A
—
—Sunburst Design—

World Class Verilog & SystemVerilog Training

SystemVerilog Event Regions,
Race Avoidance & Guidelines

Clifford E. Cummings Arturo Salz
Sunburst Design, Inc. Synopsys
cliffc@sunburst-design.com Arturo.Salz@synopsys.com
ABSTRACT

The IEEE1800 SystemVerilog Standard includes new event regions primarily added to reduce
race conditions between verification code and SystemVerilog designs. The new regions also
facilitate race-free Assertion Based Verification (ABV).

This paper details common Verilog verification strategies and how the new event regions
facilitate construction of race-free testbenches using new SystemVerilog capabilities. An in-
depth explanation of SystemVerilog event regions is included to help understand how race-
reduction goals have been met. Important design & testbench coding guidelines are also
included.

Table of Contents

R 101 oo [FTox [o OSSP 4
1.1 Who wrote the SystemVerilog Standard?............ccceeveieiieiie e 4
1.2 WaALCh thiS SPACE ...ttt 4

2 Event Regions - Verilog-2001 -vs- SysStemVerilog.......cccccoveiiveriiiieiiennce e 5
2.1 WAL IS @ RACE?.... ettt ettt et e et e sne et e e nbesreenbe e 6
2.2 SystemVerilog EVENt REJIONScoviiiiieiiee sttt sre e 11

2.2.1 Preponed EVENtS REGIONcc.oiiiiiiiiiiesieeie et 11
The Active Region Set (Active - INactive - NBA). ... 12
2.2.3 ACHIVE EVENIS REGION ..ottt e 13
2.2.4 InaCtive EVENTS REOION ...ccuviiiiic ettt ens 13
2.2.5 Nonblocking Assignment Events Region (NBA) ..o 13
2.2.6 ODSEIVEA REJION......cciiiiieitee ettt et e e re e te e e e sreenreennennes 14
The Reactive Region Set (Reactive - Re-Inactive - Re-NBA)ccccoviiiiieniiieneeeee 14
2.2.8 Reactive EVENtS REGIONccviiieie ettt 15
2.2.9 Re-Inactive EVENIS REGIONocviiiiiiiieiie e e 15
2.2.10 Re-NBA EVENLS REJIONcoiiiieiiieie e seesie e ste et sae e e enne s 16
2.2.11 POStPONEA REGIONoviiiiiiieie sttt st nre e enes 17
2.2.12 Preponed - PoStponed NamMIiNG........cccveveiieieeieiieseese e e sie e see e eessae e enee e 17
2.2.13 #1step - what it really Meansccoiiiiiiiiiee e 17

3 Time-0 events, races & raC-aVOIUANCEccvueriiriirieriirisieeie ettt 22
3.1 Synchronous or aSyNCNIONOUS FESEIS?cceeiuiiieiieiiieie ettt 22
3.2 ClOCK STAITUD ISSUBS ...vveuveereeieesiesseesieeseeeseesieeteaseesseesaeaseesseesseaseessessseensesseesseassesseessenseesses 22
3.3 STANTUP AEIAYS ... et 22
3.4 INPUL INIETANIZALION.....cveeieccceee et et et e e sreeneeenes 23
3.5 Capturing StAMTUP VECTOISouieiiiiee ittt sttt sttt sb et sneenbe e nnes 23
3.6 Functional verification Startup MAtriX........cccoeveiiiereeiesieese e sre e 24
3.7 A-StAte VAITADIES ...ttt e s 25
3.8 2-StAte VANTADIES .. .o s 25

4 Sunburst Design recommended and non-recommended clock oscillatorscccceeue. 26
4.1 Clock oscillators - put them in the top module..........cccoeiieieeieie e 29

5 How clocking block cycles & delays WOork...........cccooiiiiiiiii e 30
5.1 Clocking block and non-clocking block timing of the same signals...........c...ccccevevveienee. 30
5.2 Clocking blocks in SystemVerilog INtErfaces..........ooviieiiiieiieieiie e 35

5.2.1 Interface modports and clocking BIOCKSccccooeiieiiiie i 36
5.3 Could clocking blocks lead to a better Verilog?.........ccoooieiiiiiin i 36

6 When to apply SLIMUIUSeoieiie et nas 39
6.1 Verilog-2001 designs and teSthENCRES.ccviiiiiiii s 39
6.2 SystemVerilog designs and teStheNChESccoevieiiiie i 39

7 SUMMANY & CONCIUSIONScuviiiiiieie et ettt bbb bbb 40

8 ACKNOWIEAGEMENTS ...t 40

O REIEIBNCES. ... bbbttt nenaeas 40

10 REVISION CRANGES ...ttt bbbt b bbbt nnns 41
10.1 Revision 1.1 (November 2007) - What Changed?............ccccceeveiieviiiie e 41

SNUG Boston 2006 2 SystemVerilog Event Regions

Rev 1.2 Race Avoidance & Guidelines

10.2 Revision 1.2 (December 2007) - What Changed?cccevrieiinninii e 42
11 Author & Contact INFOrMALION..........eciiiiieiice e 42

Table of Examples

Example 1 - Scheduling of #0 Re-Inactive testbench eventcccccveieiieiieiii s 16
Example 2 - Simple test used to show sampling and #1step sample delays..........cccccevevrvereennene 19
Example 3 - 2-state clock oscillator with no time-0 eVent...........cccccevveieiieiie e 25
Example 4 - CYCLE and "timescale definitions used for clock oscillatorsccccccceieinnies 26
Example 5 - clkgenl clock 0SCHIALOr............covviiece e 26
Example 6 - clkgen2 clock 0SCHIALON...........ooiiiiii e 26
Example 7 - cIkgen3 clock 0SCHIALOr............cviiiee e 27
Example 8 - clkgen3a clock 0SCHIALONcci i 27
Example 9 - clkgend clock 0SCHIALOr............ccviiieie e 28
Example 10 - clkgen5 clock oscillator (not recommended)ccooeiiriinieninnieeeee e 28
Example 11 - clkgen6 clock oscillator (not recommended)ccovevevievieeiesie e 28
Example 12 - program block with mixed non-clocking and clocking delay assignments............ 31
Example 13 - Equivalent cycle delays using ##-notation and @(cb1) notation...............ccccceeve. 35
Example 14 - Example interface code with two clocking blOcks...........cccooviiiiiiiiiis 35
Example 15 - interface code with modports that reference clocking blocks............ccccccevveienis 36
Example 16 - clocking block to apply stimulus on the negedge of the ClKcccccovviiiiennnann 39
Table of Figures
Figure 1 - Verilog-2001 EVENT FEJIONS......ccueuiiieiiieieeiiesieeie et et esbe e sseeste st sreesbesseesressreeneas 5
Figure 2 - Basic NAND S-R latch & De Morgan's equivalent...........cccccovvvevreieieenesie e 6
Figure 3 - Sunburst Design's - 8 Coding Guidelines to Avoid Verilog Race Conditions............... 7
Figure 4 - SystemVerilog-2005 event regions with PLI regions SNOWN...........ccccccevveveiieivciinnnn, 8
Figure 5 - SystemVerilog-2005 event regions with PLI regions omitted.............ccccccevveivnininnne. 9
Figure 6 - Simplified event regions diagramccceeeiieieiiese e 9
Figure 7 - Sampling mechanism block diagram ... 12
FIQUIE 8 = ACLIVE FEUION SBL......ciiieieitieieeie sttt re et e e sre e te e e saaenaeeneesreeeeenes 12
FIgUre 9 - REACHIVE FEJION SBL......ciiiiie ittt sttt sttt st seeenes 14
Figure 10 - #1step defined by smallest “timescale & timeprecision.................. 18
Figure 11 - How events are scheduled and sampled for the code in Example 2ccccccouenee. 20
Figure 12 - Example 12 event scheduling from time 0ns to time 7NnSccccoccveveieeve e, 32
Figure 13 - Example 12 event scheduling from time 7ns to time 15NSccccooevineiininniiniennnn 32
Figure 14 - Example 12 event scheduling from time 15ns to time 20NSccccccevveveciecieneen, 33
Figure 15 - Example 12 event scheduling from time 20ns t0 time 27NSccccovveneiinieniieiiennenn, 33
Figure 16 - Example 12 event scheduling from time 27ns to time 35NScccccvevveve e e, 34
Figure 17 - Example 12 event scheduling completion at time 35nS..........c.coovviivicncncniien 34
Figure 18 - Example 12 output WavefOrmMS..........coviiiiiiiic e 35
Figure 19 — A 2-stage shift register of flip FlOpS.......ccooviiiiiiii e 37
SNUG Boston 2006 3 SystemVerilog Event Regions

Rev 1.2 Race Avoidance & Guidelines

1 Introduction

New SystemVerilog event regions have been added to help eliminate race conditions that could
occur between design modules and verification environments.

SystemVerilog is fully RTL backward compatible with Verilog. This means that SystemVerilog
is fully race-backward compatible with Verilog!!

Understanding SystemVerilog event regions and fundamental coding guidelines can help
eliminate race conditions from SystemVerilog designs, testbenches and the interaction between
the design and the enhanced SystemVerilog Hardware Verification Language (HVL).

1.1 Who wrote the SystemVerilog Standard?

The content of the SystemVerilog standard is the culmination of efforts of many talented
engineers working primarily on one or more of the following subcommittees with the designated
responsibilities:

e SV-AC - Assertions Committee - largely responsible for the definition of the SystemVerilog
assertion and functional coverage constructs.

e SV-BC - Basic & Design Committee - largely responsible for RTL enhancements and errata
updates to the SystemVerilog standard.

e SV-CC - C-Interface Committee - largely responsible for C-language Direct Programming
Interface (DPI) and VVPI enhancements to the SystemVerilog standard.

e SV-EC - Enhancements & Testbench Committee - largely responsible for maintaining and
extending the System Verilog language for testbench support.

The fact that the SystemVerilog standard is the work of many talented individuals is both good
and bad. The good is that multiple very talented experts contributed to the final functionality
described in the standard. The bad is that occasionally the standard has the appearance of a
"standard-by-committee,” and various parts of the standard look like they were written by
different people, because they were! Over time, the standard will be updated and clarified and in
the process will become more consistent across the different disciplines described in the
standard.

