problems are
actually related to poor reset design and poor multi-clock design.

The 2-state reproducible random initialization methodology can help identify and facilitate
debugging of X-related design problems during simulation. Reset synchronization and multi-
clock design flaws are almost impossible to find with either 2-state or 4-state simulation due to
the ideal transition of signals in an RTL simulation; hence, engineers are encouraged to still
employ good reset design [4] and multi-clock [2] design practices in actual designs.

10 Conclusions

There are two main reasons to consider 2-state simulation, simulation performance and enhanced
verification.

Although we have heard of some design teams that claim upwards of 15% increases in
simulation performance, we have not seen this level of performance improvement. In fact, at this

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

31

time, we do not believe that current levels of increased simulation performance offer generally
compelling reasons to use the VCS +2state simulation mode.

On the other hand, 2-state simulations using the 2-state methodologies described in this paper
offer very compelling reasons to do 2-state simulations. Unfortunately, the +2state mode of
VCS and current SystemVerilog 2-state capabilities lack the important reproducible random
initialization capabilities.

SystemVerilog does have useful 2-state data types and the ability to create user-defined types.
These capabilities make it easy to switch back and forth between 2-state and 4-state data types
and simulations, but as noted above, SystemVerilog still lacks critical 2-state features that keep it
from being capable of doing all the 2-state simulation methodologies described in this paper. To
be flexible enough to implement the 2-state methodologies contained in this paper,
SystemVerilog would need to implement additional 2-state centric capabilities described in
section 11.

SystemVerilog 2-state simulation currently works best on designs that prohibit tri-state buses,
but even with these designs it still lacks reproducible random state initialization, which could
facilitate identification of many power-on initialization design flaws.

The authors also agree that engineers that do 4-state or 2-state simulation, should not do X-
testing within case, casex and casez statements.

10.1 casex/casez disagreement

The debate over the use of casex/casez continues to be the most contested difference between
the authors. We both agree that in a 2-state simulation environment, casex and casez are
Boolean equivalents, are safe because 2-state simulations initialize all variables to 0 or 1
(thereby avoiding the potential for uninitialized variables making incorrect casex-don’t-care
matches), and will yield the same 2-state simulation results as equivalent 4-state simulations, but
we strongly disagree on which casex/casez statement should be preferred in RTL design.

Bening prefers casex because it is the 2-state Boolean equivalent to casez, but does not allow
the absurd X-comparisons in case items.

Cummings prefers casez because in 4-state simulation, casex will treat uninitialized variables
as don’t-cares and allow the wrong case-item to be matched during pre-synthesis simulations,
especially after reset. Cummings, believes using casex in a 4-state RTL design borders on
malpractice.

Since most engineers do not have access to HP’s patented reproducible random state
initialization technology and advanced 2-state optimized linting tools and environment,
Cummings claims that for the foreseeable future more than 90% of all engineering simulations
will continue to be done using 4-state simulations and an engineer who follows the

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

32

recommendation from Bening’s book to use casex, is likely to experience completely avoidable
design problems.

Cummings admires Bening’s 2-state simulation environment, but Cummings claims that it would
be better to use casez and allow linting tools to find the absurd X-case/casex/casez item-test
code and flag that code as unacceptable.

On the question of casex and casez usage, the authors agree to disagree.

10.2 X-assignment disagreement

X-assignment has been assailed in a number of papers due to the potential X-pessimism and X-
optimism problems. The RTL 2-state methodology described by Bening prohibits the use of X-
assignments in RTL code.

Cummings has seen great value in making X-assignments in RTL designs. In FSM design, X-
assignments quickly isolate missing next state assignments to help rapidly debug the RTL code
(the X-assignment acts much like a missing next-assignment assertion that quickly helps the
RTL designer find and correct missing next assignments) and also helps the synthesis tool to
identify don’t-care conditions to help optimize synthesized designs. In FSM design, the state
and next variables are localized to the FSM modules so X-leakage (the possibility that X-logic
values might escape the module and cause outside X-pessimism and X-optimism problems) is
almost impossible.

