

 	

World Class SystemVerilog & UVM Training

SystemVerilog's Virtual World - An Introduction to Virtual
Classes, Virtual Methods and Virtual Interface Instances

Clifford E. Cummings

Sunburst Design, Inc.
Beaverton, OR, USA

www.sunburst-design.com

Heath Chambers

HMC Design Verification, Inc.
Roswell, NM, USA

hmcdv.iwarp.com

ABSTRACT

The SystemVerilog keyword virtual is used in three very distinct ways within the language.
This paper introduces the fundamentals that are required to understand how virtual is used and
behaves with virtual classes, virtual methods and virtual interface instances, and how it adds
polymorphism within a SystemVerilog context. This paper also introduces pure virtual
methods and pure constraints, features added to the IEEE-1800-2009 SystemVerilog Standard
and how pure virtual methods are already in use today.

Prepare to enter SystemVerilog's new virtual reality!

SNUG-2009
Boston, MA

Voted Best Paper
2nd Place

SNUG 2009 2 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

Table of Contents

1 Introduction .. 5
1.1 Example code ... 5

2 Quick intro to classes and methods .. 5
2.1 What is a class? .. 5
2.2 What is an object handle .. 6
2.3 Handles -vs- pointers .. 6
2.4 What is an object? .. 7
2.5 Reconstructing or removing objects ... 8

3 Class extension ... 9
3.1 Override versus overload ... 10
3.2 Super keyword ... 11
3.3 This keyword .. 14

4 virtual classes ... 15

5 Class methods .. 16

6 Non-virtual methods .. 16

7 virtual methods ... 16
7.1 Once virtual, always virtual ... 22

8 The pure keyword .. 23

9 pure virtual methods... 23
9.1 Extending pure virtual methods ... 25
9.2 Work-around for pure virtual methods ... 33

10 pure constraints .. 34

11 Polymorphism .. 34

12 virtual interfaces ... 36
12.1 Interfaces .. 36
12.2 Dynamically connecting to virtual interfaces ... 37
12.3 Step #1 - Build the real interface .. 37
12.4 Step #2 - Instantiate a virtual interface into the transactor class 39
12.5 Step #3 - Create a new() constructor to tie the real interface to the virtual interface 41

13 Conclusions .. 44

14 References .. 44

15 Author & Contact Information ... 44

16 Appendix .. 46

SNUG 2009 3 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

Table of Figures

Figure 1 - alu_reg block diagram 38

Figure 2 - Top-level module with design (DUT), interface and clock generator 38

Figure 3 - alu_if block diagram 39

Table of Examples

Example 1 - Simple class declaration: base1 .. 6

Example 2 - Class declaration with handle declaration: base1 b1; ... 6

Example 3 - Construction of the b1 object handle using the new() constructor 7

Example 4 - Construction of the b1 object handle using the new() constructor at time 10 7

Example 5 - Reconstruction of the b1 object handle removes the first b1 object 8

Example 6 - BAD: null b1 object handle causes fatal run-time null-object-handle access for
show() method .. 9

Example 7 - Cmd base class base and extended NewCmd class .. 10

Example 8 - Example of extended pre-method functionality ... 11

Example 9 - Example of extended post-method functionality .. 12

Example 10 - Use of "this" command to access class data member rather than method argument
 ... 14

Example 11 - Valid virtual class declaration with subsequent virtual class handle declaration ... 15

Example 12 - BAD - attempt to construct "new();" a virtual class handle 15

Example 13 - Valid virtual method - matching argument and return types 17

Example 14 - BAD virtual method - argument name does not match .. 18

Example 15 - BAD virtual method - argument type does not match .. 19

Example 16 - BAD virtual method - argument direction does not match 20

Example 17 - BAD virtual method - number of arguments does not match 21

Example 18 - BAD virtual method - return type does not match ... 22

Example 19 - Valid virtual class with pure virtual method and declared class handle 24

Example 20 - BAD pure virtual method with "endfunction" declaration 24

Example 21 - BAD use of pure - pure can only be used with virtual methods 24

Example 22 - Valid pure virtual methods must be extended in a non-virtual class 25

Example 23 - BAD - pure virtual methods must be extended with the same argument and return
types .. 26

Example 24 - BAD - pure virtual methods MUST be extended in the first non-virtual class 27

SNUG 2009 4 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

Example 25 - BAD - pure virtual methods cannot be defined in a non-virtual class 28

Example 26 - Valid - an extended virtual class does not have to extend a pure virtual method ... 29

Example 27 - BAD - First non-virtual class must override all inherited base class pure virtual
methods ... 30

Example 28 - BAD - First non-virtual class must override all declared base class pure virtual
methods ... 31

Example 29 - Valid - non-virtual class does not have to override non-pure methods from virtual
base class ... 32

Example 30 - Pure virtual function work-around: (1) empty function, (2) add endfunction 33

Example 31 - VMM pseudo-pure virtual method work-around ... 33

Example 32 - Pure constraint with override in non-virtual class .. 34

Example 33 - Polymorphism example showing base class handle accessing extended classes ... 35

Example 34 - alu_reg.sv SystemVerilog source code ... 38

Example 35 - alu_if.sv SystemVerilog source code ... 39

Example 36 - clkgen.sv SystemVerilog source code .. 39

Example 37 - top.sv SystemVerilog source code .. 39

Example 38 - Testbench class SystemVerilog source code with virtual interface........................ 40

Example 39 - Real interface handle aif assigned to new() handle nif, assigned to virtual interface
handle vif .. 41

Example 40 - Non-virtual method overrides another method with matching argument and return
types .. 46

Example 41 - Valid - Non-virtual method overrides another method with non-matching argument
type .. 47

Example 42 - Valid - Non-virtual method overrides another method with non-matching argument
direction .. 48

Example 43 - Valid - Non-virtual method overrides another method with different number of
arguments .. 49

Example 44 - Valid - Non-virtual method overrides another method with different return type . 50

SNUG 2009 5 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

1 Introduction
The SystemVerilog keywords virtual and pure impose coding requirements on a class-
based verification environment to help implement high-level verification methodologies such as
those found in the VMM and OVM. And yet there are a number of misconceptions and misun-
derstandings regarding the use of these constructs in a SystemVerilog environment.

This paper will detail how the virtual keyword is used to create abstract classes, runtime and
polymorphic class methods and interfaces between a static design and a dynamic verification en-
vironment.

This paper will also introduce the SystemVerilog 2009 keyword pure, how pure methods and
constraints work, how pure methods have already been added to some SystemVerilog simulator
implementations and the simple work-around to make pure methods work in all SystemVerilog-
2005 implementations.

It is always easier to use a language feature if one knows how the feature works and the prob-
lems the feature solves. It is the intent of this paper to provide this background education on the
powerful virtual and pure features of SystemVerilog-2005 and 2009.

1.1 Example code

The examples shown in this paper are full working examples, or full examples that will not com-
pile due to the errors described in the examples. It would have been easier and less verbose to
just include code snippets but it is our experience that full examples do a better job of answering
questions that might arise if the full example were not present.

2 Quick intro to classes and methods
For those who are new to SystemVerilog, this section gives a quick introduction to the basic con-
cepts needed to understand the declaration and basic usage of SystemVerilog classes and meth-
ods.

If you are already familiar with SystemVerilog class basics, you can skip to section 3.

2.1 What is a class?

A class is a dynamic type definition that includes data members (commonly referred to as prop-
erties or field members in Object Oriented Programming) and SystemVerilog tasks and functions
that are intended to interact with the data members. Tasks and functions defined within a class
are often referred to as methods, both in Object Oriented Programming and in SystemVerilog.

SNUG 2009 6 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

Example 1 shows a simple base1 class declaration with one data member named a and one
method, a virtual void function named set_show.

class base1;
 bit [7:0] a;

 virtual function void set_show (bit [7:0] i1);
 a = i1;
 $display("base1 : a = %2h", i1);
 endfunction
endclass

Example 1 - Simple class declaration: base1

In SystemVerilog, we typically avoid calling class data members "properties" because
property is a SystemVerilog keyword and has a different meaning when referring to Sys-
temVerilog assertion based design and verification.