1.2 Watch this space!

It should be noted that although the IEEE 1800 SystemVerilog Standard[11] was ratified in
2005, there are some ambiguities that are currently being clarified by the IEEE SystemVerilog
committee. Those clarifications might change some of the restrictions of programs, clocking
blocks, event regions, as well as some of the behavior described in this paper. As updates
become available, this paper will be updated to reflect those changes and will be posted to the
www . sunburst-design.com web page.

Check back at the www.sunburst-design.com/papers web page to see if there have been
important updates to this paper.

SNUG Boston 2006 4 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

2 Event Regions - Verilog-2001 -vs- SystemVerilog
First we need to introduce a couple of definitions, simulation time and time slot.

"The term simulation time is used to refer to the time value maintained by the simulator to model
the actual time it would take for the system description being simulated. The term time is used
interchangeably with simulation time.[9]."

A time slot encompasses all simulation activity that is processed in the event regions for each
simulation time. All simulation activity for a particular simulation time is executed until no
further simulation activity remains for that time slot, that is, without advancing the simulation
time. Note that execution of simulation events within a time slot may require multiple iterations
through the simulation event regions for that same time slot. The IEEE Std 1800-2005 standard
sometimes referred to a time slot as a timestep, but the term timestep has been removed from the
P1800-2008 Draft Standard.

The Verilog event regions allow scheduling of Verilog simulation statements that model actual

hardware behavior.
Current time slot I Any
order
From previous r
time slot Blocking assignments |

/4 Evaluate RHS of NBAs]|
F/

| Continuous assignments I

i
|
|
|
| b | :
: \lrﬂ $display command|
| Eval inputs & update
| || outputs of primitives
|
I \ #0 blocking assignmentsl
A Verilog-2001 time |

|Update LHS of NBAs |

slot is divided into a set |

of 4 ordered regions

How can we simplify this queue?
Guideline #8: do not use #0 delays

$strobe command |
New name for the I
monitor events queue L 4
To next
| Postponed |—|—> .
- - time slot

Figure 1 - Verilog-2001 event regions

| $monitor command|

SNUG Boston 2006 5 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

The IEEE Std 1364-2001 divided the Verilog event regions into four ordered regions: Active
events, Inactive events, Nonblocking Assign Update events, and Monitor events. The Verilog-
2001 standard further defined Future Inactive events and Future Nonblocking Assignment
Update events, which were nothing more than the Inactive and Nonblocking Assign Update event
regions pre-built for a future time slot.

2.1 Whatis a Race?

A race condition is a flaw in a system or process that is characterized by an output that exhibits
an unexpected dependence on the relative timing or ordering of events. The term originates with
the idea of two signals racing each other attempting to influence the output first.

When simulating a design with Verilog (or any other event-driven simulation language),
engineers are often faced with two fundamentally different types of race conditions, hardware
races and simulation induced races.

Hardware races typically occur in combinational logic due to the physical nature of their
electronics. For example, when the inputs to a logic gate change state, a finite delay transpires
before the change is reflected on the gate’s output. Therefore, for a brief time, the output may
change to an unwanted state before settling to its final state. Other than wasting power, such
transient races typically do not affect the correct operation of the system, except when they
control a clock or an asynchronous reset signal. Another well known hardware race is the illegal
state of a basic NAND S-R latch shown in Figure 2.

S

|

=]
=1

R R

Figure 2 - Basic NAND S-R latch & De Morgan's equivalent

When the two inputs of the latch are set to logic 0 simultaneously, both NAND outputs are
forced to logic 1, thereby overriding the feedback latching action. Upon leaving this state,
whichever input stays at logic 1 longer will control the state of the latch. But, if both inputs
transition to logic 1 simultaneously, the result is a race condition, and the final state of the latch
is unpredictable. While hardware races are intrinsic to the physics of the system, proper design
techniques and tools effectively eliminate the problems associated with them, and they are not
the focus of this paper.

Simulation-induced races are not intrinsic to the design or its physics, but are a natural, although
undesirable, consequence of the event-driven simulation algorithm used by Verilog. Because, the
simulator processes events one at a time, it unavoidably serializes the events that occur in the
same time slot. Hence, the design activity that in the actual hardware takes place concurrently is

SNUG Boston 2006 6 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

instead modeled as a set of ordered actions by the simulator. This modeling deviation from the
actual hardware induces additional races that are not present in the design, but are an artifact of
the simulator. These races can cause the simulator to simulate a faulty design when in fact the
design is correct, or more dangerously, simulate a seemingly correct design when in fact the
design is flawed. Frequently, this latter type of a race occurs because the designer’s code relies,
often unwittingly, on the specific ordering of the simulation algorithm. It is precisely for this
reason that Verilog specifies that a particular event region must be processed in an arbitrary
order, but every implementation will exhibit a certain order.

There are several well established and well understood RTL coding guidelines that have been
known for years. These were detailed in a paper describing Verilog nonblocking assignments,

and, when followed, these guidelines will remove 90-100% of the Verilog race conditions
induced on Verilog RTL designs[3]. These guidelines are shown in Figure 3.

Follow these guidelines and remove 90-100%
of all SystemVerilog race conditions
T , . . ~ : RTL coding
ruideline #1: Sequential logic - use nonblocking assignments guidelines

Guideline #2: Latches - use nonblocking assicnments

Guideline #3: Combinational logic in an always block - use blocking assignments

Guideline #4: Mixed sequential and combinational logic in the same always block
- use nonblocking assicnments

suideline #5: Do not mix blocking and nonblocking assignments in the same
always block

Guideline #6: Do not make assignments to the same variable from more than one

alwavs block Enforced by always comb, always latch & always ff I

Display
guideline

Guideline #7: Use $strobe to display values that have been assigned using
nonblocking assignments

suideline #8: Do not make #0 procedural assignments General guideline

Figure 3 - Sunburst Design's - 8 Coding Guidelines to Avoid Verilog Race Conditions

Updates to IEEE Std 1800-2005" divide the SystemVerilog time slot into 17 ordered regions,
nine ordered regions for execution of SystemVerilog statements and eight ordered regions for
execution of PLI code (note some PLI commands can also be executed in the SystemVerilog
statement regions). The new regions were specifically designed to support new constructs that

! See Mantis item number 890 in the Verilog & SystemVerilog Database for Tracking Bugs[19]

SNUG Boston 2006 7 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

prevent additional simulation-induced races from being created between the RTL design and the
new verification constructs.

|Current time slot | Region for new

SV commands

Preponed | I
Frc;?;][;rzl\:;:)us |PLI I;Pre;actwe — ///:,1 Blocking assignments]
] i —— |1 | Evaluate RHS of NBAs|
v ¥ \P‘ Continuous assi
- gnmentsl
Update to 4—{ Inactive |__ =

|IEEE1800-2005
Standard

¥ \'\1 $display command |
«—<_ PreNBA | Plli|—\

NBA Eval inputs & update
“ Post-NBA | Pl:;l\l\ outputs of primitives

7

A time slot is
divided into a set of

#0 blocking assignments
17 ordered regions (L assl) |
(9 Verilog & 8 PLI) Observed Update LHS of NBAs |

| PLI|—_Post-observed __.‘\ P

L

Old Verilog
event region

4—{ Reactive F\
A]
- Re-Inactive]

v
«—<__ Pre-Re-NBA __|PLI
-~ Re-NBA

PLI To next

| Postponed |—I—> time slot

Regions for nhew
SV commands

New SystemVerilog
event region

B2 g

|$monitor command |

F

New SV
regions for PLI
commands

$strobe command|

ks

Figure 4 - SystemVerilog-2005 event regions with PLI regions shown

The timing and execution of PLI events is beyond the scope of this paper, so the modified
SystemVerilog event-region diagram with PLI regions removed is shown in Figure 5.

Updates to IEEE Std 1800-2005 divide the SystemVerilog design and HVL event regions into
nine ordered regions for execution of SystemVerilog statements: Preponed events, the RTL
regions in the Active region set (Active events, Inactive events, NBA events), Observed events,
the three verification regions in the Reactive region set (Reactive events, Re-Inactive events and
Re-NBA events) and Postponed events. Each of these event regions may exist for each simulation
time slot.

SNUG Boston 2006 8 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

From previous
time slot

#lstepl

b

|
|
|
|
|
Used for sampling I I
& verifying inputs :
|
|
|
|

Regions for new
SV commands

e E—

Region for new
SV commands

Update to
|IEEE1800-2005
Standard

& |
Preponed I SystemVerilog reduces
——————————— I races between RTL models
>‘ < I and HVL testbenches!
4—{ Active | I
v | : -
Inactive I L | Active region
| set
L |
] NBA |1
1 /L Evaluate concurrent
_l — ! assertions
| Observed Ii—"‘—:{ Trigger clocking blocks]|
—b‘ I I [Reactive region
> - I
4—{ Reactive | r I set
[v _ L | Execute
«— Re-nactive | l . :
\A " I | |pass/fail assertion code
‘ Re-NBA I I | Lprogram block code
______ | |
N T To next
| Postponed I—I—P

Figure 5 - SystemVerilog-2005 event regions with PLI regions omitted

Simplified events-region diagram I

—>| Preponed I

o
h 4
Active
I

¥
Reactive
I

—_

1
1
1
|
1
1
1
1
[_Observed |
1
1
1
|
1
1
1
1

Postponed I—b

Figure 6 - Simplified event regions diagram

SNUG Boston 2006

Rev 1.2

|
o]
I Active

Inactive|
NBA

Re-Act
Re-Inac
Re-NBA|

pd

Feedback loops are still
there - but not shown

SystemVerilog Event Regions
Race Avoidance & Guidelines

To help demonstrate how example-code is scheduled using the new SystemVerilog event
regions, the simplified diagram in Figure 6 will be used later in this paper.

Before describing the activities that take place in each of these event regions, there are a number
of frequently asked questions related to the new SystemVerilog event regions that are often
posed when these event regions are viewed for the first time. It is useful to dispel the concerns
before describing the event region activities so that an engineer is not distracted during the
description of event region activities:

FAQ #1: Is the new event scheduling backward compatible with Verilog-2001?

ANSWER: Yes. The same even regions in their same respective scheduling order are still part of
the new event region definitions so all existing code will execute the same as before (minor
exception noted in FAQ #4).

FAQ #2: With so many new event regions in the SystemVerilog standard, will simulations run
slower?