Cummings’ experience is that X-assignments, combined with 4-state simulation can help identify
problems early in the debugging cycle. Cliff’s methodology encourages X-assignment along with
waveform dumping and then displaying all signals to identify where X’s erroneously exist in the
simulation.

As noted in section 8, HP’s large scale server design projects do not actually use a 2-state
simulator but instead they use a 2-state design discipline with supporting tools and then run
simulations on a 4-state simulator. Based on this information, Cummings agrees that prohibiting
X-assignments in a disciplined 2-state environment running on a 4-state simulator is a reasonable
RTL coding restriction.

10.3 Bening’s Conclusions

The HP large scale server design lab has successfully applied a 2-state RTL design methodology
for a decade, and continues to refine this and other simulation methodologies. In the absence of
full support by vendors, this requires in-house support to make it work. For wider acceptance
across HP and the worldwide design community, it will take more support by vendors, and those
who do Verilog language and methodology training.

Hewlett-Packard’s 2-state methodology successfully uses casex without problems. By
forbidding the casez, the methodology eliminates designer time wasted in crafting casezs to

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

33

deal with X’s, and precludes the hideous coding style of doing comparisons to X. Rather than
deal with complex lint rules that would forbid the testing of X’s in the casez, prohibiting casez
use in favor of casex eliminates casez pitfalls at a minimum cost.

In 4-state simulation, casex and casez can both cause serious design flaws.

10.4 Cummings’ Conclusions

In true 2-state simulation, it does not matter whether you use casex or casez.

In 4-state simulation, casex can cause serious design flaws and should never be used.

Even engineers who use 2-state simulation methodologies should be taught of the casex
dangers in case they ever have the need to do 4-state simulations.

Do not do X-testing with any Verilog case, casex or casez statements.

11 Recommendations

SystemVerilog has useful 2-state variables, but they are not good enough for a general 2-state
simulation strategy. System Verilog converts all X’s and Z’s to 0, which can be problematic in
some simulation environments. To make SystemVerilog good enough to apply the 2-state
techniques described in this paper, certain capabilities must be added to the language:

• The ability to initialize all variables to 0.

• The ability to initialize all variables to 1.

• The ability to randomly initializate all variables to 0 and 1.

• The ability to do REPRODUCIBLE random initialization of variables to 0 and 1 and to
save the random initialization seed. At this time, this capability is patented by HP. Both
authors agree that simulation vendors should work with the HP patent office to get this
technology to their customers.

As Verilog is today, design projects can and should freely apply the $set_values,
$check_values, assertion-based, and lint rule methods to support a completely 2-state RTL
methodology. For repeatability, elimination of power-on 0/1 randomization races is also freely
available, but requires some crafting, as well as checking (for which the VCS +race option is
well-suited).

The other aspect of repeatability requires access to the HP patent, but it is not absolutely
essential to a 2-state RTL methodology, only an aid in productivity.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

34

In the current state-of-the-art, projects must develop their own expertise to support the 2-state
discipline. This is admittedly a management challenge when working with designers with long-
time RTL X-crafting experience.

It is the hope of the authors that this paper will enlighten vendors, consultants, and design
engineers, to facilitate support and acceptance of the two-state RTL methodology.

12 Job Interview Questions

This paper has described interesting simulation issues and both authors believe that employers
may want to consider the following two recommended job interview questions for Verilog RTL
design and verification job applicants:

1. Show code that does case-item X-testing and ask what the candidate thinks of the code
(example code follows). If the candidate does not point to the 2'bxx line and call this coding
style bad, the candidate needs to be informed of better coding practices

module mux4 (output reg y, input [3:0] a, input [1:0] s);

 always @*
 case (s)
 2'b00: y = a[0];
 2'b01: y = a[1];
 2'b10: y = a[2];
 2'b11: y = a[3];
 2'bxx: y = a[0];
 default: $display("Invalid select lines - s=%b", s);
 endcase
endmodule

