

World Class Verilog, SystemVerilog & OVM/UVM Training

The OVM/UVM Factory & Factory Overrides
How They Work - Why They Are Important

Clifford E. Cummings

Sunburst Design, Inc.
www.sunburst-design.com

ABSTRACT

Factory patterns are not new to the software world, and OVM/UVM have incorporated the fac-
tory into its primary methodology. But what does the factory really do and why is it important?

This paper will explain fundamental details related to the OVM/UVM factory and explain how it
works and how overrides facilitate simple modification to the testbench component and transac-
tion structures on a test by test basis. This paper will further demonstrate that OVM/UVM envi-
ronments can mostly ignore the factory but will explain why the factory should be used.

SNUG 2012 2 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Table of Contents

1. Introduction ... 5

2. The Term "Factory" .. 5

3. Transaction Types Terminology ... 6

4. Tests & Regression Tests .. 6

5. Why is there an OVM/UVM Factory? .. 7

6. Registering Components & Transactions With the Factory ... 8

7. Object Constructors .. 8

8. Factory Registering and Creating ... 9

9. Build Phase ... 9

10. Factory - Keys to Understanding .. 9

11. Simple Demonstration Model ... 10
COMMON TOP MODULE ... 11

12. Testbench Classes Using a Factory ... 11
FACTORY-BASED TRANSACTION ... 12
FACTORY-BASED SEQUENCE ... 12
FACTORY-BASED TEST1 .. 13
FACTORY-BASED ENVIORNMENT .. 14
FACTORY-BASED AGENT ... 15
FACTORY-BASED SEQUENCER ... 15
FACTORY-BASED DRIVER .. 16
DEBUGGING THE UVM STRUCTURE AND FACTORY CONTENTS ... 17
TEST1 SIMULATION OUTPUT - FACTORY VERSION .. 19

13. test2 With Modified Transaction .. 20
FACTORY-BASED TRANS2 TRANSACTION .. 20
FACTORY-BASED TEST2 .. 21
FACTORY-BASED PACKAGE - TEST2 .. 22
TEST2 STRUCTURE AND FACTORY TYPES REPORTS .. 23
TEST2 SIMULATION AND FACTORY SUBSTITUTION .. 25

14. test3 With Modified Driver ... 26
MODIFIED TB_DRIVER2 .. 26
FACTORY-BASED TEST3 .. 27
FACTORY-BASED PACKAGE - TEST3 .. 28
TEST3 STRUCTURE AND FACTORY TYPES REPORTS .. 29
TEST3 SIMULATION AND FACTORY SUBSTITUTION .. 31

15. Testbench Classes Without Using the Factory ... 32
NON-FACTORY-BASED TRANSACTION .. 32
NON-FACTORY-BASED SEQUENCE .. 32
NON-FACTORY-BASED TEST1 ... 33
NON-FACTORY-BASED ENVIORNMENT ... 34

SNUG 2012 3 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

NON-FACTORY-BASED AGENT .. 34
NON-FACTORY-BASED SEQUENCER .. 35
NON-FACTORY-BASED DRIVER ... 35
TEST1 SIMULATION OUTPUT - NON-FACTORY VERSION ... 36

16. test2 With Modified Transaction .. 37
FACTORY-BASED TRANS2 TRANSACTION .. 37
NON-FACTORY-BASED TEST2 ... 38
NON-FACTORY-BASED SEQUENCE .. 39
FACTORY-BASED PACKAGE - TEST2 .. 40
TEST2 SIMULATION - NON-FACTORY VERSION ... 40

17. test3 simulation - non-factory version .. 40

18. Where Does The ::type_id::create Command Come From? ... 41

19. Factory Overrides - Debugging .. 46

20. Using the new() Constructor ... 46

21. Using the Factory .. 47

22. Conclusions ... 47

23. Acknowledgements ... 48

24. References ... 48

25. AUTHOR & CONTACT INFORMATION ... 48

Table of Figures

Figure 1 - Simple Demonstration Example Block Diagram ... 10

Figure 2 - test1 structure printout using this.print (factory version) ... 17

Figure 3 - test1 factory.print (factory version) .. 18

Figure 4 - test1 UVM simulation output (factory version) ... 19

Figure 5 - test2 structure printout using this.print (non-factory version) 23

Figure 6 - test2 - set_type_override_by_type factory.print (factory version) 24

Figure 7 - test2 UVM simulation output (factory version) ... 25

Figure 8 - test3 structure printout using this.print (factory version) ... 29

Figure 9 - test3 - set_type_override_by_type factory.print (factory version) 30

Figure 10 - test3 UVM simulation output (factory version) ... 31

SNUG 2012 4 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Table of Examples

Example 1 - Standard new() constructor for UVM components .. 5

Example 2 - Standard new() constructor for UVM transactions (data objects) 6

Example 3 - top.sv module used for all tests .. 11

Example 4 - tb_pkg1.sv package file .. 11

Example 5 - trans.sv sequence_item (factory version) ... 12

Example 6 - trans_sequence.sv sequence (factory version) .. 12

Example 7 - test1.sv test (factory version) .. 13

Example 8 - env.sv environment (factory version) ... 14

Example 9 - tb_agent.sv agent (factory version) .. 15

Example 10 - tb_sequencer.sv sequencer (factory version) .. 16

Example 11 - tb_driver.sv driver (factory version) .. 16

Example 12 - Debug printing for structure and factory registration ... 17

Example 13 - trans2.sv sequence_item (factory version) ... 20

Example 14 - test2.sv test (factory version) .. 21

Example 15 - tb_pkg2.sv package file .. 22

Example 16 - tb_driver2.sv driver (factory version) .. 26

Example 17 - test3.sv test (factory version) .. 27

Example 18 - tb_pkg3.sv package file .. 28

Example 19 - trans.sv sequence_item (non-factory version) .. 32

Example 20 - trans_sequence.sv sequence (non-factory version) .. 33

Example 21 - test1.sv test (non-factory version) .. 33

Example 22 - env.sv environment (non-factory version) ... 34

Example 23 - tb_agent.sv agent (non-factory version) ... 34

Example 24 - tb_sequencer.sv sequencer (non-factory version) .. 35

Example 25 - tb_driver.sv driver (non-factory version) ... 35

Example 26 - trans2.sv sequence_item (non-factory version) .. 38

Example 27 - test2.sv test (non-factory version) .. 38

Example 28 - trans_sequence2.sv sequence (non-factory version) .. 39

Example 29 - tb_pkg2.sv package file .. 40

SNUG 2012 5 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

1. Introduction

From an OVM/UVM perspective, besides instantiating the Design Under Test (DUT) and the
SystemVerilog interface that interacts with the DUT, the top module typically places the virtual
interface wrapper into a uvm_object configuration lookup table and executes the run_test()
command.