ANSWER: No. Vendors were quick to point out that all Verilog simulation events had to be
scheduled even before the SystemVerilog scheduling modifications were made. The enhanced
event regions simply give a better definition to describe where all of the events are executed,
including an enhanced description of where specific PLI events should be scheduled. This
definition was previously incomplete in the IEEE Verilog Standard but the events were already
being scheduled as described in the IEEE Std 1800-2005. Now the event scheduling is better
defined.

FAQ #3: Does the new SystemVerilog event scheduling standard complicate the task of
scheduling simulation events? Are vendors willing to make these potentially difficult changes to
event scheduling?

ANSWER: The new SystemVerilog event scheduling actually solves problems related to RTL-
HVL race conditions that existed when coupling a Verilog design to a non-Verilog hardware
verification language (HVL) or a C testbench through the PLI. Vendors welcomed the new
scheduling definitions because they solved some of the persistent race conditions that frequently
came up when coupling third party HVLs to Verilog designs. Since the HVL commands are now
scheduled in specific event regions, they no longer have to be implemented through a PLI
interface, which actually accelerates simulations that use SystemVerilog's HVL.

FAQ #4: Are there any differences in event scheduling or timing between the Verilog IEEE Std
1364-2001 and the SystemVerilog IEEE Std 1800-2005?

ANSWER: Yes. There is one minor but important timing difference. In Verilog-2001, variables
that were initialized when declared were scheduled to execute at time-0 as if they had been
assigned in an initial block, in a non-deterministic order and they would cause a time-0 event.
There were no guarantees about time-0 startup of always blocks, initial blocks, continuous
assignments and variable initializations so this was always a potential source for time-0 race

SNUG Boston 2006 10 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

conditions. In SystemVerilog, variables declared with initialization assignments are guaranteed
to be initialized before simulation starts at time-0; therefore, variable initialization does not cause
any time-0 events. The ramifications of this change are discussed in greater detail in section 4.

2.2 SystemVerilog Event Regions

Below is a brief description of the activities that are scheduled into each SystemVerilog event
region. More details are included in appropriate sections later in this paper and even more details
are available in the IEEE Std 1800-2005[11] and in the Mantis-890 updates to SystemVerilog
scheduling[19]. A quick overview of race-free RTL-design, verification and assertion activity
can be summarized as follows:

Regions that are designed to implement correct RTL functionality:
e Active regions (Active, Inactive and NBA regions - but avoid Inactive region events).

Regions that are designed to implement correct verification execution:
e Preponed, Reactive regions (Reactive, Re-Inactive, Re-NBA) and Postponed regions.

Regions that are designed to implement concurrent assertion checking:
e Preponed, Observed, and Reactive regions.

Region that should be avoided:
e Inactive region.

Certainly verification code can be executed in the regions devoted to RTL functionality. Prior to
the implementation of SystemVerilog, engineers doing Verilog-2001 verification implemented
clever methods to ensure race-free operation between RTL designs and the pseudo-RTL
testbenches. The new SystemVerilog regions just make it easier to implement a race-free
verification environment.

2.2.1 Preponed Events Region

The stated function of this region is to sample values that are used by concurrent assertions. The
Preponed region is executed only once in each time slot, immediately after advancing simulation
time (there is no feedback path to re-execute the Preponed region).

There is some doubt as to whether an implementation actually must perform the sampling in the
Preponed region or if the sampling may be done in the Postponed region of the previous time
slot. Because both, Postponed and Preponed are read-only regions, the actual signal values are
the same in any two contiguous Postponed-Preponed regions, thus, it is not observable in which
region the simulator actually samples a value — the only value that is different is the simulation
time.

According to the IEEE Std 1800-2005 - 17.3 Concurrent assertions overview

SNUG Boston 2006 11 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

"The values of variables used in assertions are sampled in the Preponed region of a time slot, and
the assertions are evaluated during the Observed region. ..."

Sampled values are always defined with respect to a clocking expression. Therefore, it is only
necessary to sample values in the Preponed region of the time slot in which the clocking
expression is triggered, and not in every time slot. When processing in the Preponed region, how
does the simulator know that a clock will be triggered later during the processing of that
particular time slot? The answer is that the simulator does not need to know about any future
events, it only needs to ensure that the values present in the Preponed region are available to the
sampling constructs when the clocking expression is actually triggered while processing the
latter regions. The simulator can accomplish this by maintaining two values for each sampled
signal, its current value and its value when the Preponed region was processed. This way, when
the sampling clock is triggered, the sampling construct simply uses the value corresponding to
the Preponed region. While many optimizations are available to the simulator — including but not
limited to peeking in the event queue for potential clocking events — the sampling mechanism
can be illustrated as an intra-region (or a time slot) delay gate, as shown in Figure 7.

Delayed
_ signal Sampled
signal — signal

1 time slot
delay clock

Figure 7 - Sampling mechanism block diagram

By changing the delay value, the above mechanism can be used to sample a signal an arbitrary
amount of time before the corresponding clocking expression.

Assertions and #1step sampling are discussed in section 2.2.13 .

2.2.2 The Active Region Set (Active - Inactive - NBA) ’l‘

The active region set is used to schedule blocking Active
assignments and nonblocking assignments included in v

module code. Any task or function called from a module Inactive

is also scheduled into the active region set. The intended N; A |
purpose of the active region set is to schedule RTL and 3

behavioral code activity. Testbench code can also be

written as module code and indeed preexisting Verilog From Reactive
testbench code was written as module code, but Region Set
SystemVerilog users are encouraged to place future

testbench code into programs to isolate RTL design code Figure 8 - Active region set

execution from testbench code execution.

Active region set activities are described in sections 2.2.3, 2.2.4, and 2.2.5.

SNUG Boston 2006 12 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

2.2.3 Active Events Region

The Active Events Region, also commonly called the Active region, is part of the Active Region
Set. The principal function of this region is to evaluate and execute all current module activity.
Including (in any order?):

e Execute all module blocking assignments.

e Evaluate the Right-Hand-Side (RHS) of all nonblocking assignments and schedule updates
into the NBA region.

e Execute all module continuous assignments

e Evaluate inputs and update outputs of Verilog primitives.

e Execute the $display and $Finish commands.

Sunburst Design Race Avoidance Guideline #3 dictates that all RTL combinational logic
modeled using an always block should be coded using blocking assignments to ensure that
combinational logic executes in the Active region and correctly models real combinational
hardware behavior.

2.2.4 Inactive Events Region

The Inactive Events Region, also commonly called the Inactive region, is part of the Active
Region Set. This region is where #0 blocking assignments are scheduled and per Sunburst
Design Race Avoidance Guideline #8, engineers should not make #0 RTL procedural
assignments®. Most engineers that continue to use #0 assignments are trying to defeat a race
condition that might exist in their code due to assignments made to the same variable from more
than one always block, which is a violation of Sunburst Design Race Avoidance Guideline #6.

Engineers that follow good coding practices will have no need for #0 RTL assignments and
hence, the Inactive region is unused in the rest of the event scheduling examples in this paper.

2.2.5 Nonblocking Assignment Events Region (NBA)

The Nonblocking Assignment Events Region, also commonly called the NBA region, is part of
the Active Region Set. The principal function of this region is to execute the updates to the Left-
Hand-Side (LHS) variables that were scheduled in the Active region for all currently executing
nonblocking assignments.

Sunburst Design Race Avoidance Guideline #1 dictates that all RTL clocked logic modeled
using an always block should be coded using nonblocking assignments to ensure that the
sequential logic will execute in the NBA region and correctly model the pipelined nature of
sequential elements.

2 Statements listed between begin-end do execute in the order listed
® Historically, the Inactive region was necessary in the early days of Verilog, before the NBA region was added
(circa 1989). Proper usage of the NBA region makes the Inactive region unnecessary.

SNUG Boston 2006 13 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

Sunburst Design Race Avoidance Guidelines #2 and #4 also address RTL coding using
nonblocking assignments to correctly model latches and sequential logic with simple
combinational input logic. See references [3] and [5] for examples and details.

2.2.6 Observed Region

The principal function of this region is to evaluate the concurrent assertions using the values
sampled in the Preponed region.

Assertions that execute a pass or fail action block, actually schedule a process associated with the
pass and fail code into the Reactive regions, not in the Observed region. This is because
concurrent assertions are designed to behave strictly as monitors, thus, they are not allowed to
modify the state of the design. But, if assertions cannot schedule any Active region events, why
is there a feedback path from the Observed region to the Active region?

The answer is a bit subtle. That feedback path would be taken when an expect statement (IEEE
Std 1800-2005, section 17.16) is written in a module scope. The LRM states:

The statement following the expect is scheduled to execute after processing the Observe region
in which the property completes its evaluation.

Hence, if the expect statement is incorporated within a module, the corresponding process is
added to the Active region and will be executed immediately following the Observed region
processing. Conversely, if the expect statement is incorporated in a program block, the
corresponding process is scheduled into the Reactive region.

The utilization of this feedback path should be rare. The expect statement is typically used by a
testbench that reacts to the disposition of an assertion. We are unaware of a methodology that
would place such statements in a module. One reason for doing so would be to synthesize the
assertion in order for the design to react to the assertion. However, there are currently no
synthesis tools that support such a mechanism.

2.2.7 The Reactive Region Set (Reactive - Re-Inactive -

Re-NBA) To Active

Region Set

The reactive region set is used to schedule blocking l A
assignments, #0 blocking assignments and nonblocking !
assignments included in program code. Any task or function Reactive |
called from a program is also scheduled into the reactive set R e-ln:cctive |
event regions. The intended purpose of the reactive region set v
IS to schedule testbench stimulus drivers and testbench Re-NBA |
verification checking in the same time slot after RTL code Y
has settled to a semi-steady state. Of course, testbench
stimulus could cause additional combinational logic update Figure 9 - Reactive region set

activity to occur in the same time slot. Testbench code can be

SNUG Boston 2006 14 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

written as module code and indeed preexisting testbench code was written as module code, but
SystemVerilog users are encouraged to place future testbench code into programs to isolate RTL
designs from testbench execution.