2. Ask the candidate what the difference is between casez and casex and ask the candidate
which is safer in RTL design.

The correct response will be dependent upon whether the candidate is seeking a position on a
project team supporting a 2-state RTL methodology or elsewhere, but the candidate should note
that casex and casez are extremely dangerous in 4-state simulations, and for a 2-state project
position, the candidate should indicate that for 2-state simulation, casez and casex are Boolean
equivalents while casez is prohibited because casez permits very bad X-bit comparisons (as
described in interview question #1), and may include casez with bad X-assignments. Even 2-
state RTL project candidates should understand the differences in the event they ever decide to
change jobs. This is especially true if they expect to lead project teams away from X-based RTL
methods to a fully 2-state RTL methodology.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

35

13 Acknowledgements

The authors wish to thank Dave Rich [5] and Peter Flake [14] of Synopsys for their expertise and
responses concerning how VCS-Verilog and VCS-SystemVerilog work and status concerning
SystemVerilog optimizations. The authors also thank Stuart Sutherland for his review, comments
and feedback that help improve the content and flow of this paper.

14 References

[1] Clifford E. Cummings, ‘“full_case parallel_case”, the Evil Twins of Verilog Synthesis,’ SNUG’99
Boston (Synopsys Users Group Boston, MA, 1999) Proceedings, October 1999. (Also available
online at www.sunburst-design.com/papers)

[2] Clifford E. Cummings, “Synthesis and Scripting Techniques for Designing Multi-Asynchronous
Clock Designs,” SNUG 2001 (Synopsys Users Group Conference, San Jose, CA, 2001) User
Papers, March 2001, Section MC1, 3rd paper. Also available at www.sunburst-design.com/papers

[3] Clifford E. Cummings, “Synthesizable Finite State Machine Design Techniques Using the New
SystemVerilog 3.0 Enhancements,” SNUG (Synopsys Users Group San Jose, CA 2003)
Proceedings, March 2003. Also available at www.sunburst-design.com/papers

[4] Clifford E. Cummings, Don Mills, Steve Golson, “Asynchronous & Synchronous Reset Design
Techniques - Part Deux” SNUG (Synopsys Users Group) Boston, 2003 User Papers, September
2003. Also available at www.sunburst-design.com/papers and www.lcdm-eng.com/papers.htm

[5] Dave Rich, Synopsys - Personal communication

[6] Don Mills and Clifford E. Cummings, “RTL Coding Styles That Yield Simulation and Synthesis
Mismatches,” SNUG (Synopsys Users Group) 1999 Proceedings, section-TA2 (2nd paper), March
1999. Also available at www.lcdm-eng.com/papers.htm and www.sunburst-design.com/papers

[7] IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language, IEEE Computer Society, IEEE, New York, NY, IEEE Std 1364-1995

[8] IEEE Standard Verilog Hardware Description Language, IEEE Computer Society, IEEE, New
York, NY, IEEE Std 1364-2001

[9] Lionel Bening, “Simulation of High Speed Computer Logic,” Proc. 6th Design Automation Conf.,
June, 1969.

[10] Lionel Bening, “A Two-State Methodology for RTL Logic Simulation,” Proc. 36th Design
Automation Conf., June, 1999.

[11] Lionel Bening, Kenneth Chaney, Generation of Reproducible Random Initial States in RTL
Simulators, Hewlett-Packard patent US6061819, May, 2000.

[12] Lionel Bening and Harry Foster, Principles of Verifiable RTL Design, Kluwer Academic
Publishers, May, 2001.

[13] Mike Turpin, “The dangers of living with an X (bugs hidden in your Verilog),” SNUG Boston, Sep.
2003, www.snug-universal.org/cgi-bin/search/search.cgi?Boston,+2003

[14] Peter Flake, Synopsys - Personal communication

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

36

[15] Synopsys SolvNet, Doc Name: 002415, “Values of "X" and "Z" in a 2-state VCS Simulation,” Last
Modified: 08/26/2002 - solvnet.synopsys.com/retrieve/002415.html

[16] Synopsys SolvNet, Doc Name: 009291, “Random mapping of X’s and Z’s to 1’s and 0’s in 2state,”
Last Modified: 04/06/2004 - solvnet.synopsys.com/retrieve/009291.html

[17] SystemVerilog 3.1a Accellera’s Extensions to Verilog, Accellera, 2004, freely downloadable from:
www.eda.org/sv

[18] VCS User Guide, Version 7.0.2, Synopsys, September 2003

15 Appendix
This appendix contains the simple models that were used to benchmark 2-state and 4-state
Verilog simulations and 2-state and 4-state SystemVerilog simulations described and analyzed in
section 7.