In the top module source code, the run_test() command should not include the name of the
test to be run, because including the test name would force an engineer to modify the top-level
module source code to run a new test, or would require the verification engineer to maintain
multiple top-level modules. The run_test() method call should extract its test name from the
command line switch: +UVM_TESTNAME=<testname>

Every test component and transaction type should be registered with the factory, but technically
only the test must be registered with the factory (described later) . No other testbench component
is required to be registered with the factory (but they should!)

2. The Term "Factory"

The term factory refers to the fact that the recommended OVM/UVM methodology dictates that
engineers should never construct components and transactions directly using the new() class
constructor, but should makes calls to a special look-up table to create the requested component
and transaction types. The factory is that special look-up table.

When you call the factory to create the requested component or transaction type, the factory
itself will create the object by calling the constructor that was defined for that object. The
constructors are typically one of the two following templates:

For components, there is a tree-like hierarchy required to build the testbench structure, where
each component builds all of the components that are one-level lower in the hierarchy, so each
component names (and builds) its children, and passes a pointer to itself (the this pointer) to
each child component, so they know where they are located in the hierarchy (who is the parent
device for each constructed component). For components, the typical constructor is shown in
Example 1.

function new (string name, uvm_component parent);
 super.new(name, parent);
endfunction

Example 1 - Standard new() constructor for UVM components

For transactions (data objects), each object is a unit of data with multiple fields, and transactions
do not have a parent. For transactions, the typical constructor is shown in Example 2.

SNUG 2012 6 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

function new (string name="class_name");
 super.new(name);
endfunction

Example 2 - Standard new() constructor for UVM transactions (data objects)

Notice that components typically do not include a default name value, but transactions do. Since
a parent builds each component, the parent will name each child component, so any name that
you would have given to a component is going to be overridden; hence, there is no good reason
to name the components in their user-defined constructor. There are multiple examples on
different websites and in different tutorials that include the class name as a default name value,
and that set the parent to a default value of null. This is a complete waste of time and usually
causes confusion for engineers that find the examples and try to determine when to add default
names and null and when to omit them. The component defaults are just confusing and should
just be omitted.

Transactions are also typically named when constructed, but there are times when transaction
handles are declared but not created. For this reason, it is recommended that the user-defined
constructor should include a name that matches the name of the transaction class where the
constructor is defined.

3. Transaction Types Terminology

Even though the UVM base classes include a built-in uvm_transaction type, it is rarely used
directly. In general, verification engineers should build transaction types from the
uvm_sequence_item type, which is extended from the uvm_transaction type, and which is
easily executed by uvm_sequence types on a uvm_sequencer component.

The term transaction type will be used throughout this paper to represent uvm_sequence_item
type items executed by one or more uvm_sequences.

4. Tests & Regression Tests

In OVM/UVM, a uvm_sequence is really a partial or complete test, while the uvm_test is
really a collection of one or more sequences that are started on a uvm_sequencer and hence
what we typically call a test can really be thought of as a single test executing a single sequence,
or a group of sequences executed as separate tests within the top-level test.

It is probably easier to think of uvm_sequences as tests and the top-level test as a regression
suite of those tests. Only one test is allowed to run per simulation and that test is called by
executing the run_test() command with the +UVM_TESTNAME=<test_name> command line
switch. It is not possible to execute multiple top-level tests, which is why the top-level test
should be thought of as the regression suite, while the sequences should be thought of as the
individual tests that are run by the top-level regression suite (top-level test).

SNUG 2012 7 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

5. Why is there an OVM/UVM Factory?

If it is technically not necessary to register any components (except the top-level test) or
transaction types with the factory, why have a factory?

The recommended method in OVM/UVM for creating testbench components or transaction
objects is to use the built-in method ::type_id::create command, whose fuctionality is
more fully explained in section 18.

Using the ::type_id::create command makes a call to the factory to extract the requested
component or transaction type and then uses the new() constructor that is included in the class
type to build a copy of the class-type object, all of which is done at run time. Whatever class type
is stored in the factory look-up table at the requested type_id location, is extracted and created.
The factory makes it possible to allow a compatible type to be stored at the desired location and
therefore a compatible substitute can be automatically requested when the
::type_id::create command is executed.

The factory permits a top-level test to make a substitution for one of the component or
transaction types in the factory at run-time, before building the entire testbench environment
using factory overrides.

For example, it may be desirable to do testing with two different transactions types, trans1 and
trans2, where trans2 is an extension of trans1, but includes additional randomized data
members. Since the sequencer, driver and monitor are all classes that are parameterized to a
specific transaction type, the test writer can simply substitute the trans2 type for the trans1
type in the factory at the start of the test. Using a typical scenario, when the test builds the
environment, and the environment builds the agent, and the agent builds the trans1-
parameterized sequencer, driver and monitor, the parameterized agent components will be
parameterized with the transaction type stored in the factory at the trans1 location, which is
now the compatible trans2 type. There was no need to keep two copies of the sequencer, driver
and monitor, and therefore no reason to have a second agent type that uses the second copy of
the sequencer driver and monitor. It is still possible to run the older tests that used the trans1
type and use the exact same testbench structure to run new tests using the trans2 type.

As a second example, we may want to use the same transaction type, but we would like the data
to be sent to the DUT in a serial fashion instead of a parallel fashion. The serial version of the
DUT could use the exact same testbench structure as long as the driver sends the transaction as
serial data and the monitor samples output transactions as serial data. For this environment, the
test could substitute a second version of the driver and monitor into the factory so that when
those components are built, the serial versions of those devices will be constructed without
requiring the entire testbench environment to be re-coded.

Any components or transactions constructed from calls to the factory will simply look-up the
required type_id and construct that object. Since the components and transactions must be
compatible types, the factory ensures the polymorphic type-safety of the required components.

SNUG 2012 8 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

The factory provides a partial replacement for the "when-inheritance" that one might use with
Aspect-Oriented languages, only with finer granularity (one can replace specific objects without
replacing all objects of the same type) and without the need for the compiler to re-compile all of
the classes that make-up the testbench. Aspect Oriented programming has a simpler syntax, but
factory substitution is much more compile efficient.