Reactive region set activities are described in sections 2.2.8, 2.2.9, and 2.2.10.
2.2.8 Reactive Events Region

The Reactive Events Region, also commonly called the Reactive region, is part of the Reactive
Region Set. The Reactive region is the reactive region set dual of the corresponding Active
region in the same time slot. The principal function of this region is to evaluate and execute all
current program activity. Including (in any order?):

e Execute all program blocking assignments.

e Execute the pass/fail code from concurrent assertions.

e Evaluate the Right-Hand-Side (RHS) of all program nonblocking assignments and schedule
updates into the Re-NBA region.

e Execute all program continuous assignments

e Execute the $exit and implicit $exit commands.

This region is used to execute the verification processes spawned by program blocks. Because
the Reactive region is located towards the end of the time slot, a process that executes at this
point in the simulation has access to three key pieces of information:
1. The current set of steady-state Active region set values — at the start of the current time
slot.
2. The next set of steady-state Active region set values, after clock and signal propagation.
3. The disposition of all concurrent assertions triggered in this time slot.
All this information enables more powerful and flexible verification techniques without forcing
users to resort to specialized synchronization code.

The processes that execute when processing the Reactive region typically drive back the stimulus
into the design.

2.2.9 Re-Inactive Events Region

The Re-Inactive Events Region, also commonly called the Re-Inactive region, is part of the
Reactive Region Set. The Re-Inactive region is the reactive region set dual of the corresponding
Inactive region in the same time slot.

As currently defined, the Re-Inactive region iterates with the Reactive region until all
Reactive/Re-Inactive events have completed. Then, within the same time slot, the RTL regions
(Active-Inactive-NBA) will re-trigger if the program execution scheduled any events in those
regions in the same time slot.

* Statements listed between begin-end do execute in the order listed

SNUG Boston 2006 15 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

Events are scheduled into the Re-Inactive region by executing a #0 in a program process. This
region is the dual of the Inactive RTL region, which we recommend not using. However, that
recommendation does not apply when dealing with verification code, where it is often useful
(and harmless) to add some determinism to the scheduler. For example, when forking
background processes, it is often very useful to allow the newly created subprocesses a chance to
start executing before continuing the execution of the parent process. This is easily accomplished
with the following code:

program test;
initial begin
fork
processl;
process?2;
process3;
join_none

#0;
// parent process continues
end
endprogram

Example 1 - Scheduling of #0 Re-Inactive testbench event

An interesting side note is that if the program scheduled more RTL events to execute in the
same time slot, all of those events will be in the NBA region and the Active region and Inactive
regions will both be empty when execution resumes from the Reactive-loop regions back to the
RTL regions. It is possible and even likely that the second pass through the NBA region (to
execute the stimulus drives placed in the NBA region) could trigger additional RTL
combinational logic activity and cause additional Active region events to execute before
completing the time slot. However, that will only be the case if the testbench drives stimulus into
the design with zero delay. Some engineers find it useful to drive stimulus with some delay away
from the clock edge that typically triggers the program processes (see the clocking block
example in section 6.2).

2.2.10 Re-NBA Events Region

The Re-NBA Events Region, also commonly called the Re-NBA region, is part of the Reactive
Region Set. The Re-NBA region is the reactive region set dual of the corresponding NBA region
in the same time slot. The principal function of this region is to execute the updates to the Left-
Hand-Side (LHS) variables that were scheduled in the Re-Active region for all currently
executing nonblocking assignments that were evaluated in the Reactive region.

As currently defined, the Re-NBA region iterates with the Reactive and Re-Inactive regions until
all Reactive region set events have completed. Then, if program execution scheduled any
Reactive region events that could trigger Active region set events in the same time slot, the
Active set regions (Active-Inactive-NBA) will re-trigger and iterate until the Active region set
events have completed.

SNUG Boston 2006 16 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

2.2.11 Postponed Region

The principal function of this region is to execute the $strobe and $monitor commands that
will show the final updated values for the current time slot. This region is also used to collect
functional coverage for items that use strobe sampling.

There is no feedback path from the Postponed region back into the RTL or Reactive-loop
regions, so the values displayed and the coverage collected will be the final values for that time
slot. This generally is the same behavior that was defined for the Monitor region of the IEEE Std
1364-2001.

2.2.12 Preponed - Postponed Naming

Yes, believe it or not, prepone is a real word![17] A quick Google search of the word prepone
reveals that it is a commonly used word in South Asia, which explains why many of our
engineering friends from India are very comfortable with the term.

The word means "to place in front of, to schedule for an earlier time[17]." As an example, one
can: (1) hold a meeting as scheduled, (2) delay, or postpone, the start of a meeting until a later
time, or (3) move up the schedule of, or prepone, the start of a meeting.

There was an appropriate amount of groaning made by the SystemVerilog committee members
when this event region was named, but nobody was willing to accept any of the alternatives so
the name stuck. For SystemVerilog users, preponed-postponed can be thought of as the begin-
end regions that surround and encapsulate each time slot. Enough said!

2.2.13 #lstep - what it really means

#1lstep is a new and important capability added to SystemVerilog intended primarily for
sampling data in assertions and verification code.

First let's start with the definition of "global time precision™ because that definition is used to
define #1step.

From the IEEE Std 1800-2005 - 19.10 Time unit and precision

The global time precision is the minimum of all the time precision statements and the smallest time
precision argument of all the ~timescale compiler directives (known as the precision of the
time unit of the simulation in 19.8 of IEEE Std 1364) in the design. The step time unit is equal to
the global time precision.

Given this definition, and using the three ~timescale and one timeprecision keywords
from the models shown in Figure 10, the global time precision is defined to be 1fs, which is

SNUG Boston 2006 17 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

equal to the #1step delay. That is, this is the smallest unit of time for which the simulator will
schedule an event — there can be no activity in between #1step delays.

“timescale 1lns / 1lns
ﬂ%odule top;
logiec bl, cl;
ml ml (.al(bl), .a2(cl))
p2 p2 (.*);
p3 p3 (.*);
endmodule

vy timescale 1lns / 1ns

module ml (input logic al, a2);
assign #1.2 a = al & a2;

endmodule

#lstepis set to the

smallest resolution of all the
"timescale/ timprecision

declarations in the code

-

b "timescale 1lns / 10ps
program p2 (output logic bl) ;
logic b;
assign #3.345 b = 1;
initial @ (b) bl <= b;
endprogram

program p3 (output logic cl);

timeunit 1lns;
timeprecision 1lfs;
Smallest resolutionis 1£s logic c;
assign #2.2 ¢ = 1;
#lstep = 1fs initial d(ec) ¢l <= ¢;
endprogram

Figure 10 - #1step defined by smallest “timescale & timeprecision

The IEEE SystemVerilog standard elaborates on the definition of #1lstep as being
"conceptually™ identical to taking data samples in the Preponed region ...

From the IEEE Std 1800-2005 - 9.3 The stratified event scheduler

The new #1step sampling delay provides the ability to sample data immediately before entering
the current time slot and is a preferred construct over other equivalent constructs because it allows
the #1step time delay to be parameterized. This #1step construct is a conceptual mechanism
that provides a method for defining when sampling takes place and does not require that an event
be created in this previous time slot. Conceptually, this #1step sampling is identical to taking
the data samples in the Preponed region of the current time slot.

SNUG Boston 2006 18 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

... and further elaborates that the default sample point for clocking blocks is #1step, which is
really the same as sampling the data values in the Postponed region of the actual preceding time
slot, because those data values will not have changed between the preceding Postponed region
and the current Preponed region. In fact, the sampled valued may be the values last sampled
100's of time units earlier if there have been no events during that time span.

From the IEEE Std 1800-2005 - 15.2 Clocking block declaration

Unless otherwise specified, the default input skew is 1step and the default output skew is
0. A step is a special time unit whose value is defined in 19.10. A 1step input skew allows
input signals to sample their steady-state values in the time step immediately before the clock event
(i.e., in the preceding Postponed region). Unlike other time units, which represent physical units, a
step cannot be used to set or modify either the precision or the time unit.

The SV-AC subcommittee authored the description of assertion sampling in clause 17.3 of the
IEEE SystemVerilog standard as shown below:

From the IEEE Std 1800-2005 - 17.3 Concurrent assertions overview

The values of variables used in assertions are sampled in the Preponed region of a time slot, and the
assertions are evaluated during the Observe region. If a variable used in an assertion is a
clocking block input variable, the variable must be sampled by the clocking block with
#1step sampling. Any other type of sampling for the clocking block variable shall result in
an error. The assertion using the clocking block variable shall not do its own sampling on the
variable, but rather use the sampled value produced by the clocking block.

In reality, all values used by assertions, whether sampled with clocking block timing or
without clocking block timing, all occur at #1step before the current time slot, but since the
value of all of the signals that were sampled #1step before the current time slot are exactly the
same as the values at the beginning of the time slot, it really does not matter if the signals were
sampled #1step before the current time slot or in the Preponed region of the current time slot.

“timescale 1ns/100ps
modulle test;
logic [7:0] d;

initial begin
d = 8"h33;
#5 d = 8"hAA;
end
endmodule

Example 2 - Simple test used to show sampling and #1step sample delays

SNUG Boston 2006 19 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

#1 step (700ps) before 5ns
(No event scheduled)

|4 . 9ns I | 5ns I

' Pre || I‘ Pre |11 Pre<d fj‘:”s.’;j" change)
| | | v 1 v I

I | ActivetH{(1) d=33] | |Active |11 | Active-
I Inactive| | I Inactive| I 1 nactivel |

! NBA I I NBA I NBA !

| | v 11 v 1

: iomervl: d-value did not change : ‘Obierv : : ‘Obierv :

_ between Postponed(0) _ _

| Re-Act)) and Preponed(5) | [Re-Act]) | [Re-Act]

I [Re-Inac| | | Re-Inac| | | Re-Inac] |

I Re-NBA1 [(2) time-0 done (d=33)] | Re-NBA| I 1 Re-NBA| |

| 1 | y 11 y |

1| Post |} |(no change) (d=33)|—|—FPost 11 Post ||

Figure 11 - How events are scheduled and sampled for the code in Example 2

Remember. The IEEE Std 1800-2005 was written by multiple teams of very talented engineers
with different specialties. If one perfect and extremely talented engineer had written the entire
IEEE Std 1800-2005 document, the descriptions might have been more consistent across the
entire document. Whether the assertion values are sampled at #1step before the current time
slot or in the Preponed region of the current time slot, it will not matter to the end user because
the results will be the same.

We have been asked if there is a preferable way to sample the signals, in the previous Postponed
region or in the current Preponed region? To the end-user, the answer is no, except that a
simulator may run more efficiently using one form or the other.