2.2 What is an object handle

An object handle is basically a "safe" pointer to an object. A handle to an object can be declared
without actually having constructed an object. More on this later.

program example2;
 class base1;
 bit [7:0] a;

 virtual function void set_show (bit [7:0] i1);
 a = i1;
 $display("base1 : a = %2h", i1);
 endfunction
 endclass

 base1 b1;
endprogram

Example 2 - Class declaration with handle declaration: base1 b1;

In Example 2, the handle b1 is declared for the base1 class type, but no object has been
constructed so the b1 handle is currently assigned the value null. For this example, there is a
null handle of the base1 type.

Handles can be constructed or they can be assigned the values of extended class handles of the
same base class type. More on this later.

2.3 Handles -vs- pointers

In C and C++, a pointer can be mathematically manipulated. If the wrong value is added to a
pointer, the pointer might not point to valid data and the program behaviour referencing the inva-
lid pointer can execute with completely unexpected behaviour.

Like Java, SystemVerilog handles cannot be mathematically manipulated; therefore, they do not
allow the execution of unexpected program code, which is possible in C and C++.

Object handle b1 of
base1 class type

SNUG 2009 7 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

2.4 What is an object?

An object is an instantiation of a class. Making an instantiation is referred to as construction of
an object and construction is done using the built in new() constructor.

program example3;
 class base1;
 bit [7:0] a;

 virtual function void set_show (bit [7:0] i1);
 a = i1;
 $display("base1 : a = %2h", i1);
 endfunction
 endclass

 base1 b1 = new();

 initial b1.set_show(8'h55);
endprogram

Example 3 - Construction of the b1 object handle using the new() constructor

In Example 3, the b1 handle of base1 type is constructed using the new() constructor. Once
an object is constructed, the handle can be used to call class methods. The set_show method is
called in the initial block using the b1 handle.

Classes are dynamic types and class objects can be constructed during run time. In Example 3,
the object was constructed during declaration of the b1 class handle at time 0. In Example 4, the
b1 class handle was declared as a stand-alone statement, then the b1 handle was constructed in
the initial block at time 10.

program example4;
 class base1;
 bit [7:0] a;

 virtual function void set_show (bit [7:0] i1);
 a = i1;
 $display("base1 : a = %2h", i1);
 endfunction
 endclass

 base1 b1;

 initial begin
 #10 b1 = new();
 b1.set_show(8'h55);
 end
endprogram

Example 4 - Construction of the b1 object handle using the new() constructor at time 10

b1 object
constructed

b1 object constructed
at time-10

SNUG 2009 8 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

2.5 Reconstructing or removing objects

SystemVerilog objects cannot be explicitly destroyed; there are no object destructors like in
C++. It is possible to "destroy" a SystemVerilog object by either reconstructing a handle using
the same name as an existing handle, or by explicitly setting a handle to null (null is a Sys-
temVerilog keyword).

Constructing an object with the name of an existing object handle destroys the previous object.
In Example 5, the b1 handle is reconstructed at time 10, causing any reference to the original b1
handle to be lost. The first call to the b1.show() method returns the value of 55. The second
call to the b1.show() method returns the default, uninitialized value for the a variable, which
is 00.

program example5;
 class base1;
 bit [7:0] a;

 virtual function void set (bit [7:0] i1);
 a = i1;
 endfunction

 virtual function void show;
 $display("base1 : a = %2h", a);
 endfunction
 endclass

 base1 b1 = new();

 initial begin
 b1.set(8'h55);
 b1.show();
 #10
 b1 = new();
 b1.show();
 end
endprogram

Example 5 - Reconstruction of the b1 object handle removes the first b1 object

b1 object reconstructed
at time-10

b1 object constructed at
time-0

SNUG 2009 9 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

If there is only one handle pointing to an object, then setting that object handle to null removes
all access to the original object. In Example 6, the b1 handle is set to null at time 10, causing
any reference to the original b1 handle to be lost. The first call to the b1.show() method re-
turns the value of 55. The second call to the b1.show() method causes a fatal run-time null-
object-handle error.

program example6;
 class base1;
 bit [7:0] a;

 virtual function void set (bit [7:0] i1);
 a = i1;
 endfunction

 virtual function void show;
 $display("base1 : a = %2h", a);
 endfunction
 endclass

 base1 b1 = new();

 initial begin
 b1.set(8'h55);
 b1.show();
 #10
 b1 = null;
 b1.show();
 end
endprogram

Example 6 - BAD: null b1 object handle causes fatal run-time null-object-handle access for show() method

Garbage collection is automatic in SystemVerilog. When there are no longer any handles that
point to the object, there is no longer a way to access the object data and method so the object
storage space is removed and recovered from use. This is called garbage collection, or in other
words, recycling the unused memory. If the unused memory space were not recycled, it would be
possible to eventually use up all of the available simulation memory by leaving chunks of
memory lying around until we run out of memory. This condition is referred to as memory leaks;
we keep leaking chunks of memory by not recycling the storage during simulation.

3 Class extension
To create a second copy of a base class with modifications, we use the keyword extends to
copy all of the base class data members and methods into the extended class and then add-to or
modify the base class data and methods.

Example 7 shows two command classes that will be used in another example later in the paper.
The Cmd class is the base class with four data members, a, b, opcode, cycle, and one virtual
void function (class method). In the Cmd class, the printmsg method displays the two random-
ized data members a and b, concatenated together and displayed as a single hex value. The

Run-time fatal reference
to null object

Set b1 handle to null

SNUG 2009 10 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

printmsg method also displays the hex-numeric value of the opcode instead of the opcode
name.

class Cmd;
 rand bit [15:0] a, b;
 rand op_e opcode;
 rand bit cycle;

 virtual function void printmsg;
 $display("Cmd: cmd=%h opcode=%h", {a,b}, opcode);
 endfunction
endclass

class NewCmd extends Cmd;
 virtual function void printmsg;
 $display("NewCmd: data1=%h data2=%h opcode=%s", a, b, opcode.name());
 endfunction
endclass

Example 7 - Cmd base class base and extended NewCmd class

To make a second copy of this class type with all of the same data members but with a modified
(overridden) printmsg method, the Cmd class is extended using the extends keyword to
form a NewCmd class that displays the printmsg-method data as two separate hex values for a
and b respectively, along with the a display of the opcode name as opposed to its hex value.

3.1 Override versus overload

In SystemVerilog, an extended class can override a base class method by the same name, but
there is no such thing as overloaded methods.

The distinction between override and overload is this: override replaces the base class method
completely in the extended class. Overloading a method would allow more than one version of a
method by the same name to exist and the method called would be based on the data types of the
arguments passed to the method. Due to the implementation difficulty of working with loose data
types in Verilog and SystemVerilog, method and function overloading in SystemVerilog is not
supported.

SNUG 2009 11 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

3.2 Super keyword

The super keyword is used to reference a data member or method from the base class. The
super keyword is often used to extend the functionality of a base class method.

When extending a method in an extended class, it is legal to add functionality before the corre-
sponding method functionality in the base class. Example 8 shows an extended method that uses
a super.<method> call in an extended class.

program example8;
 class Base1;
 bit [7:0] d1, d2, csum;

 virtual function void set (bit [7:0] val1='0, bit [7:0] val2=8’hAA);
 d1 = val1;
 d2 = val2;
 endfunction

 virtual function void calc_csum (bit [7:0] id = '0);
 csum = d1 + d2;
 endfunction

 virtual function void show;
 $display("base1 : data = %2h:%2h csum = %2h", d1, d2, csum);
 endfunction
 endclass

 class Ext1 extends Base1;
 virtual function void calc_csum (bit [7:0] id = '0);
 d1 = id;
 super.calc_csum();
 endfunction

 virtual function void show;
 $write("ext1 : ");
 super.show();
 endfunction
 endclass

 Base1 b1 = new();
 Ext1 e1 = new();

 initial begin
 b1.set(8'h01);
 b1.calc_csum(8'h03);
 b1.show();
 e1.set(8'h01);
 e1.calc_csum(8'h03);
 e1.show();
 end
endprogram

Example 8 - Example of extended pre-method functionality

SNUG 2009 12 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

In Example 8, the Base1 calc_csum method calculates a simple checksum on the data items
of the class. In the Ext1 extended class, the extended calc_csum method sets the first class
data member (d1) to match the method argument value (id) and then calls the base class
calc_csum method to do the checksum calculation. After the e1 object is constructed, an
initial procedure calls the e1.calc_csum method with an id value of 8'h03. The
e1.calc_csum method first updates the d1 data member from a value of 8'h01 to 8'h03
and then calls super.calc_csum to use the parent class checksum calculation. This allows
the reuse of complex calculations in parent class methods on extended class data values without
having to rewrite the calculation code.