6. Registering Components & Transactions With the Factory

Testbench components should be registered with the factory using the command:
`uvm_component_utils(component_name)

Testbench transactions should be registered with the factory using the command:
`uvm_object_utils(transaction_type)

As will be described later, UVM ports are never registered with the factory, and covergroups are
also never registered with the factory. In general TLM fifos are also not registered with the
factory.

Two other factory registration macros have been deprecated from UVM and should not be used:
`uvm_sequencer_utils() and `uvm_sequence_utils(). These macros had the
unfortunate side effect of tying a particular sequencer to a particular sequencer_item type and
conversely tied a particular sequence_item type to a particular sequencer type, which greatly
reduced the flexibility that should have existed in using and swapping different testbench
component types and transaction types.

Unfortunately there are a very large number of examples in circulation that use both of these
deprecated `ovm_sequence/sequencer_utils() macros, including in the OVM User
Guide[2].

7. Object Constructors

Class based constructors are the built-in or user-defined new() constructors.

Constructing is typically done by calling the new() constructor, but OVM/UVM components
and sequence_items/sequences should be constructed using the create() command.

Guideline: construct OVM/UVM components using the create() command.
Guideline: construct OVM/UVM sequence_item/sequences using the create() command.
Guideline: construct OVM/UVM port types using the new() constructor.
Guideline: construct covergroups using the new() constructor in the component new()
functions.

SNUG 2012 9 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Technically, none of the testbench components has to be built using the create() command.
All of the testbench components (except the top-level test) can be built using the new()
constructor, but using the new() constructor to build any of the testbench components or
transaction types should never be done.

Using the new() constructor hard-codes the exact object type to be built into the testbench
component files and severely limits the flexibility that was designed into the OVM/UVM
methodologies. Using the factory create command allows the top-level test to substitute a
compatible type into the factory and it is that type that will be created and used at run-time.

By using the factory, the create command simply calls for a component of the named type to
be created, but the top-level test has the option to substitute into the factory a compatible
extended type for any registered component type or transaction type.

8. Factory Registering and Creating

Once a component is registered with the factory, the component can be created in the
build_phase()at run-time, during the simulation, without the need to re-compile the new
component or transaction types.

The factory provides a simulation-efficient mechanism to provide substitute components or
transaction types on a test-by-test basis.

When properly coded, all of the components have been compiled and registered with the factory
and it is the top-level test that can make a last-minute substitution at the beginning of the
build_phase()to determine the actual component type that will be created when that
component type_id is requested from another component.

Similarly and again when properly coded, any compatible transaction type that has been
compiled and registered with the factory can be substituted by the top-level test before the
required transaction type is even requested.

9. Build Phase

The OVM build() and UVM build_phase() builds the entire testbench environment top
down, and the first component built is the selected test. The test is an ideal place to override any
of the testbench component types in the factory before any other component is created.

10. Factory - Keys to Understanding

build_phase() execution happens top-down, so the top-level tests (and other components) can
change the transaction types and components by doing overrides.

SNUG 2012 10 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

The test first makes run-time substitutions (overrides) into the factory for all components and
transactions that do not match the base testbench and transaction structure, then proceeds to build
each of the testbench components top-down. Since substitutions for components and transactions
happened in the top-level test before any::type_id::create commands were called, the new
components and transactions will be called and constructed out of the factory.

11. Simple Demonstration Model

In this section and in section 12, a simple demonstration model will be coded using the factory
and then without the factory. Each example will also be coded using two more tests. In the
second test, a second version of the transaction (trans2) will be added. In the third test, a
second version of the tb_driver will also be added. We will examine the coding efforts to do
the additional tests with the modified transaction and tb_driver.

Figure 1 - Simple Demonstration Example Block Diagram

The simple demonstration model uses 1 top-module, 1 tb_pkg, 5 component classes, 1
transaction class and 1 sequence class.

SNUG 2012 11 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Common top module

For both the factory and non-factory versions of the tests, a common top-module will be used
that, for simplicity purposes, will not contain a DUT to test. The top module simply uses the
run_test() command to start the simulations, and each simulation will specify the desired test
using the +UVM_TESTNAME=<testname> command line option. The common top-module is
shown in Example 3.

module top;
 import uvm_pkg::*;
 import tb_pkg::*;

 initial begin
 run_test();
 end
endmodule

Example 3 - top.sv module used for all tests

12. Testbench Classes Using a Factory

The classes in the test1-version of the factory-based example are included into the tb_pkg
shown in Example 4. It is important to include the classes in the correct order to ensure that
classes that depend upon other class definitions, are included after the required classes are
already included.

`ifndef TB_PKG
`define TB_PKG

`include "uvm_macros.svh"

package tb_pkg;
 import uvm_pkg::*;

 `include "trans.sv"

 `include "tb_driver.sv"
 `include "tb_sequencer.sv"
 `include "tb_agent.sv"
 `include "env.sv"

 `include "trans_sequence.sv"
 `include "test1.sv"
endpackage

`endif

Example 4 - tb_pkg1.sv package file

SNUG 2012 12 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Factory-based transaction

The transaction class is shown in Example 5, and includes two randomiazable data fields, the
standard new() constructor and the recommended convert2string() method that can be
called to show the current contents of the specified transaction object. The code that registers the
transaction with the factory is the command, `uvm_object_utils(trans). A description of
the behavior of the `uvm_object_utils() command will be explained in a later section of
this paper.

class trans extends uvm_sequence_item;
 `uvm_object_utils(trans)
 rand bit [7:0] data;
 rand bit [15:0] addr;

 function new (string name="trans");
 super.new(name);
 endfunction

 function string convert2string;
 string s;
 $sformat(s, "trans1: addr = %4h data = %2h", addr, data);
 return s;
 endfunction
endclass

Example 5 - trans.sv sequence_item (factory version)

Factory-based sequence

The demonstration example also uses a simple sequence (shown in Example 6) that generates
and randomizes 10 transactions that will be sent to the tb_sequencer. The code that registers
the transaction with the factory is the command, `uvm_object_utils(trans_sequence).

class trans_sequence extends uvm_sequence #(trans);
 `uvm_object_utils(trans_sequence)

 function new (string name="trans_sequence");
 super.new(name);
 endfunction

 task body();
 trans tx = trans::type_id::create("tx");
 repeat(10) begin
 start_item(tx);
 assert(tx.randomize());
 finish_item(tx);
 end
 endtask
endclass

Example 6 - trans_sequence.sv sequence (factory version)

SNUG 2012 13 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Factory-based test1

The demonstration example is executed using the test1 class, as shown in Example 7.