15.1 SystemVerilog inverter models

All of the SystemVerilog inverter models use the switch-able bit_t type definition from
Example 6. SystemVerilog 4-state simulations are the default simulation data types, while the 2-
state simulation data types were invoked using the +STATE2 command line switch.

The scalar SystemVerilog inverter model was shown in Example 7.

The second SystemVerilog model is an 8-bit inverter using the SystemVerilog bit_t data type
and procedural block.

module sv_vector8 (
 output bit_t [7:0] y,
 input bit_t [7:0] a
);

 always @(a)
 y = ~a;
endmodule

Example 10 - SystemVerilog 8-bit inverter model

The third SystemVerilog model is a 32-bit inverter using the SystemVerilog bit_t data type
and procedural block.

module sv_vector32 (
 output bit_t [31:0] y,
 input bit_t [31:0] a
);

 always @(a)
 y = ~a;
endmodule

Example 11 - SystemVerilog 32-bit inverter model

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

37

15.2 Verilog reg-type inverter models

The first Verilog model is a simple scalar inverter using the Verilog reg data type and
procedural block.

module vl_scalar (
 output reg y,
 input a
);

 always @(a)
 y = ~a;
endmodule

Example 12 - Verilog 1-bit inverter model - reg output

The second Verilog model is an 8-bit inverter using the Verilog reg data type and procedural
block.

module vl_vector8 (
 output reg [7:0] y,
 input [7:0] a
);

 always @(a)
 y = ~a;
endmodule

Example 13 - Verilog 8-bit inverter model - reg outputs

The third Verilog model is a 32-bit inverter using the Verilog reg data type and procedural
block.

module vl_vector32 (
 output reg [31:0] y,
 input [31:0] a
);

 always @(a)
 y = ~a;
endmodule

Example 14 - Verilog 32-bit inverter model - reg outputs

15.3 Verilog net-type inverter models

The fourth Verilog model is an 8-bit inverter using the wire data type and continuous
assignment instead of a variable data type.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

38

module vl_wire8 (
 output wire [7:0] y,
 input wire [7:0] a
);

 assign y = ~a;
endmodule

Example 15 - Verilog 8-bit inverter model - wire outputs

The fifth Verilog model is a 32-bit inverter using the wire data type instead of a variable data
type.

module vl_wire32 (
 output wire [31:0] y,
 input wire [31:0] a
);

 assign y = ~a;
endmodule

Example 16 - Verilog 32-bit inverter model - wire outputs

15.4 SystemVerilog 2-input and-gate models

All of the SystemVerilog 2-input and-gate models use the switch-able bit_t type definition
from Example 6 (same as the SystemVerilog inverter models). SystemVerilog 4-state
simulations are the default simulation data types, while the 2-state simulation data types were
invoked using the +STATE2 command line switch.

The first SystemVerilog model is a single 2-input and-gate using the SystemVerilog bit_t data
type and procedural block.

module sv_scalar (
 output bit_t y,
 input bit_t a, b
);

 always_comb
 y = a & b;
endmodule

Example 17 - SystemVerilog 1-bit 2-intput and gate model

The second SystemVerilog model is eight, 2-input and-gates using the SystemVerilog bit_t
data type and procedural block.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

39

module sv_vector8 (
 output bit_t [7:0] y,
 input bit_t [7:0] a, b
);

 always_comb
 y = a & b;
endmodule

Example 18 - SystemVerilog 8-bit 2-intput and gate model

The third SystemVerilog model is 32, 2-input and-gates using the SystemVerilog bit_t data
type and procedural block.