program example9;
 class Base1;
 bit [7:0] d1, d2, csum;

 virtual function void set (bit [7:0] val1='0, bit [7:0] val2=8'hAA);
 d1 = val1;
 d2 = val2;
 endfunction

 virtual function void calc_csum (bit [7:0] id = '0);
 csum = d1 + d2;
 endfunction

 virtual function void show;
 $display("base1 : data = %2h:%2h csum = %2h", d1, d2, csum);
 endfunction
 endclass

 class Ext1 extends Base1;
 virtual function void calc_csum (bit [7:0] id = '0);
 super.calc_csum();
 csum += 8'h0f; // Corrupt the checksum.
 endfunction

 virtual function void show;
 $write("ext1 : ");
 super.show();
 endfunction
 endclass

 Base1 b1 = new();
 Ext1 e1 = new();

 initial begin
 b1.set(8'h01);
 b1.calc_csum(8'h03);
 b1.show();
 e1.set(8'h01);
 e1.calc_csum(8'h03);
 e1.show();
 end
endprogram

Example 9 - Example of extended post-method functionality

SNUG 2009 13 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

Example 9 shows that the super.<method> call in the extended class can also add functional-
ity after the base class method functionality. The base class functionality is the same as in
Example 8. The extended class calc_csum method calls the super.calc_csum first to
calculate the valid checksum using the parent class functionality and then corrupts the checksum
to create an “error” data object.

There are a few more details about the super keyword that need to be understood.

The super keyword cannot be used in a top-level base class since there is no parent class that
could be referenced with the super keyword.

In a UNIX file system, one often references a file or executable from a parent directory using the
"../" notation. For example, to change directories to the parent directory, one would execute
the command: cd ..

The super command is analogous to the ../ notation used in a UNIX file system, but unlike
the UNIX file system, SystemVerilog does not permit reference to a data member or method up
two or more levels of base classes. The following syntax would be illegal:

super.super.gen_crc

You are only allowed to immediately reference one-level of super. If you need to reference a
method that is two levels up from the current class definition, you will have to reference the
super.<method> and that method will have to reference its super.<method>.

SNUG 2009 14 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

3.3 This keyword

The this keyword refers to the current class definition and is used to remove ambiguity when
accessing methods or data members (primarily data members) of the same name at different lev-
els of naming scope within a class structure. This allows a sub-scope within the class that has a
local name that is the same as a name at the top scope of the class, to access the top scope name
item.

The this command is analogous to the ./ notation used in a UNIX file system to access cur-
rent directory information. For example, to run the script foo that is in the local directory, one
would execute the command: ./foo

In Example 10, this.i1 is used to access the data member of the current class definition rather
than the argument i1 of the set method (it is recommended to avoid coding styles that need to
use the this command). Without using the this command, the method would only be able to
access the argument i1 passed in to it. The bad_set method takes the passed in argument
value and writes it back to the argument so that when the show method is called after bad_set,
it shows the same value for i1 that was set using the previous set method call.

program example10;
 class base1;
 bit [7:0] i1;

 virtual function void set (bit [7:0] i1);
 this.i1 = i1;
 endfunction

 virtual function void bad_set (bit [7:0] i1);
 i1 = i1;
 endfunction

 virtual function void show;
 $display("base1 : this.i1 = %2h", this.i1);
 endfunction
 endclass

 base1 b1 = new();

 initial begin
 b1.set(8'h55);
 b1.show();
 b1.bad_set(8'hAA);
 b1.show();
 end
endprogram

Example 10 - Use of "this" command to access class data member rather than method argument

b1 object
constructed

b1.badset
method call does
not update b1.i1

assign to base1
i1 data member

assign to bad_set
i1 data member

SNUG 2009 15 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

4 virtual classes
A virtual class is a class that cannot be directly constructed.

A virtual class is often referred to as an abstract class that cannot be directly constructed.
The virtual class is intended to create a template for classes that are extensions of the virtual
class. The virtual class is not intended to be constructed and used directly, but different forms of
the extended class are frequently generated in a constrained random testbench and then assigned
to a virtual class handle for consistent execution of the pre-defined legal class methods.

In Example 11, a virtual base1 class is declared, and subsequently a virtual class handle
called b1 is declared to be of the base1 type. It is permitted to declare a virtual class handle
and this is frequently done in advanced verification methodologies.

typedef bit [7:0] arg1_t;

program example11;
 virtual class base1;
 virtual function void showit (arg1_t i1);
 $display("base1 : arg1_t = %2h", i1);
 endfunction
 endclass

 base1 b1;
endprogram

Example 11 - Valid virtual class declaration with subsequent virtual class handle declaration

In Example 12, the same virtual base1 class is declared but then an attempt is made to
declare and construct a b1 handle of the virtual base1 class type. This is illegal.

typedef bit [7:0] arg1_t;

program example12;
 virtual class base1;
 virtual function void showit (arg1_t i1);
 $display("base1 : arg1_t = %2h", i1);
 endfunction
 endclass

 base1 b1 = new();
endprogram

Example 12 - BAD - attempt to construct "new();" a virtual class handle

There is a common misconception that all methods declared in a virtual class are automatically
virtual methods. This is not true. For method to be virtual, it must be declared virtual, even in
virtual classes.

ERROR
attempt to construct
virtual class object

VALID
virtual class handle

declaration

SNUG 2009 16 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

A virtual class is not useful until extended. Classes extended from the virtual base class inherit
capabilities from the virtual base class and if the base class used virtual methods, the extended
class methods can be used in a polymorphic way as described in Section 11.

5 Class methods
Class methods can be divided into three categories:
 Regular class methods (non-virtual methods).
 Virtual class methods.
 Pure virtual class methods.

Each of these method types is explored in the following sections.

6 Non-virtual methods
Any class function or task that does not include the virtual keyword is a non-virtual method.
Non-virtual methods can be defined in both classes and virtual classes.

An extended class can override a non-virtual method without any restrictions.

Non-virtual methods do not generally lend themselves well to polymorphism and advanced veri-
fication methodologies, so the examples of non-virtual methods and accompanying legal exam-
ples of same are de-emphasized in this paper and therefore have been demoted to the appendix
(see section 16 for Appendix examples).

7 virtual methods
Virtual methods require all arguments and types to be the same in the corresponding extended
methods.

Virtual methods impose one very important restriction in extended classes: virtual methods force
the use of the exact same number of arguments and the exact same argument and return types
when the method is extended. Non-virtual methods do not.

Virtual methods can be defined in classes and virtual classes.

Virtual methods differ from non-virtual methods in that the number, types and names of the ar-
guments, as well as the return type, must match the same arguments and types as the base class
method, if overridden. An extended non-virtual method is allowed to change every calling and
return detail of the base class method by the same name.

SNUG 2009 17 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

In Example 13, the base1 class has a virtual method called showit. The showit method has
(a) a 1-bit return type (a status bit), (b) one input argument named i1, and (c) the input argument
is of type arg1_t, which was defined to be an 8-bit bit-type at the top of the example.