The code that registers test1 with the factory is the command,
`uvm_component_utils(test1). Although the transaction and sequence were both
registered with `uvm_object_utils(), the test is a testbench component, so it uses
`uvm_component_utils().

The test is the first component built after executing the run_test() command in the top
module. The test also references the factory to build the env and the command that accesses the
env type from the factory is the command:

e = env::type_id::create("e", this);

The ::type_id::create() command will be contrasted to the new() constructor used in the
non-factory version of this testbench.

class test1 extends uvm_test;
 `uvm_component_utils(test1)
 env e;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 e = env::type_id::create("e", this);
 endfunction

 function void end_of_elaboration_phase(uvm_phase phase);
 super.end_of_elaboration_phase(phase);
 this.print();
 factory.print();
 endfunction

 task run_phase(uvm_phase phase);
 trans_sequence seq;
 phase.raise_objection(this);
 seq = trans_sequence::type_id::create("seq");
 seq.start(e.agnt.sqr);
 phase.drop_objection(this);
 endtask
endclass

Example 7 - test1.sv test (factory version)

SNUG 2012 14 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Factory-based enviornment

The environment class for the demonstration example is shown in Example 8.

The code that registers the env with the factory is the command,
`uvm_component_utils(env). This will be the top-level environment that will be bulit by
all of the tests in this example.

The test also references the factory to build the tb_agent and the command that accesses the
tb_agent type from the factory is the command:

agnt = tb_agent::type_id::create("agnt", this);

class env extends uvm_env;
 `uvm_component_utils(env)
 tb_agent agnt;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 agnt = tb_agent::type_id::create("agnt", this);
 endfunction
endclass

Example 8 - env.sv environment (factory version)

SNUG 2012 15 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Factory-based agent

The agent class for the demonstration example is shown in Example 9.

The code that registers the tb_agent with the factory is the command,
`uvm_component_utils(tb_agent). This agent will build the sequencer-driver pair and
frequently also builds a monitor. In this example, the monitor has been omitted to simplify the
example.

The agent references the factory to build the tb_driver and tb_sequencer, using the
commands:

drv = tb_driver::type_id::create("drv", this);
sqr = tb_sequencer::type_id::create("sqr", this);

class tb_agent extends uvm_agent;
 `uvm_component_utils(tb_agent)
 tb_driver drv;
 tb_sequencer sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 drv = tb_driver::type_id::create("drv", this);
 sqr = tb_sequencer::type_id::create("sqr", this);
 endfunction

 function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 drv.seq_item_port.connect(sqr.seq_item_export);
 endfunction
endclass

Example 9 - tb_agent.sv agent (factory version)

Factory-based sequencer

The sequencer class for the demonstration example is shown in Example 10.

The code that registers the tb_sequencer with the factory is the command,
`uvm_component_utils(tb_sequencer). Sequencers and drivers are classes that must be
parameterized to the transaction type. The transaction type for this sequencer is trans, which is
extended from the uvm_sequence_item type. UVM will check to make sure that the
parameterized driver and sequencer are using compatible transaction types. When we change the
transaction type for the demonstration example, we will again talk about what happens to the
parameterized sequencer and driver.

SNUG 2012 16 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Sequencers are typically pretty simple blocks of standard code and sequencers do not build any
other sub-components.

class tb_sequencer extends uvm_sequencer #(trans);
 `uvm_component_utils(tb_sequencer)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction
endclass

Example 10 - tb_sequencer.sv sequencer (factory version)

Factory-based driver

The driver class for the demonstration example is shown in Example 11.

The code that registers the tb_driver with the factory is the command,
`uvm_component_utils(tb_driver). As stated in the sequencer section, sequencers and
drivers are classes that must be parameterized to the transaction type. The transaction type for
this driver is trans, which is extended from the uvm_sequence_item type. UVM will check
to make sure that the driver and sequencer are using compatible transaction parameters.

Drivers do not typically build any other sub-components.

class tb_driver extends uvm_driver #(trans);
 `uvm_component_utils(tb_driver)

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 endfunction

 task run_phase(uvm_phase phase);
 trans tx;
 forever begin
 seq_item_port.get_next_item(tx);
 #10 `uvm_info("tb_driver", tx.convert2string(), UVM_MEDIUM)
 seq_item_port.item_done();
 end
 endtask
endclass

Example 11 - tb_driver.sv driver (factory version)

SNUG 2012 17 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Debugging the UVM structure and factory contents

After assembling a rather complex UVM testbench environment, it is often useful to print out the
structure of the testbench in tabular form and to query the types that were registered with the
factory. A great technique to view the structural composition of the testbench classes and the
factory setup is to call the this.print() and factory.print() methods in the
end_of_elaboration_phase() (as shown in Example 12) from the top-level testbench. By
the time the end_of_elaboration_phase() executes, the entire environment has already
been built and connected, so these print() methods show what had been built in the testbench
and the types that were registered with the factory.

function void end_of_elaboration_phase(uvm_phase phase);
 super.end_of_elaboration_phase(phase);
 this.print();
 factory.print();
endfunction

Example 12 - Debug printing for structure and factory registration

The structural printout for test1 is shown in Figure 3. In this table, we can see the 5 testbench
components: test1, env (e), tb_agent (agnt), tb_driver (drv) and
tb_sequencer (sqr).

UVM_INFO /home/uvm/src/base/uvm_root.svh(355) @ 0: reporter [NO_DPI_TSTNAME]
UVM_NO_DPI defined--getting UVM_TESTNAME directly, without DPI
UVM_INFO @ 0: reporter [RNTST] Running test test1...
--
Name Type Size Value
--
uvm_test_top test1 - @489
 e env - @499
 agnt tb_agent - @508
 drv tb_driver - @518
 rsp_port uvm_analysis_port - @535
 sqr_pull_port uvm_seq_item_pull_port - @526
 sqr tb_sequencer - @544
 rsp_export uvm_analysis_export - @552
 seq_item_export uvm_seq_item_pull_imp - @658
 arbitration_queue array 0 -
 lock_queue array 0 -
 num_last_reqs integral 32 'd1
 num_last_rsps integral 32 'd1
--

Figure 2 - test1 structure printout using this.print (factory version)

The types registered in the factory for test1 are shown in Figure 3. In this list, we can see that
there is currently no instance or type overrides in the factory, but the 5 testbench component

SNUG 2012 18 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

types: test1, env, tb_agent, tb_driver and tb_sequencer, along with the transaction
type (trans) and sequence type (trans_sequence) have been registered with the factory.