We have been asked if it would be better to make all of the sampling descriptions in the IEEE
SystemVerilog standard the same. We believe the answer is yes - users would be less confused
about #1step and sampling if all of the IEEE SystemVerilog standard descriptions were
consistent. The apparent contradiction arises because the two sampling constructs target different
functionality. The clocking block targets verification software, hence it includes a more general
sampling mechanism that allows the specification of input sampling skews as arbitrary time
delays. Whereas concurrent assertions are intended to be consistent with both formal tools and
hardware accelerators, neither of which implements time delays. Hence, assertions restrict
sampling to #1step of the last time slot exclusively, which, as we saw before, is functionally
equivalent to sampling in the Preponed region.

We have been asked what happens at time-0 with respect to #1step sampling? Note that time-0
initialization and activity is poorly described for many situations, not just sampling. The working
model used to illustrate the time-0 sampling functionality can be used to explain this behavior.
At time O all 4-state variables are initialized either to an explicit user-assigned value in the

SNUG Boston 2006 20 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

declaration or to their default value of X. If the clocking event triggers at time 0, then a sample of
the delayed signal value is taken (a virtual pre-time-0 Postponed sampling). Hence, since the
delayed signal is always X at time 0, a sample at time 0 will yield X (or the un-initialized value).

We have been asked if #1step can be used as a delay elsewhere in a design or verification environment.
The answer is yes, but current implementations only seem to support #1step in a sampling context, such
as a clocking block. Besides the limitations of current implementations, the question we would ask is,
why would someone want to use #1step as a delay elsewhere in the design or verification environment?
We believe that usage of #1step as a general purpose delay should be highly discouraged.

Engineers have noted that if all the timeunits and timeprecisions in the compiled files are the same, that a
#1 delay is equivalent to a #1step delay. Although this may be true for the current set of design files, if
a new design file with different timeprecision is added to the list of compiled files, the #1step would
change while the #1 delay would remain unchanged — the #1step is a function of the global precision
while the #1 delay is a function of the local precision only.

Occasionally, engineers add #1 delays to the RHS of sequential nonblocking assignments and might
consider replacing these delays with #1step delays. We have heard three reasons why engineers add the
#1 delays:

(1) it fixes problems with nonblocking assignments (WRONG! - these engineers do not understand how
nonblocking assignments work and they probably tried to do a $display on a signal that they just
updated using a nonblocking assignment and did not see the expected values - hence the Sunburst
Design coding guideline #7).

(2) to see clk-to-g delays in a waveform display for debugging (reasonable - but #1step would
generally not show these tiny delays in a waveform display)

(3) to fix hold-time violations when an RTL block drives a gate-level block with timing in a mixed RTL-
gates simulation. #1 delays fix most of these problems because most contemporary ASIC family hold
times are well less than 1ns. The #1step would generally violate any non-zero hold times in these
situations.

We have been asked if it is possible to use fractional #1 . 2step and non-unit #2step delays? Although
the current IEEE SystemVerilog standard does not prohibit either of these possibilities, the decimal
portion of #1.2step would be rounded away (remember, step equals the smallest time precision), and
using a non-unit step delay is like tinkering with simulation-precision delta delays, and we cannot think of
any good reason to try either of these non-unit step delays. Members of the SystemVerilog standards
group appear to be united in their distaste for non-unit step delays and a future version of the IEEE
SystemVerilog 1800 standard may prohibit or restrict these non-unit step capabilities.

That having been said, having the #1step based on the global precision (even though there was nothing
like it in Verilog) is exceptionally useful in assertions and verification. We can think of no good
methodology that would include #1step delays in RTL design code.

Guideline: Only use #1step delays in clocking blocks. Assertions already use #lstep delay-
equivalents for sampling the specified assertion signals.

SNUG Boston 2006 21 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

Guideline: Never use non-unit step delays, such as #1 .2step or #2step. The non-unit step delays are
not currently supported by any SystemVerilog implementation and they may be prohibited in future
version of the IEEE SystemVerilog 1800 standard.

3 Time-0 events, races & race-avoidance

One of the problem areas for simulation race conditions occurs at the beginning of a simulation,
at time-0. To avoid these race conditions, one needs to understand which events trigger at time-0
and how events are ordered at time-0.

At the commencement of developing the guidelines for this paper, the authors held two very
different views on how tests should startup at time-0. At the heart of the disagreement lies the
very nature of time-0 events. Should the guidelines attempt to introduce more determinism to
what is fundamentally a random process? Or, should the guidelines make time-0 simulation as
pessimistic as possible? Will adding more determinism simply lull engineers into a false sense of
security, or will it help them find potential problems?

After collaborating on the development of this paper, the authors have concluded that there are
different circumstances that may warrant different approaches to the initialization of clocks and
resets during a simulation. Engineers must carefully consider and test the following scenarios if
they are applicable to their designs.

3.1 Synchronous or asynchronous resets?

Does the design use synchronous or asynchronous resets? Are all the resets in the design or
system synchronous or asynchronous or a mixture of both? What will happen if reset is asserted
at time zero? What will happen if reset is not asserted until some later time? What will happen to
the design if somebody resets the design multiple times in rapid succession (this is a common
hardware failure mode). Additional reset issues are detailed in (Cummings-Mills-Golson -
2002[2]).

3.2 Clock startup issues

Does the design clock startup immediately or after a delay? Should the testbench be setup to test
a delayed clock startup? Should the direction of the first clock edge (posedge or negedge) be
guaranteed or randomized?

3.3 Startup delays

Can your RTL testbench ignore delays in clock and reset startup? Can your gate-level testbench

ignore the same delays in clock and reset startup? Can you test these scenarios in the actual
hardware?

SNUG Boston 2006 22 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

3.4 Input Initialization

Should inputs be tested with uninitialized-X values at time-0? Should bi-directional ports be
tested with non-driven-Z values at time-0? Should inputs be initialized or driven to specific
values at time-0? Should inputs be randomly initialized to state-values at time-0?

3.5 Capturing startup vectors
Are testbench vectors going to be captured and used on a chip-tester? Can the tester be setup to

ignore chip outputs during chip-initialization? Does your RTL and gate-level testbench ignore
the same chip outputs?

SNUG Boston 2006 23 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

3.6 Functional verification startup matrix

A good test plan will indicate which parts of the startup functionality described in the following
matrix should be verified.

Clock, Reset & Input Startup Functionality Yes No

(1) Reset - test assuming all synchronous resets?

(2) Reset - test assuming all asynchronous resets?

(3) Reset - test assuming mixed system with synchronous &
asynchronous resets?

(4) Reset - test first reset assertion at time-0?

(5) Reset - test first reset assertion after random delays

(6) Reset - test for multiple rapid-fire resets in a row?

(7) Is first clock edge guaranteed to be always a posedge clk?

(8) Is first clock edge guaranteed to be always a negedge clk?

(9) Should the first clock edge direction be randomized?

(10) Clock startup - test immediate clock startup w/posedge clk?

(11) Clock startup - test immediate clock startup w/negedge clk?

(12) Clock startup - test fixed-delay clock startup w/posedge clk?

(13) Clock startup - test fixed-delay clock startup w/negedge clk?

(14) Clock startup - test random-delay clock startup w/posedge clk?

(15) Clock startup - test random-delay clock startup w/negedge clk?

(16) Can the RTL testbench ignore side effects from delayed clock
startup?

(17) Can the RTL testbench ignore side effects from delayed reset
assertion?

(18) Can the Gate-level testbench ignore side effects from delayed
clock startup?

(19) Can the Gate-level testbench ignore side effects from delayed
reset assertion?

(20) Are testbench vectors going to be captured for use on a chip
tester?

(21) Can the chip tester ignore chip-outputs during initialization?

(22) Does the RTL testbench ignore the same outputs during
initialization?

(23) Does the Gate-level testbench ignore the same outputs during
initialization?

(24) Should inputs be tested with uninitialized-X values at time-0?

(25) Should bi-directional ports be tested with non-driven-Z values at
time-0?

(26) Should inputs be initialized or driven to specific values at time-0?

(27) Should inputs be randomly initialized to state-values at time-0?

Remember: a fundamental guideline of testbench development is that you want to use the same
testbench for every phase of the design, from behavioral concept to gates-implementation to
chip-tester vectors. Why?

SNUG Boston 2006 24 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

(1) Because if different testbenches are setup with slightly different parameters to accommodate
different phases of the design then they are not testing the same functionality. You want to
prove that the design you tested before implementation is the same as the design you tested
after implementation and using different testbenches to verify pre- and post-synthesis
versions of the design does not accomplish this goal.

(2) It is hard enough to create one great testbench. You certainly don't want to duplicate that
effort for different phases of the design.

3.7 A4-state variables

Uninitialized 4-state variables start at time-0 as unknown (X) values. Non-driven 4-state nets start
at time-0 as floating, high impedance (z) values.

Verilog-2001 allowed initialization of variables in the declaration but these would create time-0
events. SystemVerilog changed the way that initialization of variables are scheduled at time-0.
SystemVerilog variables initialized in a declaration do not cause a time-0 event.

3.8 2-state variables

Uninitialized 2-state variables start at time-0 with a value of 0. Currently, there are no 2-state net
types in SystemVerilog.

This means that the following clock oscillator should not cause a time-0 event, because the 2-
state clk variable will be initialized to 0 before simulation starts and the first nonblocking
assignment to clk will also be 0 (no negedge transition at time-0).

“define CYCLE 10
“timescale 1ns/1ns

module clkgen2a;
bit clk; // clk is initialized to O

initial begin
clk <= "0; // no time-0 event
forever #(CYCLE/2) clk = ~clk;

end
endmodule
Example 3 - 2-state clock oscillator with no time-0 event
SNUG Boston 2006 25 SystemVerilog Event Regions

Rev 1.2 Race Avoidance & Guidelines

4 Sunburst Design recommended and non-recommended clock oscillators

For all of the remaining clock oscillator examples, the following CYCLE definition and
“timescale are used. Of course, both of these declarations could be modified by the
verification engineer.