The ext1 class is a valid extension of the base1 class because it too has (a) a 1-bit return type,
(b) just one argument that is also an input argument, and (c) the input argument is also the
arg1_t type.

typedef bit [7:0] arg1_t;
typedef logic [7:0] arg2_t;

program example13;
 class base1;
 virtual function bit showit (arg1_t i1);
 $display ("\n\n %m: i1=%0d \n\n", i1);
 endfunction
 endclass

 class ext1 extends base1;
 virtual function bit showit (arg1_t i1);
 $display ("\n\n EXT: %m: i1=%0d \n\n", i1);
 return(1);
 endfunction
 endclass

 base1 b1 = new();
 ext1 e1 = new();

 bit status;

 initial begin
 status=b1.showit(25);
 status=e1.showit(33);
 end
endprogram

Example 13 - Valid virtual method - matching argument and return types

VALID
all argument and return

types match

Base class virtual
"showit" method

Extended class with
virtual "showit" method

SNUG 2009 18 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

The virtual method in the extended class of Example 14 is illegal because the input argument is
not the same name as used in the base class virtual method. In the base class virtual method, the
argument name is i1 while the extended class virtual method the argument type is in1. This
program will not compile.

program example14;
 class base1;
 virtual function bit showit (arg1_t i1);
 $display ("\n\n %m: i1=%0d \n\n", i1);
 endfunction
 endclass

 class ext1 extends base1;
 virtual function bit showit (arg2_t in1);
 $display ("\n\n EXT: %m: i1=%0d \n\n", i1);
 return(0);
 endfunction
 endclass

 base1 b1 = new();
 ext1 e1 = new();

 bit status;

 initial begin
 status=b1.showit(25);
 status=e1.showit(33);
 end
endprogram

Example 14 - BAD virtual method - argument name does not match

ERROR
argument name does not

match

SNUG 2009 19 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

The virtual method in the extended class of Example 15 is illegal because the input argument is
not the same type as the base class virtual method. In the base class virtual method, the argument
type is arg1_t while the extended class virtual method the argument type is arg2_t. This
program will not compile.

typedef bit [7:0] arg1_t;
typedef logic [7:0] arg2_t;

program example15;
 class base1;
 virtual function bit showit (arg1_t i1);
 $display ("\n\n %m: i1=%0d \n\n", i1);
 endfunction
 endclass

 class ext1 extends base1;
 virtual function bit showit (arg2_t i1);
 $display ("\n\n EXT: %m: i1=%0d \n\n", i1);
 return(0);
 endfunction
 endclass

 base1 b1 = new();
 ext1 e1 = new();

 bit status;

 initial begin
 status=b1.showit(25);
 status=e1.showit(33);
 end
endprogram

Example 15 - BAD virtual method - argument type does not match

ERROR
argument type does not

match

SNUG 2009 20 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

The virtual method in the extended class of Example 16 is illegal because the argument direction
is not the same as the argument direction in the base class virtual method. In the base class
virtual method, the argument direction is input while in the extended class virtual method the
direction is output. This program will not compile.

typedef bit [7:0] arg1_t;
typedef logic [7:0] arg2_t;

program example16;
 class base1;
 virtual function bit showit (arg1_t i1);
 $display ("\n\n %m: i1=%0d \n\n", i1);
 endfunction
 endclass

 class ext1 extends base1;
 virtual function bit showit (output arg1_t i1);
 $display ("\n\n EXT: %m: i1=%0d \n\n", i1);
 return(0);
 endfunction
 endclass

 base1 b1 = new();
 ext1 e1 = new();

 bit status;

 initial begin
 status=b1.showit(25);
 status=e1.showit(33);
 end
endprogram

Example 16 - BAD virtual method - argument direction does not match

ERROR
argument direction does

not match

SNUG 2009 21 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

The virtual method in the extended class of Example 17 is illegal because the number of
arguments does not match the number of arguments in the base class virtual method. In the base
class virtual method, there is one input argument while in the extended class virtual method there
are two input arguments. This program will not compile.

typedef bit [7:0] arg1_t;
typedef logic [7:0] arg2_t;

program example17;
 class base1;
 virtual function bit showit (arg1_t i1);
 $display ("\n\n %m: i1=%0d \n\n", i1);
 endfunction
 endclass

 class ext1 extends base1;
 virtual function bit showit (arg1_t i1, i2=55);
 $display ("\n\n EXT: %m: i1=%0d i2=%0d \n\n", i1, i2);
 return(0);
 endfunction
 endclass

 base1 b1 = new();
 ext1 e1 = new();

 bit status;

 initial begin
 status=b1.showit(25);
 status=e1.showit(33);
 end
endprogram

Example 17 - BAD virtual method - number of arguments does not match

ERROR
number of arguments

does not match

SNUG 2009 22 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

The virtual method in the extended class of Example 18 is illegal because the function return
type is not the same type as the base class function return type. In the base class virtual method,
the return type is bit while the extended class virtual method return type is logic. This
program will not compile.

typedef bit [7:0] arg1_t;
typedef logic [7:0] arg2_t;

program example18;
 class base1;
 virtual function bit showit (arg1_t i1);
 $display ("\n\n %m: i1=%0d \n\n", i1);
 endfunction
 endclass

 class ext1 extends base1;
 virtual function logic showit (arg1_t i1);
 $display ("\n\n EXT: %m: i1=%0d \n\n", i1);
 return(0);
 endfunction
 endclass

 base1 b1 = new();
 ext1 e1 = new();

 bit status;

 initial begin
 status=b1.showit(25);
 status=e1.showit(33);
 end
endprogram

Example 18 - BAD virtual method - return type does not match

Virtual methods are an important part of polymorphism (see section 11). By requiring all virtual
methods to exactly match the number, names and types of arguments used in the base class
method, it is possible to make a base class handle point to an extended class object derived from
the common base class and call the base class methods with full confidence that calling the
method in either the base class or extended class will be valid, even if the base and extended
class methods execute different code inside of the methods.

7.1 Once virtual, always virtual

If the base class declares a method to be virtual, the extended class method by the same name
is also virtual, even if it is not declared to be virtual. The virtual keyword is essentially a
"sticky" keyword that sticks to all extended classes with methods by that same name. There is no
way to remove the virtual stickiness from an extended method by the same name.

Guideline: To avoid confusion, declare all virtual methods in extended classes with the
virtual keyword.

ERROR
funciton return type does

not match

SNUG 2009 23 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

Reason: Even though overriding a virtual base class method in an extended class is still virtual,
if another engineer examines the extended class code but does not examine the base class code,
that engineer could come to the erroneous conclusion that a virtual method is actually a non-vir-
tual method. The virtual keyword on all virtual methods avoids this type of confusion.

8 The pure keyword
Note: the pure keyword as used with methods was not technically legal until SystemVerilog-
2009, but you will find pure virtual methods commonly used in the OVM.

The best way to think of the pure keyword is that it imposes three immediate restrictions on a
class based methodology, and these restriction are checked by the compiler:

(1) The definition of pure methods and constraints is only allowed in an abstract class

(virtual class).

(2) A virtual method or constraint shall not have an implementation in the virtual class (the

method or constraint must be empty).

(3) The virtual class or method MUST be overridden in the first non-virtual extended class based

on the abstract class.

9 pure virtual methods
It is illegal to use the pure keyword in a class. The pure keyword can only be used in an ab-
stract class (virtual class).

The pure virtual method is either a pure virtual task or pure virtual
function prototype that is not allowed to have an implementation (no body code allowed) and
is not even allowed to have an endtask or endfunction keyword to close the pure virtual
method.

SNUG 2009 24 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

In Example 19, a pure virtual function is properly defined within a virtual class
and the pure virtual function has no function-body code, not even an endfunction statement.

typedef bit [7:0] arg1_t;

program example19;
 virtual class base1;
 pure virtual function bit showit (arg1_t i1);
 endclass

 base1 b1;
endprogram

Example 19 - Valid virtual class with pure virtual method and declared class handle

In Example 20 shows a common new user mistake. Even though the pure virtual
function has no function-body code, the function erroneously includes an endfunction
keyword. This program will not compile.

typedef bit [7:0] arg1_t;

program example20;
 virtual class base1;
 pure virtual function bit showit (arg1_t i1);
 endfunction
 endclass

 base1 b1;
endprogram

Example 20 - BAD pure virtual method with "endfunction" declaration

In Example 21, a virtual class is defined but the pure keyword was erroneously added to
a non-virtual method. This program will not compile.

typedef bit [7:0] arg1_t;

program example21;
 virtual class base1;
 pure function bit showit (arg1_t i1);
 endclass

 base1 b1;
endprogram

Example 21 - BAD use of pure - pure can only be used with virtual methods

ERROR
"pure" NOT VALID with

non-virtual functions

(2) no function code or
"endfunction" in pure

virtual method

(1) pure virtual method
defined in virtual class

ERROR
"endfunction" not permitted

on a pure virtual method

SNUG 2009 25 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

9.1 Extending pure virtual methods

As a prototype, a pure virtual method essentially imposes the requirement that any exten-
sion of an abstract class with a non-abstract class, MUST override the virtual method using the
exact same arguments (number, size and type) and in the case of a pure virtual function,
must use the exact same return argument type.