Factory Configuration (*)
 No instance or type overrides are registered with this factory

All types registered with the factory: 44 total
(types without type names will not be printed)

 Type Name

 env
 tb_agent
 tb_driver
 tb_sequencer
 test1
 trans
 trans_sequence
(*) Types with no associated type name will be printed as <unknown>

Figure 3 - test1 factory.print (factory version)

SNUG 2012 19 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

test1 simulation output - factory version

When the test1 test is executed, we see that indeed 10 trans transactions were executed as
printed in the simulation output shown in Figure 4.

UVM_INFO tb_driver.sv(27) @ 10: uvm_test_top.e.agnt.drv [tb_driver] trans1: addr = 74e9 data = 71
UVM_INFO tb_driver.sv(27) @ 20: uvm_test_top.e.agnt.drv [tb_driver] trans1: addr = 15e4 data = c8
UVM_INFO tb_driver.sv(27) @ 30: uvm_test_top.e.agnt.drv [tb_driver] trans1: addr = 0929 data = 05
UVM_INFO tb_driver.sv(27) @ 40: uvm_test_top.e.agnt.drv [tb_driver] trans1: addr = 6a6a data = 56
UVM_INFO tb_driver.sv(27) @ 50: uvm_test_top.e.agnt.drv [tb_driver] trans1: addr = 003e data = 33
UVM_INFO tb_driver.sv(27) @ 60: uvm_test_top.e.agnt.drv [tb_driver] trans1: addr = 8249 data = e4
UVM_INFO tb_driver.sv(27) @ 70: uvm_test_top.e.agnt.drv [tb_driver] trans1: addr = 4fe4 data = 7b
UVM_INFO tb_driver.sv(27) @ 80: uvm_test_top.e.agnt.drv [tb_driver] trans1: addr = 6e25 data = b6
UVM_INFO tb_driver.sv(27) @ 90: uvm_test_top.e.agnt.drv [tb_driver] trans1: addr = b8be data = d6
UVM_INFO tb_driver.sv(27) @ 100: uvm_test_top.e.agnt.drv [tb_driver] trans1: addr = 5a20 data = 2b
UVM_INFO /home/uvm/src/base/uvm_objection.svh(1120) @ 100: reporter [TEST_DONE] 'run' phase is ready to
proceed to the 'extract' phase

--- UVM Report Summary ---

** Report counts by severity
UVM_INFO : 13
UVM_WARNING : 0
UVM_ERROR : 0
UVM_FATAL : 0
** Report counts by id
[NO_DPI_TSTNAME] 1
[RNTST] 1
[TEST_DONE] 1
[tb_driver] 10
** Note: $finish : /home/uvm/src/base/uvm_root.svh(408)
 Time: 100 ns Iteration: 60 Instance: /top

Figure 4 - test1 UVM simulation output (factory version)

SNUG 2012 20 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

13. test2 With Modified Transaction

Now it is time to see what the factory can do to facilitate the creation of additional tests with
minimal changes to the testbench structure and minimal modifications to the testbench source
code.

Factory-based trans2 transaction

For test2, we are going to use a modified transaction type called trans2. The only
modifications to the trans2 type are the addition of a randomizable valid bit, and overriding
the convert2string() method to report that this is a trans2 transaction and to add to the
printout the contents of the valid bit. Using class extension, trans2 will be extended from
trans, so the addr and data fields will be inherited from the original trans class. The
trans2 code is shown in Example 13.

Just like the trans base class, the code that registers the transaction with the factory is the
command, `uvm_object_utils(trans2).

class trans2 extends trans;
 `uvm_object_utils(trans2)
 rand bit valid;

 function new (string name="trans2");
 super.new(name);
 endfunction

 function string convert2string;
 string s;
$sformat(s, "trans2: addr = %4h data = %2h valid=%b",addr,data,valid);
 return s;
 endfunction
endclass

Example 13 - trans2.sv sequence_item (factory version)

SNUG 2012 21 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Factory-based test2

The code for the second test is shown in Example 14 and the code that registers test2 with the
factory is the command, `uvm_component_utils(test2).

Just like test1, when test2 is executed, it will be the first component built after executing the
run_test() command in the top module. All of the tests in this example will reference the
factory to build the env and the command that accesses the env type from the factory is the
command:

e = env::type_id::create("e", this);

test2 also includes a command to change the transaction type that is returned whenever the
trans type is requested. The test2 code instructs the factory to override the return type of the
transaction from trans to trans2. The UVM command to perform this action is:

set_type_override_by_type(trans::get_type(), trans2::get_type());

All components and sequences built in this test will now create a trans2 type whenever trans
is requested. This is a powerful technique that allows engfineers to reuse testbench sequences
and components without modifying the original source files. This is why UVM uses a factory!

class test2 extends uvm_test;
 `uvm_component_utils(test2)
 env e;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 set_type_override_by_type(trans::get_type(), trans2::get_type());
 e = env::type_id::create("e", this);
 endfunction

 function void end_of_elaboration_phase(uvm_phase phase);
 super.end_of_elaboration_phase(phase);
 this.print();
 factory.print();
 endfunction

 task run_phase(uvm_phase phase);
 trans_sequence seq;
 phase.raise_objection(this);
 seq = trans_sequence::type_id::create("seq");
 seq.start(e.agnt.sqr);
 phase.drop_objection(this);
 endtask
endclass

Example 14 - test2.sv test (factory version)

SNUG 2012 22 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Factory-based package - test2

In order to run the second test with the override transaction type, the tb_pkg must also be
modified to include the trans2.sv file and the test2.sv file, as shown in Example 15.