“define CYCLE 10
“timescale 1ns/1ns

Example 4 - CYCLE and “timescale definitions used for clock oscillators

Recommended 4-state clock oscillator:

module clkgenl;
logic clk; // clk is initialized to X

initial begin
clk <= "0; // time-0 no-race negedge clk
forever #(CYCLE/2) clk = ~clk;
end
endmodule

Example 5 - clkgenl clock oscillator

The clkgenl clock oscillator of Example 5 transitions from X->0 at time-0 after all procedural
blocks have become active. The resulting deterministic negedge clk event has no races with
other initializations taking place at time-O0.

Recommended 2-state clock oscillator:

module clkgen2;
bit clk = 1; // clk i1s initialized to 1

initial begin
clk <= "0; // time-0 no-race negedge clk
forever #(CYCLE/2) clk = ~clk;
end
endmodule

Example 6 - clkgen2 clock oscillator

The clkgen2 clock oscillator of Example 6 transitions from the initialized 1->0 at time-0 after
all procedural blocks have become active. The resulting deterministic negedge clk event has
no races with other initializations taking place at time-0.

Cliff-Note - Caution: when this paper was published, none of the major SystemVerilog vendors
tested had implemented the correct initialization of initialized variable declarations, and all
vendors were triggering a time-0 posedge clk event from the above bit clk = "1;
declaration. This is wrong and it may cause all procedural blocks that are sensitive to a posedge

SNUG Boston 2006 26 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

clk event to trigger at time-0, which was not intended. For this reason, until vendors correctly
initialize variable declarations, Sunburst Design recommends using the 4-state clock oscillators
and avoid the 2-state clock oscillators.

Cliff-Note - Caution - Rev 1.1 Update: | have re-tested this feature using Mentor's QuestaSim
product and have found that QuestaSim does do the correct pre-time-0 initialization and this has
been working since at least ModelSim version 6.2c (the earliest version that | had access to). If
you know of other simulators that have implemented this pre-time-0 initialization, please email
CIiff so that updates can be made to this paper.

Using the initial-forever coding style allows a verification engineer to do interesting
clock-startup testing. In clkgen3 of Example 7, the clock remains unknown for a predefined
START_DLY before it starts running.

module clkgen3;
parameter START_DLY = 24;
logic clk; // clk is initialized to X

initial begin // clk IS INITIALIZED after a delay
#START _DLY clk <= "0; // first edge after a delay
forever #(CYCLE/2) clk = ~clk;
end
endmodule

Example 7 - clkgen3 clock oscillator

In clkgen3a of Example 8, the clock is executes a negedge clk at time-0 and then delays for
a predefined START_DLY before it starts running.

module clkgen3a;
parameter START_DLY = 24;
logic clk; // clk is initialized to X

initial begin // clk starts after a delay
clk <= "0; // time-0 no-race negedge clk
#START_DLY forever #(CYCLE/2) clk = ~clk;
end
endmodule

Example 8 - clkgen3a clock oscillator

In clkgen4 of Example 9, the 2-state clock initializes to O without causing a time-0 event and
then remains unknown for a predefined START_DLY before it starts running.

SNUG Boston 2006 27 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

module clkgen4;
parameter START_DLY = 24;
bit clk; // no time-0 event

initial begin // clk starts after a delay
#START_DLY forever #(CYCLE/2) clk = ~clk;
end
endmodule

Example 9 - clkgen4 clock oscillator

There are two additional commonly used SystemVerilog clock oscillators that take advantage of
interesting SystemVerilog features.

The Example 10, clkgen5 clock oscillator relies on the fact that an uninitialized bit type is
always initialized to 0. Then the included always block continuously re-assigns the clk
variable every half clock cycle.

module clkgen5;
bit clk; // no time-0 event

// No time-0 event possible

// clk always starts after a half-CYCLE

always #(CYCLE/2) clk = ~clk;
endmodule

Example 10 - clkgen5 clock oscillator (not recommended)

The Example 10, clkgen6 clock oscillator also relies on the fact that an uninitialized bit type
is always initialized to 0. Then the included always block continuously increments the 1-bit
clk variable every half clock cycle, causing the clk bit to wrap to 0 after incrementing to 1;
therefore, the clk bit oscillates.

module clkgen6;
bit clk; // no time-0 event

// No time-0 event possible
// clk always starts after a halft-CYCLE
always #(CYCLE/2) clk++;

endmodule

Example 11 - clkgen6 clock oscillator (not recommended)

Both of these clock oscillators work fine but neither one will execute a time-0 negedge clock
edge (which may or may not be important to the verification plan). This means that the first half
clock cycle will pass before a clock-triggering event will occur. Neither of these clock oscillators
can have a delayed startup because the always block starts unconditionally at time-0. For these

SNUG Boston 2006 28 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

reasons, Sunburst Design does not recommend using either of these clock oscillators even though
both will work fine in a simulation.

4.1 Clock oscillators - put them in the top module

You may get different simulation behavior if you put the clock oscillator in the top-level module
than if you put it in a program block.

A clock edge typically initiates all of the activity of a time slot. In Verilog-2001 designs a clock-
edge (typically a posedge clk) triggers all of the posedge clk-sensitive always blocks, the
blocks that coded according to Sunburst Design's 8 coding Guidelines to Avoid Verilog Race
Conditions[3] will all be coded using nonblocking assignments.

The right-hand-side (RHS) of these nonblocking assignments will be saved and the update will
be scheduled in the NBA region. Since no other active events are scheduled to execute in the
current time slot (at least not yet), all of the NBA events will be activated (placed into the Active
region) and executed.

Each updated NBA event may subsequently trigger additional combinational events (module
inputs or inouts, primitive inputs, continuous assignments and combinational always
blocks), each of which can add additional events to the Active region once all of the previously
activated nonblocking assignment events are processed. When these combinational events are
executed, they can trigger additional combinational events, and, just like real combinational
hardware, can cause ripple events within each clock cycle. And just like real hardware, the ripple
of combinational events will not activate edge-triggered clocked logic.

The interesting observation from the preceding description is that a single Active region event (a
posedge clock assigned using a blocking assignment in the testbench) first triggers and
schedules all of the nonblocking events, which in turn trigger the combinational logic events for
the same time slot, until all the combinational events have settled to a quiescent state.

Putting a clock oscillator in a program block actually schedules a nonblocking clock assignment
to the RTL design but might also execute additional program block activity before the RTL
clock edge is triggered.

Guideline: put the clock oscillator in the top-level module, not in a program block.

SNUG Boston 2006 29 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

5 How clocking block cycles & delays work

Signals listed in a clocking block will be subject to the specified clocking block timing if the
signals are referenced with the clocking block prefix. If the signals are referenced without the
clocking block prefix then they refer to the original signals (not the clocking block signals) that
are NOT subject to the clocking block timing.

In general to gain access to the synchronous timing of a clockiing block, the signals should use
the prefixed clocking block name with the signals. SystemVerilog interfaces and modports
offer a practical mechanism to avoid accidentally mixing the two; this is described in section 5.2.

There are times when a verification engineer may want to assign to the same RTL signals
without using the predefined clocking block delays. One such use might be to initialize some
synchronous RTL signals at time-0 to known or randomized values.

5.1 Clocking block and non-clocking block timing of the same signals

Any signal declared as a module / program / interface signal or port that is also declared as
an output (or inout) in a clocking block can be assigned using either a regular
(asynchronous) delay or a clocking block cycle-based delay. The example below illustrates
both uses.

“timescale 1ns / 1ns
module clk blkla;
logic d, clk;

initial begin

clk <= "0;
forever #5 clk = ~clk;
end

blkla t1 (.*);
endmodule

program blkla (output logic d,
input clk);

// program clocking block

default clocking cbl @(posedge clk);
output #2 d;

endclocking

initial begin

$timeformat(-9,0," ns",10);

$monitor(""%t: d=%b clk=%b", $time, d, clk);
end

SNUG Boston 2006 30 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

initial begin

d <= "1; // Ons: clk=0 d=1

##1 cbl.d <= "0; // 5ns: clk=1
// 7ns: d=0

// 10ns: clk=0

##1 cbl.d <= "1; // 15ns: clk=1
// 17ns: d=1

// 20ns: clk=0

##1 cbl.d <= "0; // 25ns: clk=1

// 27ns: d=0
// 30ns: clk=0
##1 $Finish; // 35ns: clk=1
end
endprogram

Example 12 - program block with mixed non-clocking and clocking delay assignments

In the preceding example, all occurrences of ##1 are equivalent to @(posedge clk). All
assignments to the variable d happen immediately after the preceding event or time delay, just
like any other assignment in Verilog. The assignments in this example proceed as follows:

The clock oscillator makes its first assignment at time-0 using a nonblocking assignment. All
subsequent clock assignments are done using blocking assignments and they all execute in
the Active region. The posedge clk assignments trigger program block activity.

The first assignment to the d variable happens at the beginning of the program block. The d-
variable is evaluated in the Reactive region and then scheduled to be updated in the same
time slot (time-0) Re-NBA region. See the left side of Figure 12 for the corresponding event
scheduling.

The second assignment to the d variable happens after ##1 (posedge clk at time 5ns) plus an
additional delay of 2ns (time 7ns) because the d-variable is prefixed with a clocking block
specifier as noted by the assignment cbl.d <= <0;. Although the assignment is made
using the <= token, this is not a nonblocking assignment but is a clocking drive assignment
that also happens to schedule the update into the Re-NBA region of a future time slot, as if it
were a nonblocking assignment with RHS delay. In this case, the assignment is equivalent to:
@(posedge clk) d <= #2 "0;. See Figure 12 for the corresponding event scheduling.

SNUG Boston 2006 31 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

I Pre |: I Pre |:

_re |

|
|
Active-H{(1) Eval RHS of NBA | Active--[(1) Blocking c1k=1] I

Inactive| | Inactive| |
NBAd—:—{ (2) Update LHS of NBA c1x=0] nea ||

|
|
|
: I NEA |
Observll | |Obsewvi1{(2) Trigger cbl Observl
| I —
|
|
|
|
|

Active

Inactive| |

|
Re-Aat] I (3) Eval RHS of program d| Re-AﬁrI—|(3) Eval & scheduled <= #2 0] I Re-Act

I Re-Inac

-H-{(4) Update LHS of program d=1 |

|
Re-NBA! | I Re-NBA
|

1
Posk |_Post |

Re-lnac
Re-NB#y
|
Poste} -{(5) time-0 dore]
Figure 12 - Example 12 event scheduling from time Ons to time 7ns

e The third assignment to the d variable (a clocking drive assignment) happens after ##1
(posedge clk at time 15ns) plus an additional delay of 2ns (time 17ns) because the d-variable
is prefixed with a clocking block specifier as noted by the assignment cb1.d <= "1;.1In
this case, the assignment is equivalent to: @(posedge clk) d <= #2 "1;. See Figure 13
and Figure 14 for the corresponding event scheduling.