module sv_vector32 (
 output bit_t [31:0] y,
 input bit_t [31:0] a, b
);

 always_comb
 y = a & b;
endmodule

Example 19 - SystemVerilog 32-bit 2-intput and gate model

15.5 Verilog reg-type 2-input and-gate models

The first Verilog model is single 2-input and-gate using the Verilog reg data type and
procedural block.

module vl_scalar (
 output reg y,
 input a, b
);

 always_comb
 y = a & b;
endmodule

Example 20 - Verilog 1-bit 2-intput and gate model - reg output

The second Verilog model is eight, 2-input and-gates using the Verilog reg data type and
procedural block.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

40

module vl_vector8 (
 output reg [7:0] y,
 input [7:0] a, b
);

 always_comb
 y = a & b;
endmodule

Example 21 - Verilog 8-bit 2-intput and gate model - reg outputs

The third Verilog model is 32, 2-input and-gates using the Verilog reg data type and procedural
block.

module vl_vector32 (
 output reg [31:0] y,
 input [31:0] a, b
);

 always_comb
 y = a & b;
endmodule

Example 22 - Verilog 32-bit 2-intput and gate model - reg outputs

15.6 Verilog net-type 2-input and-gate models

The fourth Verilog model is 8 2-input and-gates using the wire data type and continuous
assignment instead of a variable data type.

module vl_wire8 (
 output wire [7:0] y,
 input wire [7:0] a, b
);

 assign y = a & b;
endmodule

Example 23 - Verilog 8-bit 2-intput and gate model - wire outputs

The fifth Verilog model is 32 2-input and-gates using the wire data type and continuous
assignment instead of a variable data type.

module vl_wire32 (
 output wire [31:0] y,
 input wire [31:0] a, b
);

 assign y = a & b;
endmodule

Example 24 - Verilog 32-bit 2-intput and gate model - wire outputs

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

41

15.7 Benchmark testbench file

The benchmark testbench file is a simple testbench that conditionally compiles the desired
benchmark simulation file and changes the inputs millions to billions of times to test the
potential performance improvement that might be had by simple Boolean operations in either 4-
state or 2-state modes.

`timescale 1ns/1ns
module tb;

 `ifdef SV_SCALAR
 bit_t y, a, b, t1, t2;

 sv_scalar u1 (.y(y), .a(a), .b(b));
 `endif

 `ifdef SV_VECTOR8
 bit_t [7:0] y, a, b, t1, t2;

 sv_vector8 u1 (.y(y), .a(a), .b(b));
 `endif

 `ifdef SV_VECTOR32
 bit_t [31:0] y, a, b, t1, t2;

 sv_vector32 u1 (.y(y), .a(a), .b(b));
 `endif

 `ifdef VL_SCALAR
 reg a, b, t1, t2;
 wire y;

 vl_scalar u1 (.y(y), .a(a), .b(b));
 `endif

 `ifdef VL_VECTOR8
 reg [7:0] a, b, t1, t2;
 wire [7:0] y;

 vl_vector8 u1 (.y(y), .a(a), .b(b));
 `endif

 `ifdef VL_VECTOR32
 reg [31:0] a, b, t1, t2;
 wire [31:0] y;

 vl_vector32 u1 (.y(y), .a(a), .b(b));
 `endif

 `ifdef VL_WIRE8
 wire [7:0] y;

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

42

 reg [7:0] a, b, t1, t2;

 vl_wire8 u1 (.y(y), .a(a), .b(b));
 `endif

 `ifdef VL_WIRE32
 wire [31:0] y;
 reg [31:0] a, b, t1, t2;

 vl_wire32 u1 (.y(y), .a(a), .b(b));
 `endif

 initial begin
 $timeformat(-9,0,"ns",20);
 $monitor("%t: y=%h a=%h", $time, y, a);
 end

 initial begin
 {b,a,t2,t1} <= 4'b0011;
 fork
 repeat(`CNT) #1 {t1,b,a,t2} = {b,a,t2,t1};
 #4 $monitoroff;
 join
 $monitoron;
 repeat(4) #1 {t1,b,a,t2} = {b,a,t2,t1};
 #1 $finish;
 end
endmodule

Example 25 - benchmark testbench

There is a $timeformat command to beautify the output and a $monitor command that is
turned off after 4 toggles and turned back on 4 toggles before finishing the simulation. The
macro definition for the CNT value is actually kept in a separate file that all of the tests call, so it
can be easily changed and all the tests run again.