`ifndef TB_PKG
`define TB_PKG

`include "uvm_macros.svh"

package tb_pkg;
 import uvm_pkg::*;

 `include "trans.sv"
 `include "trans2.sv" // *NEW*

 `include "tb_driver.sv"
 `include "tb_sequencer.sv"
 `include "tb_agent.sv"
 `include "env.sv"

 `include "trans_sequence.sv"
 `include "test1.sv"
 `include "test2.sv" // *NEW*
endpackage

`endif

Example 15 - tb_pkg2.sv package file

SNUG 2012 23 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

test2 structure and factory types reports

The test2 code included the same end_of_elaboration_phase() request to execute the
this.print() and factory.print() methods as were used in the test1 code. The
corresponding testbench struction is shown in Figure 5 and the factory types registered for
test2 now include the trans2 and test2 types, as shown in Figure 6.

UVM_INFO /home/uvm/src/base/uvm_root.svh(355) @ 0: reporter [NO_DPI_TSTNAME]
UVM_NO_DPI defined--getting UVM_TESTNAME directly, without DPI
UVM_INFO @ 0: reporter [RNTST] Running test test2...
--
Name Type Size Value
--
uvm_test_top test2 - @491
 e env - @501
 agnt tb_agent - @510
 drv tb_driver - @520
 rsp_port uvm_analysis_port - @537
 sqr_pull_port uvm_seq_item_pull_port - @528
 sqr tb_sequencer - @546
 rsp_export uvm_analysis_export - @554
 seq_item_export uvm_seq_item_pull_imp - @660
 arbitration_queue array 0 -
 lock_queue array 0 -
 num_last_reqs integral 32 'd1
 num_last_rsps integral 32 'd1
--

Figure 5 - test2 structure printout using this.print (non-factory version)

SNUG 2012 24 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

It can also be seen in the factory.print() output of Figure 6 that whenever trans is requested
from the factory, trans2 will be the override type (the return type).

Factory Configuration (*)
No instance overrides are registered with this factory

Type Overrides:

 Requested Type Override Type
 -------------- -------------
 trans trans2

All types registered with the factory: 46 total
(types without type names will not be printed)

 Type Name

 env
 tb_agent
 tb_driver
 tb_sequencer
 test1
 test2
 trans
 trans2
 trans_sequence
(*) Types with no associated type name will be printed as <unknown>

Figure 6 - test2 - set_type_override_by_type factory.print (factory version)

SNUG 2012 25 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

test2 simulation and factory substitution

In order to run test2, we can now use all of the other component and sequence types that were
used by test1 without modification. Each component or sequence that does that executes the
trans::type_id::create("trans") command will actually cause the factory to create the
trans2 type.

When the test2 test is run, we see that indeed 10 trans2 transactions were executed and
printed in the simulation output shown in Figure 7.

UVM_INFO tb_driver.sv(27) @ 10: uvm_test_top.e.agnt.drv [tb_driver] trans2: addr = 5847 data = a3 valid=0
UVM_INFO tb_driver.sv(27) @ 20: uvm_test_top.e.agnt.drv [tb_driver] trans2: addr = 68b7 data = ef valid=0
UVM_INFO tb_driver.sv(27) @ 30: uvm_test_top.e.agnt.drv [tb_driver] trans2: addr = 0524 data = 90 valid=0
UVM_INFO tb_driver.sv(27) @ 40: uvm_test_top.e.agnt.drv [tb_driver] trans2: addr = 2262 data = f6 valid=0
UVM_INFO tb_driver.sv(27) @ 50: uvm_test_top.e.agnt.drv [tb_driver] trans2: addr = 382f data = ca valid=0
UVM_INFO tb_driver.sv(27) @ 60: uvm_test_top.e.agnt.drv [tb_driver] trans2: addr = 2e7d data = 38 valid=1
UVM_INFO tb_driver.sv(27) @ 70: uvm_test_top.e.agnt.drv [tb_driver] trans2: addr = bc44 data = 44 valid=1
UVM_INFO tb_driver.sv(27) @ 80: uvm_test_top.e.agnt.drv [tb_driver] trans2: addr = 6eb0 data = 7c valid=1
UVM_INFO tb_driver.sv(27) @ 90: uvm_test_top.e.agnt.drv [tb_driver] trans2: addr = bc51 data = ad valid=1
UVM_INFO tb_driver.sv(27) @ 100: uvm_test_top.e.agnt.drv [tb_driver] trans2: addr = a28c data = 97 valid=1
UVM_INFO /home/uvm/src/base/uvm_objection.svh(1120) @ 100: reporter [TEST_DONE] 'run' phase is ready to proceed to
the 'extract' phase

--- UVM Report Summary ---

** Report counts by severity
UVM_INFO : 13
UVM_WARNING : 0
UVM_ERROR : 0
UVM_FATAL : 0
** Report counts by id
[NO_DPI_TSTNAME] 1
[RNTST] 1
[TEST_DONE] 1
[tb_driver] 10
** Note: $finish : /home/uvm/src/base/uvm_root.svh(408)
 Time: 100 ns Iteration: 60 Instance: /top

Figure 7 - test2 UVM simulation output (factory version)

SNUG 2012 26 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

14. test3 With Modified Driver

Whenever the transaction type is modified, it typically requires that the driver and monitor are
also modified to use the new fields in the transaction. There is no monitor in the simple
demonstration example, but there is a driver. A new tb_driver2 type will be extended from
the tb_driver and added to the testbench for test3.

Modified tb_driver2

For test3, a new tb_driver2 class will be extended from the tb_driver class and the
run_phase() will be modified to print a "*NEW DRIVER*" message. Typically the new
run_phase() would be using new fields from the new transaction class, but this simple
example is not really driving any signals to a DUT. The tb_driver2 code is shown in Example
16.

Just like the tb_driver class, the code that registers the driver with the factory is the command,
`uvm_component_utils(tb_driver2).

class tb_driver2 extends tb_driver;
 `uvm_component_utils(tb_driver2)

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 endfunction

 task run_phase(uvm_phase phase);
 trans tx;
 forever begin
 seq_item_port.get_next_item(tx);
 `uvm_info("tb_driver2", "*NEW DRIVER*", UVM_MEDIUM)
 #10 `uvm_info("tb_driver2", tx.convert2string(), UVM_MEDIUM)
 seq_item_port.item_done();
 end
 endtask
endclass

Example 16 - tb_driver2.sv driver (factory version)

SNUG 2012 27 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Factory-based test3

The code for the third test is shown in Example 17 and the code that registers test3 with the
factory is the command, `uvm_component_utils(test3).