I Pre I I Pre || 1 Pre 1
| | | |: | | |
| | Active | | | | Active4-{(1) Blocking c1k=0] 1| Active | I
I Inactivel | | Inactivel | I Inactivel |
I M"nea |! I"'nea |! M"nea |!
| | | | | |
I |Observ| | | Obser\fll | Observll
| | | | | |
| Re-Inac | | Re-Inacy | I Re-Inac| |
| Re-NB#H{ (1) Update LHS of programd <= o]l Re-NBA| | I Re-NBA| I
| | | | | |
| | Poste I Posﬂ—l—l—i (2) time-10 done) | | Post ||

Figure 13 - Example 12 event scheduling from time 7ns to time 15ns

SNUG Boston 2006 32 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

I Pre ||
| : |
| | Active-{H{(1) Blocking c1k=1]
Inactive| |

NBA :

Obser] 1 {(2) Trigger cb1

i

|
I (3) Eval & scheduled <= #2 1]

Re-Inac

Re-NBA|

|
|
|
|
|
| Re-Act
|
|
|
|

|
|
|
Post+h—{ (4) time-15 done|

Pre

Active | |
Inactive| |

HE
e||»
L=

Re-Inac| |
Ee-NBu‘k—H (1) Update LHS of programd <= 1|

Pre 1
: |
Active | |

Inactive| |
NBA 1

Observ |

Re-Act

Re-NBA|

| | |
Postl—l—l—{ (2) time-17 done| I

Figure 14 - Example 12 event scheduling from time 15ns to time 20ns

|
|
|
Re-Inac| |
|
|
|

Post |

The fourth assignment to the d variable (also a clocking drive assignment) happens after ##1
(posedge clk at time 25ns) plus an additional delay of 2ns (time 27ns) because the d-variable is
prefixed with a clocking block specifier as noted by the assignment cbl.d <= *0;. In this
case, the assignment is equivalent to: @(posedge clk) d <= #2 =0;. See Figure 15 and
Figure 16 for the corresponding event scheduling.

!
| |

| Activt—|—| (1) Blocking c1k=0|

Inactive|
NBA

|
|
|
Observl |
|
|
|
|

|
|
|
|
|
| Re-Act
|
|
|
|

Re-Inac

Re-NBA|

|
Poste,

Pre || I pre |1

[| |
Active--[(1) Blocking c1k=1] I | Active ||
Inactive| | I Inactive| |
NEA |! IMnea |!
[| |
Observ! 1{(2) Trigger cb1 | Observll
— | |
Re-Aet| (3) Eval & scheduled <= #2 0] | [Re-Act| |
Re-Inac| | \\Re-lnac |
Re-NBA| | I Re-NBA| I
[| |

Posk| | _Post |,

Figure 15 - Example 12 event scheduling from time 20ns to time 27ns

SNUG Boston 2006
Rev 1.2

33

SystemVerilog Event Regions

Race Avoidance & Guidelines

I Pre I I Pre || I Pre I
| | | |: | I C I
| | Active | | | | ActiveH{(1) Blocking c1k=0] I | Active | I
I Inactive] | I Inactive] | I Inactive| |
I nea | I nea |[! Mnea |1
| | | | I I
| Observll | Obser\fll | Observll
| | | | I I
| Re-lnacj | | [Re-Inac| | | Re-lnac |
| Re-NBAH{(1) Update LHS of program d <= 0 || Re-NBA| | I Re-NBA| I
| | | | | |
I Post«—l—l—{ (2) time-27 done| I Posﬁ—l—l—{ (2) time-30 done) | Post ||

Figure 16 - Example 12 event scheduling from time 27ns to time 35ns

After another ##1 delay (posedge clk at time 35ns) the $Ffinish command is executed and the
simulation terminates. See Figure 17 for the corresponding event scheduling.

: Pre |: Output sequence I
N - Ons: clk=0 d=1

| ActthU) Blocking clk—ll Sns: clk=1

| Inactive| | Tns: d=0

I nea | 10ns: clk=0

| | 15ns: c<lk=1

| |Obserst] [(2) Trigger cbl 17ns: =1

| ¥ | 20ns: clk=0

| Re-Aet I 25ns: clk=1

| Re-Inac| | 27ns: =0

| Re-NBA! I 30ns: clk=0

| | 35ns: clk=l

I Post || <$finish>

Figure 17 - Example 12 event scheduling completion at time 35ns

The output waveforms for Example 12 are shown in Figure 18.

SNUG Boston 2006 34 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

0 5 10 15 20 25 30 35

clk i |
d i L= e
'f Y S Y B
0 T 17 27

Figure 18 - Example 12 output waveforms

The ## notation of Example 12 is a convenient shorthand to specify cycle delays. In order to use
this notation, a default clocking block must be defined, as there was in Example 12. In the
absence of a default clocking block declaration, an existing clocking block can be made
into the default clocking. This is shown in Example 13.

clocking cbl @(posedge clk);
endclocking
default clocking cbil;

initial begin initial begin
##1 d <= "0; @i;:bl); d <= "0;
##5 d <= "1; repeat(5) @(cbl); d <= "1;
end- ena--

Example 13 - Equivalent cycle delays using ##-notation and @(cb1) notation

5.2 Clocking blocks in SystemVerilog interfaces

Clocking blocks within SystemVerilog interfaces are useful to specify the timing of the interface
signals. An interface can contain one or more clocking blocks, as shown in Example 14.

interface ifc (input clk, input clk2);
wire reset;
wire request;
wire data;

clocking cb @(posedge clk);
output reset;
input request;
input data;
endclocking

clocking cbDR @ (posedge clk2);
output reset;
input request;
endclocking
endinterface

Example 14 - Example interface code with two clocking blocks

SNUG Boston 2006 35 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

The signals within each clockiing block are sampled and driven synchronously with respect to
the clock of their corresponding clocking block.

5.2.1 Interface modports and clocking blocks

When used in conjunction with an interface modport, clocking blocks can be used to define
the proper direction and timing behavior of each modport. In the interface definition every
modport can have a different clocking block. In addition, a particular modport can include
both synchronous signals (clocking blocks) as well as asynchronous signals.

interface ifc;

modport tb (clocking cbDR, output reset);
modport checker (clocking cb);
modport dut (output request, iInput reset, data);

endinterface: ifc

Example 15 - interface code with modports that reference clocking blocks

Example 15 defines two modports tb and dut. These modports establish different access
mechanisms. For example, an RTL design can use the dut modport while a testbench uses the
thb modport. The RTL design can read and write all of its inputs and outputs directly, with no
timing restrictions. However, the testbench that uses the tb modport will only be able to access
the request or reset signals synchronously, through the clocking block, while the reset
signal will be accessible asynchronously.

5.3 Could clocking blocks lead to a better Verilog?

To understand the motivation behind clocking blocks, it is useful to study the genesis of
nonblocking assignments in Verilog.

When a signal changes value, the simulator schedules an event for each process that is sensitive
to the changing value. Next, when the newly scheduled events are processesd, the executing
processes may schedule other events with zero delay. Since the order in which an event region is
processed is undefined, the order of these new events is also undefined. Thus, users cannot
predict the outcome of a potential race.

We illustrate the problem with the two-stage D-flip-flop shift register shown in Figure 19. The
flip-flops have a common clock and use 0 delays.

D1 4 02

P

SNUG Boston 2006 36 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

Figure 19 — A 2-stage shift register of flip flops

When the clock signal is triggered, the processes associated with both flip-flops, D1 and D2, are
scheduled in the Active region. Next, the two flip-flop processes are executed in an unspecified
order. If the flip-flops use blocking assignments to update their outputs then the shift register will
work properly only when the D2 executes after D1. If D1 executes first, the update to signal b
will cause D2 to latch the next value. Interestingly, the reason why the simulation model breaks
down is because it fails to model the fundamental principle that hardware signals exhibit inertia
and cannot change instantaneously.

The solution to this problem has taken several forms. At first, engineers fixed this problem by
adding delays to all memory elements. This was only partly satisfactory because the delay
information became an artifact to fix the simulator. Next, engineers solved this problem adding
explicit temporary variables, unit delays, an eventually #0 delays — a coding style that led to the
standardization of the now dreaded Inactive region. Ultimately, this problem was solved by
adding nonblocking assignments to the Verilog standard, plus a few methodologies such as the
one presented in this paper. Interestingly, the problem was fixed not by adding a construct that
could model the intrinsic inertia of the hardware, but by building into Verilog essentially the
same basic paradigm (albeit much more efficiently) that engineers had been attempting: store the
Right-Hand-Side value into a temporary and delay the update of Left-Hand-Side until a later
time — when the NBA region is processed.

One fundamental problem with the NBA solution is that it solves the problem by attempting to
move the update past the design’s clock propagation phase. And, it has been successful because
it works exceedingly well for many popular clocking paradigms. However, the NBA mechanism
does break down when the clock signals themselves are triggered in succeeding event regions.
For example, if the clock signal of flip-flop D2 in Figure 19 is assigned with a nonblocking
assignment, the shift register will once again malfunction. And, indeed designers have run into
this problem when not being careful that their clock-gating adheres to the existing methodology.
The basic problem is that any mechanism that attempts to be the last one, while allowing zero
delay assignments will fail at some point. It is impossible to predict which process will be last in
an unbounded relaxation loop.