15.8 The Verilog inverter & and-gate benchmark results

The simulations results from testing the various varieties of inverters are shown in Table 1, Table
2 and Table 3.

The simulations results from testing the various varieties of 2-input and-gates are shown in
Table 4, Table 5 and Table 6.

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

43

IBM Thinkpad T30 - VM Ware / Red Hat Linux 7.3
Inverter Design - Cycle CNT = 250,000,000

SystemVerilog
Inverter Design

Verilog-reg
Inverter Design

Verilog-wire
Inverter Design

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

2-state sv_s_2x.v 119.28 vl_s_2x.v 143.17
4-state sv_s_4x.v 119.38 vl_s_4x.v 146.22

SCALAR

2-state sv_v8_2x.v 119.31 vl_v8_2x.v 297.16 8-BIT
4-state sv_v8_4x.v 117.47 vl_v8_4x.v 376.22 vl_wire8.v 122.02
2-state sv_v32_2x.v 118.82 vl_v32_2x.v 1510.68 32-BIT
4-state sv_v32_4x.v 127.20 vl_v32_4x.v 1620.21 vl_wire32.v 114.28

Table 1 - Linux inverter benchmark simulations - cycle CNT = 250 million

IBM Thinkpad T30 - VM Ware / Red Hat Linux 7.3
Inverter Design - Cycle CNT = 1,000,000,000

SystemVerilog
Inverter Design

Verilog-reg
Inverter Design

Verilog-wire
Inverter Design

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

2-state sv_s_2x.v 526.49 vl_s_2x.v 542.15
4-state sv_s_4x.v 532.30 vl_s_4x.v 620.92

SCALAR

2-state sv_v8_2x.v 599.60 vl_v8_2x.v 1104.82 8-BIT
4-state sv_v8_4x.v 560.84 vl_v8_4x.v 1344.24 vl_wire8.v 458.19
2-state sv_v32_2x.v 544.09 vl_v32_2x.v 6583.95 32-BIT
4-state sv_v32_4x.v 530.06 vl_v32_4x.v 6851.48 vl_wire32.v 460.47

Table 2 - Linux inverter benchmark simulations - cycle CNT = 1 billion

SUN UltraSparc 80 - Solaris 8
Inverter Design - Cycle CNT = 250,000,000

SystemVerilog
Inverter Design

Verilog-reg
Inverter Design

Verilog-wire
Inverter Design

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

2-state sv_s_2x.v 337 vl_s_2x.v 349
4-state sv_s_4x.v 345 vl_s_4x.v 378

SCALAR

2-state sv_v8_2x.v 352 vl_v8_2x.v 796 8-BIT
4-state sv_v8_4x.v 345 vl_v8_4x.v 931 vl_wire8.v 302
2-state sv_v32_2x.v 348 vl_v32_2x.v 3256 32-BIT
4-state sv_v32_4x.v 347 vl_v32_4x.v 4876 vl_wire32.v 302

Table 3 - Solaris inverter benchmark simulations - cycle CNT = 250 million

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

44

IBM Thinkpad T30 - VM Ware / Red Hat Linux 7.3
And-gate Design - Cycle CNT = 250,000,000

SystemVerilog
AND-gate Design

Verilog-reg
AND-gate Design

Verilog-wire
AND-gate Design

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

2-state sv_s_2x.v 128.84 vl_s_2x.v 97.26
4-state sv_s_4x.v 134.72 vl_s_4x.v 101.77