Note that in addition to the previous command to override the trans type with trans2, there is
now a command to override just one instance of the tb_driver with the new tb_driver2.
The instance to be overridden is located in the testbench structure at e.agnt.drv and the
command to perform this action is:

set_inst_override_by_type("e.agnt.drv", tb_driver::get_type(),
 tb_driver2::get_type());

class test3 extends uvm_test;
 `uvm_component_utils(test3)
 env e;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 set_type_override_by_type(trans::get_type(), trans2::get_type());
 set_inst_override_by_type("e.agnt.drv", tb_driver::get_type(),
 tb_driver2::get_type());
 e = env::type_id::create("e", this);
 endfunction

 function void end_of_elaboration_phase(uvm_phase phase);
 super.end_of_elaboration_phase(phase);
 this.print();
 factory.print();
 endfunction

 task run_phase(uvm_phase phase);
 trans_sequence seq;
 phase.raise_objection(this);
 seq = trans_sequence::type_id::create("seq");
 seq.start(e.agnt.sqr);
 phase.drop_objection(this);
 endtask
endclass

Example 17 - test3.sv test (factory version)

SNUG 2012 28 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Factory-based package - test3

In order to run the third test with the override driver type, the tb_pkg must also be modified to
include the tb_driver2.sv file and the test3.sv file, as shown in Example 18.

`ifndef TB_PKG
`define TB_PKG

`include "uvm_macros.svh"

package tb_pkg;
 import uvm_pkg::*;

 `include "trans.sv"
 `include "trans2.sv"

 `include "tb_driver.sv"
 `include "tb_driver2.sv" // *NEW*
 `include "tb_sequencer.sv"
 `include "tb_agent.sv"
 `include "env.sv"

 `include "trans_sequence.sv"
 `include "test1.sv"
 `include "test2.sv"
 `include "test3.sv" // *NEW*
endpackage

`endif

Example 18 - tb_pkg3.sv package file

SNUG 2012 29 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

test3 structure and factory types reports

The test3 code also includes the same end_of_elaboration_phase() request to execute
the this.print() and factory.print() methods as were used in the test1 and test2
code. The corresponding testbench struction is shown in Figure 8 and the factory types registered
for test3 now include the tb_driver2 and test3 types, as shown in Figure 9.

UVM_INFO /home/uvm/src/base/uvm_root.svh(355) @ 0: reporter [NO_DPI_TSTNAME]
UVM_NO_DPI defined--getting UVM_TESTNAME directly, without DPI
UVM_INFO @ 0: reporter [RNTST] Running test test3...
--
Name Type Size Value
--
uvm_test_top test3 - @493
 e env - @503
 agnt tb_agent - @512
 drv tb_driver2 - @522
 rsp_port uvm_analysis_port - @539
 sqr_pull_port uvm_seq_item_pull_port - @530
 sqr tb_sequencer - @548
 rsp_export uvm_analysis_export - @556
 seq_item_export uvm_seq_item_pull_imp - @662
 arbitration_queue array 0 -
 lock_queue array 0 -
 num_last_reqs integral 32 'd1
 num_last_rsps integral 32 'd1
--

Figure 8 - test3 structure printout using this.print (factory version)

SNUG 2012 30 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

It can also be seen in the factory.print() output of Figure 10 that whenever trans is
requested from the factory, trans2 will be the override type (the return type). It can also be seen
that whenever the uvm_test_top.e.agnt.drv instance of the tb_driver is requested from
the factory, tb_driver2 will be used.

Factory Configuration (*)
Instance Overrides:

 Requested Type Override Path Override Type
 -------------- ----------------------- -------------
 tb_driver uvm_test_top.e.agnt.drv tb_driver2

Type Overrides:

 Requested Type Override Type
 -------------- -----------------------
 trans trans2

All types registered with the factory: 48 total
(types without type names will not be printed)

 Type Name

 env
 tb_agent
 tb_driver
 tb_driver2
 tb_sequencer
 test1
 test2
 test3
 trans
 trans2
 trans_sequence
(*) Types with no associated type name will be printed as <unknown>

Figure 9 - test3 - set_type_override_by_type factory.print (factory version)

SNUG 2012 31 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

test3 simulation and factory substitution

In order to run test3, we can now use all of the other component and sequence types that were
used by test2 without modification. In this test, the request for tb_driver will actually use
the tb_driver2.

When the test3 test is run, we see that indeed 10 *NEW DRIVER* messages are printed along
with 10 trans2 messages, as shown in Figure 10.

UVM_INFO tb_driver2.sv(27) @ 0: uvm_test_top.e.agnt.drv [tb_driver2] *NEW DRIVER*
UVM_INFO tb_driver2.sv(28) @ 10: uvm_test_top.e.agnt.drv [tb_driver2] trans2: addr = 5847 data = a3 valid=0
UVM_INFO tb_driver2.sv(27) @ 10: uvm_test_top.e.agnt.drv [tb_driver2] *NEW DRIVER*
UVM_INFO tb_driver2.sv(28) @ 20: uvm_test_top.e.agnt.drv [tb_driver2] trans2: addr = 68b7 data = ef valid=0
UVM_INFO tb_driver2.sv(27) @ 20: uvm_test_top.e.agnt.drv [tb_driver2] *NEW DRIVER*
UVM_INFO tb_driver2.sv(28) @ 30: uvm_test_top.e.agnt.drv [tb_driver2] trans2: addr = 0524 data = 90 valid=0
UVM_INFO tb_driver2.sv(27) @ 30: uvm_test_top.e.agnt.drv [tb_driver2] *NEW DRIVER*
UVM_INFO tb_driver2.sv(28) @ 40: uvm_test_top.e.agnt.drv [tb_driver2] trans2: addr = 2262 data = f6 valid=0
UVM_INFO tb_driver2.sv(27) @ 40: uvm_test_top.e.agnt.drv [tb_driver2] *NEW DRIVER*
UVM_INFO tb_driver2.sv(28) @ 50: uvm_test_top.e.agnt.drv [tb_driver2] trans2: addr = 382f data = ca valid=0
UVM_INFO tb_driver2.sv(27) @ 50: uvm_test_top.e.agnt.drv [tb_driver2] *NEW DRIVER*
UVM_INFO tb_driver2.sv(28) @ 60: uvm_test_top.e.agnt.drv [tb_driver2] trans2: addr = 2e7d data = 38 valid=1
UVM_INFO tb_driver2.sv(27) @ 60: uvm_test_top.e.agnt.drv [tb_driver2] *NEW DRIVER*
UVM_INFO tb_driver2.sv(28) @ 70: uvm_test_top.e.agnt.drv [tb_driver2] trans2: addr = bc44 data = 44 valid=1
UVM_INFO tb_driver2.sv(27) @ 70: uvm_test_top.e.agnt.drv [tb_driver2] *NEW DRIVER*
UVM_INFO tb_driver2.sv(28) @ 80: uvm_test_top.e.agnt.drv [tb_driver2] trans2: addr = 6eb0 data = 7c valid=1
UVM_INFO tb_driver2.sv(27) @ 80: uvm_test_top.e.agnt.drv [tb_driver2] *NEW DRIVER*
UVM_INFO tb_driver2.sv(28) @ 90: uvm_test_top.e.agnt.drv [tb_driver2] trans2: addr = bc51 data = ad valid=1
UVM_INFO tb_driver2.sv(27) @ 90: uvm_test_top.e.agnt.drv [tb_driver2] *NEW DRIVER*
UVM_INFO tb_driver2.sv(28) @ 100: uvm_test_top.e.agnt.drv [tb_driver2] trans2: addr = a28c data = 97 valid=1
UVM_INFO /home/uvm/src/base/uvm_objection.svh(1120) @ 100: reporter [TEST_DONE] 'run' phase is ready to proceed to
the 'extract' phase