In Example 22, a virtual base1 class includes a properly coded showit pure virtual method.
The ext1 non-virtual class extends the base1 base class and is required to also extend the
showit pure virtual method with actual method functionality as shown.

typedef bit [7:0] arg1_t;

program example22;
 virtual class base1;
 pure virtual function bit showit (arg1_t i1);
 endclass

 base1 b1;

 class ext1 extends base1;
 virtual function bit showit (arg1_t i1);
 $display ("\n\n EXT: %m: i1=%0d \n\n", i1);
 return(1);
 endfunction
 endclass

 ext1 e1 = new();

 bit status;

 initial begin
 status=e1.showit(33);
 end
endprogram

Example 22 - Valid pure virtual methods must be extended in a non-virtual class

VALID
Non-virtual class extends virtual
class and properly extends the

pure virtual method

SNUG 2009 26 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

In Example 23, the showit pure virtual method of the base1 virtual class is erroneously over-
ridden in the extended ext1 class. As is true with any virtual method, pure virtual methods re-
quire declarations that use the exact same arguments (number, size and type), which is not the
case with the extended showit method in this example. This program will not compile.

typedef bit [7:0] arg1_t;

program example23;
 virtual class base1;
 pure virtual function bit showit (arg1_t i1);
 endclass

 base1 b1;

 class ext1 extends base1;
 virtual function logic showit (inout arg1_t i1, input int i2=55);
 $display ("\n\n EXT: %m: i1=%0d i2=%0d \n\n", i1, i2);
 return(0);
 endfunction
 endclass

 ext1 e1 = new();

 bit status;

 initial begin
 status=e1.showit(33);
 end
endprogram

Example 23 - BAD - pure virtual methods must be extended with the same argument and return types

ERROR
The pure virtual method is extended with
the wrong return type, wonrg number of

arguments and wrong argument directions

SNUG 2009 27 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

In Example 24, because the showit virtual method of the base1 virtual class was declared to
be pure, all non-virtual class extensions of the base1 class must provide an implementation
for the showit method. The extended ext1 class provides a new showit2 method but does
not provide a showit method implementation. This program will not compile.

typedef bit [7:0] arg1_t;

program example24;
 virtual class base1;
 pure virtual function bit showit (arg1_t i1);
 endclass

 base1 b1;

 class ext1 extends base1;
 virtual function void showit2; // Not the showit method
 $display ("\n\n This is showit2 ... showit was not overridden \n\n");
 endfunction
 endclass

 ext1 e1 = new();

 bit status;

 initial begin
 status=e1.showit(33);
 end
endprogram

Example 24 - BAD - pure virtual methods MUST be extended in the first non-virtual class

ERROR
The pure virtual "showit" method is NOT

extended in the extended non-virtual class

SNUG 2009 28 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

In Example 25 there are actually two problems in the non-virtual extended ext1 class. The first
problem is that there is no showit method provided to override the pure virtual showit
method of the base class. The second problem is that the ext1 extended class attempts to de-
clare a pure virtual showit2 function in a non-virtual class. It is only legal to declare
pure virtual methods in a virtual class. This program will not compile.

typedef bit [7:0] arg1_t;

program example25;
 virtual class base1;
 pure virtual function bit showit (arg1_t i1);
 endclass

 base1 b1;

 class ext1 extends base1;
 virtual function bit showit (arg1_t i1);
 $display ("\n\n EXT: %m: i1=%0d \n\n", i1);
 return(1);
 endfunction

 pure virtual function void showit2; // Not the showit method
 endclass

 ext1 e1 = new();

 bit status;

 initial begin
 status=e1.showit(33);
 end
endprogram

Example 25 - BAD - pure virtual methods cannot be defined in a non-virtual class

ERROR
A pure virtual "showit2" method is NOT

permitted in the extended non-virtual class

SNUG 2009 29 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

It should be noted that if a virtual class is extended by another virtual class, the extended virtual
class is allowed to override the pure virtual method of the base class with another pure virtual
method. It is only required to override the pure virtual methods with a non-pure virtual method in
the first non-virtual exetended class. This condition exists in Example 26.

typedef bit [7:0] arg1_t;

program example26;
 virtual class base1;
 pure virtual function bit showit (arg1_t i1);
 endclass

 virtual class ext1 extends base1;
 // No override of pure virtual function showit
 endclass

 class ext2 extends ext1;
 virtual function bit showit (arg1_t i1);
 $display ("\n\n EXT2: %m: i1=%0d \n\n", i1);
 return(1);
 endfunction
 endclass

 ext2 e2 = new();

 bit status;

 initial begin
 status=e2.showit(33);
 end
endprogram

Example 26 - Valid - an extended virtual class does not have to extend a pure virtual method

VALID
The pure virtual "showit" method is finally
extended in the extended non-virtual class

VALID
The pure virtual "showit" method is not
extended in the extended virtual class

SNUG 2009 30 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

In Example 27, a virtual base1 class is extended in an ext1 virtual class, which inherits the
pure virtual method from the base1 virtual class. The virtual ext1 class has no visible
methods (pure or non-pure), but it does have an inherited pure virtual method. The extended non-
virtual ext2 class is required to override the showit pure virtual function, but it does not. This
program will not compile.

typedef bit [7:0] arg1_t;

program example27;
 virtual class base1;
 pure virtual function bit showit (arg1_t i1);
 endclass

 virtual class ext1 extends base1;
 // extended virtual class inherits pure virtual method
 // from base class unless overriden
 endclass

 class ext2 extends ext1;
 // No override of virtual function showit;
 endclass

 ext2 e2 = new();

 bit status;

 initial begin
 status=e2.showit(33);
 end
endprogram

Example 27 - BAD - First non-virtual class must override all inherited base class pure virtual methods

ERROR
First non-virtual class must override all

base class pure virtual methods

VALID
The pure virtual "showit" method is not
extended in the extended virtual class

SNUG 2009 31 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

In Example 28, a virtual base1 class is extended in an ext1 virtual class, and the ext1 virtual
class overrides the showit pure virtual function of the base1 class with its own showit pure
virtual function. The extended non-virtual ext2 class is required to override the showit pure
virtual function, but it does not. This program will not compile.

typedef bit [7:0] arg1_t;

program example28;
 virtual class base1;
 pure virtual function bit showit (arg1_t i1);
 endclass

 virtual class ext1 extends base1;
 pure virtual function bit showit (arg1_t i1);
 endclass

 class ext2 extends ext1;
 // No override of virtual function showit;
 endclass

 ext2 e2 = new();

 bit status;

 initial begin
 status=e2.showit(33);
 end
endprogram

Example 28 - BAD - First non-virtual class must override all declared base class pure virtual methods

ERROR
First non-virtual class must override all

base class pure virtual methods

VALID
The extended virtual class overrides the pure virtual

"showit" method from the base virtual class.

SNUG 2009 32 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

In Example 29, a virtual base1 class is extended in an ext1 virtual class, and the ext1 virtual
class overrides the showit pure virtual function of the base1 class with its own showit
virtual function (not pure). The extended non-virtual ext2 class is not required to override the
showit virtual function. The ext1 showit virtual function is inherited by the ext2 class
and the example will compile and run without problems.

typedef bit [7:0] arg1_t;

program example29;
 virtual class base1;
 pure virtual function bit showit (arg1_t i1);
 endclass

 virtual class ext1 extends base1;
 virtual function bit showit (arg1_t i1);
 $display ("\n\n EXT1: %m: i1=%0d \n\n", i1);
 return(1);
 endfunction
 endclass

 class ext2 extends ext1;
 // No override of virtual function showit;
 endclass

 ext2 e2 = new();

 bit status;

 initial begin
 status=e2.showit(33);
 end
endprogram

Example 29 - Valid - non-virtual class does not have to override non-pure methods from virtual base class

VALID
The non-virtual class is NOT required to

override the virtual method (not pure) from
the virtual class

VALID
The pure virtual "showit" method IS

extended as a virtual method (not pure) in
the extended virtual class

SNUG 2009 33 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

9.2 Work-around for pure virtual methods

What if you are using a simulator that does not yet support pure virtual functions?