SCALAR

2-state sv_v8_2x.v 117.41 vl_v8_2x.v 79.30 8-BIT
4-state sv_v8_4x.v 125.34 vl_v8_4x.v 85.71 vl_wire8.v 89.46
2-state sv_v32_2x.v 143.54 vl_v32_2x.v 129.33 32-BIT
4-state sv_v32_4x.v 147.22 vl_v32_4x.v 120.25 vl_wire32.v 112.88

Table 4 - Linux And-gate benchmark simulations - cycle CNT = 250 million

IBM Thinkpad T30 - VM Ware / Red Hat Linux 7.3
And-gate Design - Cycle CNT = 1,000,000,000

SystemVerilog
AND-gate Design

Verilog-reg
AND-gate Design

Verilog-wire
AND-gate Design

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

2-state sv_s_2x.v 526.08 vl_s_2x.v 402.02
4-state sv_s_4x.v 533.67 vl_s_4x.v 442.69

SCALAR

2-state sv_v8_2x.v 467.92 vl_v8_2x.v 310.37 8-BIT
4-state sv_v8_4x.v 540.77 vl_v8_4x.v 414.97 vl_wire8.v 393.98
2-state sv_v32_2x.v 607.87 vl_v32_2x.v 658.55 32-BIT
4-state sv_v32_4x.v 597.94 vl_v32_4x.v 604.31 vl_wire32.v 536.60

Table 5 - Linux And-gate benchmark simulations - cycle CNT = 1 billion

SUN UltraSparc 80 - Solaris 8
And-gate Design - Cycle CNT = 250,000,000

SystemVerilog
Inverter Design

Verilog-reg
Inverter Design

Verilog-wire
Inverter Design

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

Design File Simulation
Time (sec)

2-state sv_s_2x.v 358 vl_s_2x.v 296
4-state sv_s_4x.v 376 vl_s_4x.v 358

SCALAR

2-state sv_v8_2x.v 342 vl_v8_2x.v 245 8-BIT
4-state sv_v8_4x.v 378 vl_v8_4x.v 270 vl_wire8.v 288
2-state sv_v32_2x.v 406 vl_v32_2x.v 312 32-BIT
4-state sv_v32_4x.v 430 vl_v32_4x.v 370 vl_wire32.v 366

Table 6 - Solaris And-gate benchmark simulations - cycle CNT = 250 million

SNUG Boston 2004 SystemVerilog 2-State Simulation
Performance and Verification Advantages

45

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 22 years of ASIC, FPGA and system design experience and 12 years of Verilog,
synthesis and methodology training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (VSG) since 1994, is the
only Verilog and SystemVerilog trainer to co-develop and co-author the IEEE 1364-1995 &
IEEE 1364-2001 Verilog Standards, the IEEE 1364.1-2002 Verilog RTL Synthesis Standard and
the Accellera SystemVerilog 3.0 & 3.1 Standards.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Sunburst Design, Inc. offers Verilog, Verilog Synthesis and SystemVerilog training courses. For
more information, visit the www.sunburst-design.com web site.
Email address: cliffc@sunburst-design.com

Lionel Bening's professional career has been devoted to CAD tool development, evaluation,
integration, and training, mostly related to HDLs and simulation. This career included stints with
Control Data (Cray-based designs), Convex Computer Corporation (affordable supercomputers),
and the University of Minnesota Computer Science Dept. (adjunct lecturer on logic simulation
and timing verification topics).

For the past nine years, he has been a Logic Design Methodology Specialist with Hewlett-
Packard (Richardson, TX).

His professional activities included participation in the June, 1981 Woods Hole Study Group,
which began composing the requirements for VHDL, and the subsequent VHDL Modeling
Group

He is co-author of patents on repeatable random initialization and HDL/regular-expression-based
implicit interconnection, and a book of Verifiable RTL. He has also been a paper contributor to
DAC, HDLCon/DVCon, DesignCon, SNUG, HP Journal, as well as design workshops and trade
journals.

Lionel holds a BSEE from the University of Minnesota.
E-mail address: lionel.bening@hp.com. Web site: www.lionelbening.org

An updated version of this paper can be downloaded from the web site:
www.sunburst-design.com/papers
(Data accurate as of August 10, 2004)