The new event regions in SystemVerilog suggest a different approach is possible. One simple
alternative is to allow users to explicitly retrieve the value present on a signal at the start of the
time slot, that is, the value of the signal while processing the Preponed region (or, as discussed,
the value during the Postponed region of the previous time slot). Thus, rather than attempt to
delay the update until after the last clock trigger (which is unknown), we just use the signal value
that exists at the start of the time slot (which is well defined). To illustrate the idea, we will make
this new mechanism a method available to any signal, and will call it preponed. This new
construct can be used to code the flip-flop thus:

always @(posedge clk)
q = d.preponed() ;

SNUG Boston 2006 37 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

This construct can model any type of edge-triggered primitive by more closely emulating the
inertia of the underlying hardware being described. It will correctly handle any mix of intra-
region clock triggers: parts of the clock tree can be triggered with blocking assignments, while
others with nonblocking assignments, either during the first pass through the Active region or
during any other pass (in any arbitrary delta-cycle). That is, edge-triggered logic truly becomes
independent of the simulation order. This is just a generalization of the mechanism that allows
assertions to be evaluated in the Observed region, but using the values sampled in the Preponed
region. Interestingly, if this mechanism was implemented then the 8 Sunburst Design coding
guidelines shown in Figure 10 could be reduced to just 4:

1. All constructs use blocking assignments — Don’t use nonblocking assignments.

2. Use the preponed method on the RHS of edge-triggered sequential constructs.

3. Do not make assignments to the same variable from more than one always block.

4. Do not make #0 procedural assignments.
Hence, a simple change in the way we think about modeling latency would simplify the use
model, the simulator implementation, and eliminate additional software induced races.

Although this is an interesting observation of what might have been, it does not exist in the
SystemVerilog language.

SNUG Boston 2006 38 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

6 When to apply stimulus

There are two common ways to apply stimulus to a design: (1) apply stimulus on the active clock
edge, and (2) apply stimulus on the inactive clock edge.

6.1 Verilog-2001 designs and testbenches

For Verilog-2001 designs and testbenches, applying stimulus on the active clock edge required
that all stimulus be applied using nonblocking assignments to avoid race conditions with the
registered logic of the design. In effect, applying stimulus using nonblocking assignments on the
active clock edge mimicked the behavior of a 0-delay RTL register transfer from testbench to
design.

Although this testbench coding style does work, it means that the testbench has to be modified to
work with a gate-level version of the design with registers that have hold times. Because the
nonblocking stimulus changes all DUT inputs in zero time, hold time violations can be a
common problem with this verification strategy.

The aforementioned hold time problem caused many engineers to apply stimulus using
nonblocking assignments with RHS #1 delays. This has been shown to be a potential source for
serious simulator performance degradation[5].

The Sunburst Design Verilog testbench methodology typically assigned stimulus on the inactive
clock edge, typically far away from setup and hold times for the gate-level devices. This
permitted the use of efficient blocking assignments and the only activity after application of
stimulus on the inactive clock edge would be input combinational logic activity.

6.2 SystemVerilog designs and testbenches

Synchronous testbenches can use the clocking block to easily enforce either testbench
methodology.

clocking sb @(posedge clk);
default output negedge;
input inl, in2;
output outl, out2;
endclocking

Example 16 - clocking block to apply stimulus on the negedge of the clk

The clocking block of Example 16 implements the methodology that applies stimulus on the
negedge of a clock. The clocking block inputs sb.inl1 and sb. in2 represent the values of
signals inl1 and in2 sampled on the positive edge of the clock. The outputs sb.outl and
sb.out2 are synchronous with the opposite edge of the clock, thus, no matter when during the
cycle these signals are assigned a new value, the clocking block output always drives the output
signals (outl and out?2) on the negative edge of the clock.

SNUG Boston 2006 39 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

Does the triggering of combinational input logic force the simulator to process more events and
degrade simulation performance? No. The combinational events must ripple to a quiescent state,
which can either happen and settle before the active clock edge triggers the registered logic, or it
can trigger the combinational logic between active clock edges.

Applying stimulus on the inactive clock edge typically means the same testbench can be used on
0-delay RTL models and gate-level simulations with back-annotated delays without modification
to the testbench.

7 Summary & Conclusions

The new SystemVerilog event regions were added to the SystemVerilog standard to remove race
conditions that could be created between the RTL design and the high-level HVL verification
environment. These new regions guarantee predictability and consistency between design,
testbenches, and assertions.

Using the new SystemVerilog clocking block constructs will facilitate the specification of
assertion, cycle operations, and synchronous interfaces.

For RTL coding, engineers should continue to follow the Sunburst Design - 8 coding Guidelines
to Avoid Verilog Race Conditions[3]. These coding guidelines still apply to SystemVerilog RTL
designs, and if RTL designers use the new always_comb, always_latch and always_ ff
procedural blocks, guideline #6 will be enforced automatically by the SystemVerilog compiler.

8 Acknowledgements

The authors express their gratitude to Stu Sutherland for his timely feedback for a paper that was
submitted to him for his review on very short notice.

9 References

[1] Chris Spear, "SystemVerilog for Verification”, Springer, www.springeronline.com, 2006

[2] Clifford E. Cummings, Don Mills and Steve Golson, “Asynchronous & Synchronous Reset Design
Techniques - Part Deux,” Boston, SNUG 2003 (Synopsys Users Group Conference, Boston, MA,
2003), September 2003. Also available at www.sunburst-design.com/papers

[3] Clifford E. Cummings, “Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!,”
San Jose, SNUG 2000 (Synopsys Users Group Conference, San Jose, CA, 2000), March 2000. Also
available at www.sunburst-design.com/papers

[4] Clifford E. Cummings, “Synthesis and Scripting Techniques for Designing Multi-Asynchronous
Clock Designs,” San Jose, SNUG 2001 (Synopsys Users Group Conference, San Jose, CA, 2001),
March 2001. Also available at www.sunburst-design.com/papers

[5] Clifford E. Cummings, “Verilog Nonblocking Assignments With Delays, Myths & Mysteries,”
Boston, SNUG 2002 (Synopsys Users Group Conference, Boston, MA, 2002), September 2002.
Also available at www.sunburst-design.com/papers

SNUG Boston 2006 40 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

[6] Clifford E. Cummings and Lionel Bening, “SystemVerilog 2-State Simulation Performance and
Verification Advantages,” Boston, SNUG 2004 (Synopsys Users Group Conference, Boston, MA,
2004), September 2004. Also available at www.sunburst-design.com/papers

[7] Dave Rich (member of IEEE 1800-2005 Standards Group), personal communication
[8] Doug Warmke (member of IEEE 1800-2005 Standards Group), personal communication.

[9] |IEEE P1800/D4 Draft Standard for SystemVerilog - Unified Hardware Design, Specification, and
Verification Language (working draft of the SystemVerilog Standards Group).

[10] "IEEE Standard Verilog Hardware Description Language,” IEEE Computer Society, IEEE, New
York, NY, IEEE Std 1364-2001

[11] "IEEE Standard For SystemVerilog - Unified Hardware Design, Specification and Verification
Language,” IEEE Computer Society, IEEE, New York, NY, IEEE Std 1800-2005

[12] Janick Bergeron, Eduard Cerny, Alan Hunter and Andrew Nightingale, "Verification Methodology
Manual for SystemVerilog," (VMM), Springer, www.springeronline.com, 2005.

[13] Jay Lawrence (member of IEEE 1800-2005 Standards Group), personal communication.
[14] Jonathan Bromley, personal communication.

[15] Lionel Bening, “A Two-State Methodology for RTL Logic Simulation,” Proc. 36" Design
Automation Conf., June, 1999.

[16] Lionel Bening, Kenneth Chaney, Generation of Reproducible Random Initial States in RTL
Simulators, Hewlett-Packard patent US6061819, May, 2000.

[17] "prepone." Webster's New Millennium™ Dictionary of English, Preview Edition (v 0.9.6). Lexico
Publishing Group, LLC. 13 Sep. 2006.
<Dictionary.com http://dictionary.reference.com/search?q=prepone&x=0&y=0>

[18] Shalom Bresticker (member of IEEE 1800-2005 Standards Group), personal communication.

[19] Verilog & SystemVerilog Database for Tracking Bugs, Clarifications & Enhancement Requests,
www.eda.org/svdb (Login: guest / Password: guest). Also known as the SystemVerilog Mantis
Database.

10 Revision Changes

This section includes descriptions of revisions that have taken place since the original paper was
presented.

An updated version of this paper can be downloaded from the web site:
www.sunburst-design.com/papers
(Data accurate as of December 5, 2007)

10.1 Revision 1.1 (November 2007) - What Changed?

In April 2007, the SystemVerilog Standards Group updated the SystemVerilog event regions and
the behavior of clocking blocks with respect to the new event regions. These changes were
incorporated into Mantis item number 890[19].

SNUG Boston 2006 41 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

Mantis 890 added the Re-NBA region (see section 2.2.10) and formally defined the behavior of
the Reactive set of event regions (see sections 2.2.7 - 2.2.10) that were put in place to be the
testbench dual of the RTL Active set of event regions (see section 2.2.2). These changes forced
multiple sections of this paper to be updated to reflect the new program and clocking block event
scheduling. Rev 1.0 of this paper should be discarded as obsolete and replace by this version of
the paper.

10.2 Revision 1.2 (December 2007) - What Changed?

My colleague, Jonathan Bromley, found a typo in Example 13. The ##5 is equivalent to
repeat(5) @(cbl); (with semi-colon after the @(cb1)). My thanks to Jonathan for catching
this mistake.

11 Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 25 years of ASIC, FPGA and system design experience and 15 years of Verilog,
synthesis and methodology training experience.

Mr. Cummings has presented more than 90 SystemVerilog seminars and training classes in the
past five years and was the featured speaker at the world-wide SystemVerilog NOW! seminars.

Mr. Cummings has participated on every IEEE & Accellera Verilog, Verilog Synthesis,
SystemVerilog committee, and has presented some 40 papers on Verilog & SystemVerilog
related design, synthesis and verification techniques.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Sunburst Design, Inc. offers World Class Verilog & SystemVerilog training courses. For more
information, visit the www.sunburst-design.com web site.
Email address: cliffc@sunburst-design.com

Arturo Salz received his PhD in Electrical Engineering from Stanford University in 1991. His
research focused on RISC architectures and incremental CAD tools, which lead to the creation of
the timing simulator IRSIM.

Dr. Salz has worked on video processors and hardware accelerators at Bell Labs, and he has
consulted on verification for numerous companies. In 1988 Dr. Salz co-founded Systems
Science, which developed the Vera hardware verification language.

Dr. Salz is currently a Synopsys scientist where he works on verification. He served as champion
of the Accellera SystemVerilog Enhancements Committee (SV-EC), and is currently an active
participant in the SystemVerilog IEEE standard.

Email address: salz@synopsys.com

SNUG Boston 2006 42 SystemVerilog Event Regions
Rev 1.2 Race Avoidance & Guidelines