The simple work-around to replace a pure virtual function, as shown in Example 30, is
to build an empty function or task, to place them in a virtual class, and to require any engi-
neer who extends the virtual class with a non-virtual class to also extend the empty function or
task with some content (rules imposed by methodology as opposed to syntax).

typedef bit [7:0] arg1_t;

program example30;
 virtual class base1;
 virtual function bit showit (arg1_t i1);
 endfunction
 endclass

 base1 b1;
endprogram

Example 30 - Pure virtual function work-around: (1) empty function, (2) add endfunction

The benefit of using a simulator that has fully implemented pure virtual method functionality and
checking is that the compiler will ensure that the method is extended in all non-virtual classes. In
the absence of this enforcement from simulation tools, engineers must follow a methodology
"honor-system" to extend the pure virtual methods.

The VMM class library uses another trick to mimic a pure virtual method. In the virtual
class vmm_notification from the vmm.sv file, shown in Example 31, the virtual
task reset() writes out and error message and terminates the simulation if it is called during
simulation.

virtual class vmm_notification;
 ...
 virtual task reset();
 $write("FATAL: An instance of vmm_notification::reset() was not ",
 "overloaded or super.reset() was called\n");
 $finish;
 endtask
endclass

Example 31 - VMM pseudo-pure virtual method work-around

The reset() task does not force a user to actually override the task when the virtual
vmm_notification class is extended by a non-virtual class, which is the only feature that is
missing that would have been enforced by a pure virtual method.

(2) no function code but
DO add "endfunction" to

the virtual function

(1) define a virtual
method in a virtual class

SNUG 2009 34 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

10 pure constraints
The use of the keyword pure with constraints is brand new to SystemVerilog-2009[2], and
when this paper was first published, there were no known SystemVerilog simulators that had im-
plemented this feature. For more information about this feature, see Mantis 2514[3].

Like pure virtual methods, a pure constraint must be defined in a virtual class
and must be overridden in the any non-virtual derived class. In the Example 32, the virtual
class D defines a data member that can be randomized, along with a pure constraint
called Test. The same example contains a non-virtual class E that is an extension of class D.
In the non-virtual class E, the constraint override is required.

virtual class D;
 rand bit [7:0] data;
 pure constraint Test;
endclass

class E extends D;
 constraint Test {data>8'hC0;}
endclass

Example 32 - Pure constraint with override in non-virtual class

Pure constraints obligate all non-virtual extensions of the virtual class with pure constraints to
be overridden.

11 Polymorphism
Polymorphism is the concept of allowing an object or method to take on a different meaning
based on the context in which it is used.

In the case of SystemVerilog, the polymorphism is based on subtypes (extensions) of classes.
Subtype polymorphism requires that the objects or methods, being given a different meaning, be
in subtypes of a common base type.

Usually a virtual class is used as the common base type and a handle of the base virtual class is
declared to be used as the common interface to all of the extended classes.

An example of this, would be to create a virtual class of a network port that has various common
pure virtual methods for manipulating data (e.g. tx_data, rx_data, process_data). Then multiple
extensions (subtypes) of the network port class would be created, one for each required network
type (e.g. ethernet, atm, isdn). A handle of the base virtual class would be declared in the
testbench and the generic method names would be used to send, receive, and process data from
the device under test.

Based on which network port type the current device under test is using, an object of the appro-
priate extended class would be created and the base class handle would be pointed to it. When
the generic testbench calls one of the common methods through the base class handle, it is actu-
ally calling the extended class method, which can manipulate base class data fields and extended
class data fields.

SNUG 2009 35 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

The base class handle is being treated as different data types based on the context in which it is
used (context being the network port type of the current device under test).

program example33();
 // Virtual base class declaration.
 virtual class base1;
 bit [7:0] id;
 function new(int sid);
 id = sid;
 endfunction
 pure virtual function void print_id();
 endclass

 // First extension; add field and pure virtual override.
 class ext1 extends base1;
 bit [3:0] e1_type;

 function new(int sid, int se1);
 super.new(sid);
 e1_type = se1;
 endfunction

 virtual function void print_id();
 $display("ID %0d: E1 %0d\n", id, e1_type);
 endfunction
 endclass

 // Second extension; pure virtual override.
 class ext2 extends base1;
 function new(int sid);
 super.new(sid);
 endfunction

 virtual function void print_id();
 $display("ID %0d: E2\n", id);
 endfunction
 endclass

 base1 base;
 ext1 e1 = new(0, 3);
 ext2 e2 = new(1);

 initial begin
 base = e1;
 base.print_id();
 base = e2;
 base.print_id();
 end
endprogram

Example 33 - Polymorphism example showing base class handle accessing extended classes

// Output:
// ID 0: E1 3
// ID 1: E2

Polymorphically use a handle
of base class to access data
and methods of extended
class objects

SNUG 2009 36 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

In Example 33, two extended class objects are created and sequentially assigned to the same base
class handle. The base class handle is used to access the extended class' object data through the
functionality of the extended pure virtual function.

12 virtual interfaces
To understand how virtual interfaces work, a very brief explanation of interfaces is warranted.

12.1 Interfaces

An interface is a bundle of signals, much like a struct, with a few important differences.

A struct can be passed across a port, but all of the struct members must move in the same
direction. The entire struct is declared as an input, output, or inout. On the other hand, it
is possible to declare the interface members to move in different directions by means of the
modport (not explained in this paper).

An interface can also contain tasks, functions, assertions, and although not very
common, they can also contain other continuous assignments, initial procedures and
always procedures.

Declaring an interface is a lot like declaring a class. The interface is declared with signals (the
data members) and they can be declared with methods (tasks and functions). One notable differ-
ence between an interface and a class is that interfaces can have ports. Another notable differ-
ence is that when instantiated, an interface is static; that is, an interface is compiled and then
elaborated statically and permanently before the simulation runs. Classes are constructed dynam-
ically after elaboration and can be constructed and deleted throughout the simulation.

After being declared, an interface is instantiated and the instance name is really a handle to the
interface that allows the user to access the interface signals hierarchically using the interface in-
stance/handle name.

Modules that will be "connected" to the interface must declare a static interface handle of the
same type in the module header as an "interface port."

This allows the connecting module to reference the "connected" instantiated interface signals hi-
erarchically.

At the top-level where the interface is instantiated, we often say that the interface is then "con-
nected" to other modules, when in reality, we are simply assigning (passing) the interface in-
stance/handle to the static handles of the "connecting" modules. Once we pass the actual inter-
face instance/handle-name to the connecting modules, the connecting modules will now have a
local static handle-name that can be used to reference the actual, instantiated interface signals.

If you understand the concept of passing actual interface handles to make "connections," then it
is easier to grasp how virtual interfaces work, as described in the next section.

SNUG 2009 37 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

12.2 Dynamically connecting to virtual interfaces

Since classes are dynamic (and interfaces are static), and since classes do not have ports, making
it impossible to pass a static interface handle to a class port, we need a different mechanism to
"connect" to an interface from a class. That is the capability that virtual interfaces provide.

Declaring an interface to be virtual is a common method used to connect a dynamic object ori-
ented verification environment to a static design under test.

When first learning higher level SystemVerilog verification methodologies, this is not an easy
concept to grasp.

Here is the problem:
(1) You will need a real interface (an instantiated copy of the interface) to communicate with the

DUT.
(2) You will need an interface (a virtual interface or dynamic interface handle) to communicate

with class transactor methods.
(3) You need a way to tie the real interface that communicates with the DUT to the virtual inter-

face that communicates with the class transactor methods. You will need a way to pass a han-
dle that is connected to the real interface to the handle that connects to the virtual interface so
that the class transactors can access the interface signals via the virtual interface handle (re-
member, we are going to tie the real interface signals directly to the virtual interface signals,
so any communication with the virtual interface signals will be exactly the same as com-
municating with the real interface signals). This is the tricky concept to grasp. Once you un-
derstand how the handles are connected, you will understand how communication between
the virtual interface and the real interface works.

12.3 Step #1 - Build the real interface

Build an interface to communicate with the pin-level or RTL-level DUT. The big difference be-
tween a pin-level and RTL level DUT is that the RTL level typically has full-bus ports, such as
data[15:0], whereas the pin-level design will have individual data-bus ports connected to
each bit of the data bus. If the top-level module has a data bus connected to each data-bus port,
the same top-level interface can typically be used.

Consider the simple example of an alu_reg design as shown in Figure 1 with corresponding
SystemVerilog source code shown in Example 34.

SNUG 2009 38 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

Figure 1 - alu_reg block diagram

module alu_reg (
 output logic [15:0] acc_out,
 input logic [15:0] data,
 input op_e opcode,
 input logic load_a, load_b,
 input logic clk, rst_n);

 logic [15:0] b, alu;

 always_ff @(posedge clk)
 if (!rst_n) b <= '0;
 else if (load_b) b <= data;

 always_comb begin
 case (opcode)
 PASSA: alu = data;
 NAND : alu = ~(data & b);
 OR : alu = data | b;
 ADD : alu = data + b;
 endcase
 end

 always_ff @(posedge clk)
 if (!rst_n) acc_out <= '0;
 else if (load_a) acc_out <= alu;
endmodule

Example 34 - alu_reg.sv SystemVerilog source code

In order for a testbench to communicate with this design, a physical interface must be connected
to it and the design and interface should be enclosed within a top-level module as shown in
Figure 2. This is Step #1 as listed in Section 12.3.

Figure 2 - Top-level module with design (DUT), interface and clock generator

SNUG 2009 39 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

The interface (block diagram shown in Figure 3) is easily coded by declaring all DUT outputs as
interface inputs and all DUT inputs as interface outputs, except for the clock input, which is an
input to both the DUT and interface.

Figure 3 - alu_if block diagram

interface alu_if (
 input logic [15:0] acc_out,
 output logic [15:0] data,
 output op_e opcode,
 output logic load_a,
 output logic load_b,
 output logic rst_n,
 input logic clk);
endinterface

Example 35 - alu_if.sv SystemVerilog source code

The SystemVerilog interface code is shown in Example 35. All signals on the interface ports be-
come part of the interface bundle of signals. All interface I/O signals are declared as logic varia-
bles in the interface, except for any bi-directional signals, which are declared as wires (follows
good SystemVerilog data type usage guidelines).

`define CYCLE 10
`timescale 1ns/1ns
module clkgen (output logic clk);
 initial begin
 clk <= '0;
 forever #(`CYCLE/2) clk = ~clk;
 end
endmodule

Example 36 - clkgen.sv SystemVerilog source code

module top;
 logic [15:0] acc_out, data;
 op_e opcode;
 logic load_a, load_b,
 logic rst_n, clk;

 clkgen clkgen (.*);
 alu_if aif (.*);
 alu_reg alu_reg (.*);
endmodule

Example 37 - top.sv SystemVerilog source code

After declaring the interface code, a simple clkgen module can be coded as shown in Example
36, and the clkgen, alu_if and alu_reg modules are all instantiated into a top-level mod-
ule as shown in Example 37. The top-level module has an instance of the DUT, an instance of
the interface (this is the real interface, not a virtual interface), and the clock generator.

12.4 Step #2 - Instantiate a virtual interface into the transactor class

Instantiate a virtual copy of the same interface type into the transactor class. Until we get to Step
#3, the virtual interface handle does not point to anything. We are going to make assignments to
the variables declared in the virtual interface but we still need a way to tie the virtual interface
handle to the real interface handle (this will happen in step #3).

The Testbench class in Example 38 includes the code statement virtual alu_if vif;
which declares a handle (vif) to a virtual interface. This vif handle is used to make assign-

SNUG 2009 40 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

ments to the virtual interface variables as shown in the drive1 and drive2 tasks. These as-
signments are made with the expectation that the variables assigned will somehow be connected
to the real interface.

class Testbench;
 Cmd c;

 virtual alu_if vif;

 function new(virtual alu_if nif, Cmd cmdin);
 vif = nif;
 c = cmdin;
 endfunction

 virtual task drive1;
 vif.data = c.a;
 vif.opcode = c.opcode;
 vif.load_a = '1;
 vif.load_b = '0;
 vif.rst_n = '1;
 endtask

 virtual task drive2;
 vif.data = c.a;
 vif.opcode = c.opcode;
 vif.load_a = '0;
 vif.load_b = '1;
 vif.rst_n = '1;
 @(negedge vif.clk);
 vif.data = c.b;
 vif.load_a = '1;
 vif.load_b = '0;
 endtask

 task stim;
 assert(c.randomize);
 c.printmsg();
 if (c.opcode==PASSA) drive1;
 else drive2;
 @(negedge vif.clk);
 endtask

 task FINISH (int cnt=1);
 repeat(cnt) @(negedge vif.clk);
 $finish;
 endtask
endclass

Example 38 - Testbench class SystemVerilog source code with virtual interface

We now have a virtual interface (virtual interface handle) called vif that will be used to com-
municate with the real interface (aif). This is Step #2 as listed in Section 12.3.

SNUG 2009 41 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

12.5 Step #3 - Create a new() constructor to tie the real interface to the virtual in-
terface

This is the magic step! The Testbench class in Example 38 includes the following snippet of
code:

 virtual alu_if vif;

 function new(virtual alu_if nif, Cmd cmdin);
 vif = nif;
 c = cmdin;
 endfunction

The new() constructor includes an input argument of the alu_if interface handle type, with
handle name nif (new() interface). The input interface handle will be assigned to the virtual
interface handle vif, so the new() constructor input handle nif will be assigned to the virtual
interface handle vif, which means that the virtual interface will point to whatever the construc-
tor handle was pointing to as shown in Example 39.

Example 39 - Real interface handle aif assigned to new() handle nif, assigned to virtual interface handle vif

When the constructor is called to build a transactor object, the real interface handle (aif) will
be the handle that is passed to the constructor (nif), which will then be assigned to the virtual
interface handle (vif), which means that the virtual interface handle now points to the same
interface signals as the real interface handle.

Now when the transactor class writes to and reads from the virtual interface handle, it is actually
writing to and reading from the real interface handle, which is communicating directly with the
DUT. This is step #3 - the class-based testbench is now communicating directly with the DUT.

SNUG 2009 42 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

The virtual interface is used to point to an instance of a real interface that communicates with the
DUT. If a class had ports, the class itself could communicate with the DUT and a virtual inter-
face would not be necessary.

This is the magic! This is how we get a virtual interface to point to the real interface, and now all
class-based testing can be done over the virtual interface.

`timescale 1ns/1ns

`ifndef PKG1
`include "pkg1.sv"
`endif

class Cmd;
 rand bit [15:0] a, b;
 rand op_e opcode;
 rand bit cycle;

 constraint c1 {(opcode==PASSA) -> cycle == '0;
 (opcode!=PASSA) -> cycle == '1;}

 //function void printmsg;
 virtual function void printmsg;
 $display("Cmd: cmd=%h opcode=%h", {a,b}, opcode);
 endfunction
endclass

class NewCmd extends Cmd;
 virtual function void printmsg;
 $display("NewCmd: data1=%h data2=%h opcode=%s", a, b, opcode.name());
 endfunction

 constraint c2 {opcode dist {PASSA:=10, NAND:=20, OR:=20, ADD:=50};}
endclass

program tb5;
 Testbench tb;
 Cmd b1=new();
 NewCmd e1=new();

 initial begin
 tb = new(top4.aif, b1);
 repeat(5) tb.stim();
 tb = new(top4.aif, e1);
 repeat(5) tb.stim();
 tb.FINISH(2);
 end
endprogram

// Cmd: cmd=a1d633b8 opcode=1
// Cmd: cmd=d224a6e5 opcode=0
// Cmd: cmd=01863daa opcode=1
// Cmd: cmd=41d8f441 opcode=3
// Cmd: cmd=e5c00deb opcode=1

SNUG 2009 43 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

// NewCmd: data1=29f9 data2=8afe opcode=ADD
// NewCmd: data1=f15a data2=b578 opcode=NAND
// NewCmd: data1=34b2 data2=a6a5 opcode=OR
// NewCmd: data1=23e4 data2=bdee opcode=PASSA
// NewCmd: data1=91c9 data2=76ff opcode=NAND

SNUG 2009 44 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

13 Conclusions
The virtual keyword provides two very important features to a high-level verification environ-
ment. (1) It allows constrained randomization of extended class objects that are then assigned to
a base class handle (polymorphism) and all operations are then performed using virtual methods
that were defined by the base class. (2) Using the virtual keyword restricts the number and types
of arguments used by all extended classes, which makes the polymorphic assignments possible.

The pure keyword allows methods and constraints to be added to an abstract class and to im-
pose the restriction that the functionality must be implemented to override the pure virtual
methods and pure constraints in extended classes.

If an engineer always overrode the empty virtual methods and empty constraints defined in a
base class, the pure keyword would never technically be needed, but the pure keyword allows
the compiler the catch such omissions in a class based environment.

Although not technically part of the SystemVerilog language until 2009, there are and have been
SystemVerilog simulators that have had the pure virtual methods implemented for a couple
of years and the pure virtual methods are already part of the OVM verification methodol-
ogy.

14 References
[1] "IEEE Standard For SystemVerilog - Unified Hardware Design, Specification and Verification Lan-

guage," IEEE Computer Society, IEEE, New York, NY, IEEE Std 1800-2005

[2] "IEEE P1800/D9 Standard For SystemVerilog - Unified Hardware Design, Specification and Verifi-
cation Language," To be published by the IEEE Computer Society, IEEE, New York, NY, IEEE

[3] EDA.org Mantis Database for SystemVerilog P8100:
 www.eda-stds.org/svdb (login: guest / password: guest)

[4] Janick Bergeron, Eduard Cerny, Alan Hunter and Andrew Nightingale, "Verification Methodology
Manual for SystemVerilog," (VMM), Springer, www.springeronline.com, 2005.

[5] www.ovmworld.org - Version ovm-2.0.2 (June 2009)

[6] www.vmmcentral.org - Version vmm-1.1.1 (August 2009)

15 Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 27 years of ASIC, FPGA and system design experience and 17 years of SystemVeri-
log, synthesis and methodology training experience.

Mr. Cummings has presented more than 100 SystemVerilog seminars and training classes in the
past six years and was the featured speaker at the world-wide SystemVerilog NOW! seminars.

SNUG 2009 45 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

Mr. Cummings has participated on every IEEE & Accellera SystemVerilog, SystemVerilog Syn-
thesis, SystemVerilog committee, and has presented more than 40 papers on SystemVerilog &
SystemVerilog related design, synthesis and verification techniques.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Sunburst Design, Inc. offers World Class Verilog & SystemVerilog training courses. For more
information, visit the www.sunburst-design.com web site.
Email address: cliffc@sunburst-design.com

Heath Chambers, President of HMC Design Verification, Inc., is an independent EDA consult-
ant and trainer with 13 years of ASIC and verification experience and 9 years of SystemVerilog,
Verilog and methodology training experience and 5 years of synthesis training experience.

Mr. Chambers has participated on IEEE & Accellera SystemVerilog committees, and is still an
active member of the IEEE SystemVerilog committees.

Mr. Chambers holds a BSCS from New Mexico Tech.

HMC Design Verification, Inc. offers verification consulting, and offers Verilog & SystemVeri-
log training through Sunburst Design. For more information, visit the hmcdv.iwarp.com web
site.
Email address: hmcdvi@msn.com

An updated version of this paper can be downloaded from the web sites:

www.sunburst-design.com/papers
hmcdv.iwarp.com/Papers

(Last updated September 21, 2009)

SNUG 2009 46 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

16 Appendix
This appendix contains examples of extending non-virtual methods.

When extending non-virtual methods, almost anything is legal! The extended class simply over-
rides the base class method by name and there are no restrictions on the number, types and
names of the arguments, as well as the return type.

When an extended class handle is assigned to a base class handle the base class methods are still
referenced, which calls into question the value of making these extended-class to base-class han-
dle assignments.

It is obviously legal to override a base class method with an extended class method that has the
same number, types and names of the arguments, as well as the same return type, as shown in
Example 40.

typedef bit [7:0] arg1_t;
typedef logic [7:0] arg2_t;

program example40;
 class base1;
 function bit showit (arg1_t i1);
 $display ("\n\n %m: i1=%0d \n\n", i1);
 endfunction
 endclass

 class ext1 extends base1;
 function bit showit (arg1_t i1);
 $display ("\n\n EXT: %m: i1=%0d \n\n", i1);
 return(1);
 endfunction
 endclass

 base1 b1 = new();
 ext1 e1 = new();

 bit status;
 arg1_t dummy;

 initial begin
 status=b1.showit(25);
 status=e1.showit(33);
 end
endprogram

Example 40 - Non-virtual method overrides another method with matching argument and return types

VALID
all argument and return

types match

SNUG 2009 47 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

It is legal to override a base class method with an extended class method that has the same num-
ber and names of the arguments, as well as the same return type, but different input argument
types (arg2_t instead of arg1_t) as shown in Example 41

typedef bit [7:0] arg1_t;
typedef logic [7:0] arg2_t;

program example41;
 class base1;
 function bit showit (arg1_t i1);
 $display ("\n\n %m: i1=%0d \n\n", i1);
 endfunction
 endclass

 class ext1 extends base1;
 function bit showit (arg2_t i1);
 $display ("\n\n EXT: %m: i1=%0d \n\n", i1);
 return(0);
 endfunction
 endclass

 base1 b1 = new();
 ext1 e1 = new();

 bit status;
 arg1_t dummy;

 initial begin
 status=b1.showit(25);
 status=e1.showit(33);
 end
endprogram

Example 41 - Valid - Non-virtual method overrides another method with non-matching argument type

VALID
argument types DO NOT

match

SNUG 2009 48 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

It is legal to override a base class method with an extended class method that has the same num-
ber, types and names of the arguments, as well as the same return type, but a different argument
direction (output arg1_t instead of default input arg1_t) as shown in Example 42.

typedef bit [7:0] arg1_t;
typedef logic [7:0] arg2_t;

program example42;
 class base1;
 function bit showit (arg1_t i1);
 $display ("\n\n %m: i1=%0d \n\n", i1);
 endfunction
 endclass

 class ext1 extends base1;
 function bit showit (output arg1_t i1);
 $display ("\n\n EXT: %m: i1=%0d \n\n", i1);
 return(0);
 endfunction
 endclass

 base1 b1 = new();
 ext1 e1 = new();

 bit status;
 arg1_t dummy;

 initial begin
 status=b1.showit(25);
 status=e1.showit(dummy);
 end
endprogram

Example 42 - Valid - Non-virtual method overrides another method with non-matching argument direction

VALID
argument direction DOES

NOT match

SNUG 2009 49 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

It is legal to override a base class method with an extended class method that has the same num-
ber, types and names of the arguments, as well as the same return type, (one arg1_t input in-
stead of two arg1_t inputs) as shown in Example 43.

typedef bit [7:0] arg1_t;
typedef logic [7:0] arg2_t;

program example43
 class base1;
 function bit showit (arg1_t i1);
 $display ("\n\n %m: i1=%0d \n\n", i1);
 endfunction
 endclass

 class ext1 extends base1;
 function bit showit (arg1_t i1, i2=55);
 $display ("\n\n EXT: %m: i1=%0d i2=%0d \n\n", i1, i2);
 return(0);
 endfunction
 endclass

 base1 b1 = new();
 ext1 e1 = new();

 bit status;
 arg1_t dummy;

 initial begin
 status=b1.showit(25);
 status=e1.showit(33);
 end
endprogram

Example 43 - Valid - Non-virtual method overrides another method with different number of arguments

VALID
Number of arguments

DOES NOT match

SNUG 2009 50 SystemVerilog's Virtual World - An Introduction to Virtual
Rev 1.4 Classes, Virtual Methods and Virtual Interface Instances

It is legal to override a base class method with an extended class method that has the same num-
ber, types and names of the arguments, but a different return type (logic instead of default
bit) as shown in Example 44.

typedef bit [7:0] arg1_t;
typedef logic [7:0] arg2_t;

program example44;
 class base1;
 function bit showit (arg1_t i1);
 $display ("\n\n %m: i1=%0d \n\n", i1);
 endfunction
 endclass

 class ext1 extends base1;
 function logic showit (arg1_t i1);
 $display ("\n\n EXT: %m: i1=%0d \n\n", i1);
 return(0);
 endfunction
 endclass

 base1 b1 = new();
 ext1 e1 = new();

 bit status;
 arg1_t dummy;

 initial begin
 status=b1.showit(25);
 status=e1.showit(33);
 end
endprogram

Example 44 - Valid - Non-virtual method overrides another method with different return type

VALID
Return type DOES NOT

match