--- UVM Report Summary ---

** Report counts by severity
UVM_INFO : 23
UVM_WARNING : 0
UVM_ERROR : 0
UVM_FATAL : 0
** Report counts by id
[NO_DPI_TSTNAME] 1
[RNTST] 1
[TEST_DONE] 1
[tb_driver2] 20
** Note: $finish : /home/uvm/src/base/uvm_root.svh(408)
 Time: 100 ns Iteration: 60 Instance: /top

Figure 10 - test3 UVM simulation output (factory version)

SNUG 2012 32 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

15. Testbench Classes Without Using the Factory

Now let's re-code the entire test1-test3 examples without any factory code, and compare the
required coding efforts to those when the factory was used. We will still use the exact same top
module show in Example 3, and the first tb_pkg.sv file shown in Example 4.

Using UVM, we will still need to register all of the tests with the factory, because UVM checks
to make sure the requested top-level test was registered with the factory, but these will be the
only components that are required to use the `uvm_component_utils() macros.

These classes have the exact same names at the factory-version of the classes, but for testing
purposes, this set of files was kept in a separate directory.

Non-Factory-based transaction

The transaction class shown in Example 19 includes all of the same code as the factory-version
of this class, except for the omission of the command, `uvm_object_utils(trans). This
transaction is not registered with the factory.

class trans extends uvm_sequence_item;
 rand bit [7:0] data;
 rand bit [15:0] addr;

 function new (string name="trans");
 super.new(name);
 endfunction

 function string convert2string;
 string s;
 $sformat(s, "trans1: addr = %4h data = %2h", addr, data);
 return s;
 endfunction
endclass

Example 19 - trans.sv sequence_item (non-factory version)

Non-Factory-based sequence

The seqeunce class shown in Example 20 includes all of the same code as the factory-version of
this class, except for the omission of the command, `uvm_object_utils(trans_sequence)
and the body() task creates a transaction using the standard new() class constructor. This
sequence is not registered with the factory and generates a trans object directly.

SNUG 2012 33 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

class trans_sequence extends uvm_sequence #(trans);

 function new (string name="trans_sequence");
 super.new(name);
 endfunction

 task body();
 trans tx = new("tx");
 repeat(10) begin
 start_item(tx);
 assert(tx.randomize());
 finish_item(tx);
 end
 endtask
endclass

Example 20 - trans_sequence.sv sequence (non-factory version)

Non-Factory-based test1

The test1 class shown in Example 21 includes all of the same code as the factory-version of
this class, except for the omission of the command, `uvm_component_utils(test1) and the
build_phase() creates the environment using the standard new() class constructor. This test
is registered with the factory but still generates an envronment object directly.

class test1 extends uvm_test;
 `uvm_component_utils(test1)
 env e;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 e = new("e", this);
 endfunction

 function void end_of_elaboration_phase(uvm_phase phase);
 super.end_of_elaboration_phase(phase);
 this.print();
 factory.print();
 endfunction

 task run_phase(uvm_phase phase);
 trans_sequence seq;
 phase.raise_objection(this);
 seq = new("seq");
 seq.start(e.agnt.sqr);
 phase.drop_objection(this);
 endtask
endclass

Example 21 - test1.sv test (non-factory version)

SNUG 2012 34 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Non-Factory-based enviornment

The env class shown in Example 22 includes all of the same code as the factory-version of this
class, except for the omission of the command, `uvm_component_utils(env) and the
build_phase() creates the agent using the standard new() class constructor. This env is not
registered with the factory and generates an agent object directly.

class env extends uvm_env;
 tb_agent agnt;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 agnt = new("agnt", this);
 endfunction
endclass

Example 22 - env.sv environment (non-factory version)

Non-Factory-based agent

The tb_agent class shown in Example 23 includes all of the same code as the factory-version
of this class, except for the omission of the command, `uvm_component_utils(tb_agent)
and the build_phase() creates the agent using the standard new() class constructor. This
agent is not registered with the factory and generates both the driver and sequencer objects
directly.

class tb_agent extends uvm_agent;
 tb_driver drv;
 tb_sequencer sqr;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 drv = new("drv", this);
 sqr = new("sqr", this);
 endfunction

 function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 drv.seq_item_port.connect(sqr.seq_item_export);
 endfunction
endclass

Example 23 - tb_agent.sv agent (non-factory version)

SNUG 2012 35 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Non-Factory-based sequencer

The tb_sequencer class shown in Example 24 includes all of the same code as the factory-
version of this class, except for the omission of the command,
`uvm_component_utils(tb_sequencer). This sequencer is not registered with the factory.

class tb_sequencer extends uvm_sequencer #(trans);

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction
endclass

Example 24 - tb_sequencer.sv sequencer (non-factory version)

Non-Factory-based driver

The tb_driver class shown in Example 25 includes all of the same code as the factory-version
of this class, except for the omission of the command,
`uvm_component_utils(tb_driver). This driver is not registered with the factory.

class tb_driver extends uvm_driver #(trans);

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 endfunction

 task run_phase(uvm_phase phase);
 trans tx;
 forever begin
 seq_item_port.get_next_item(tx);
 #10 `uvm_info("tb_driver", tx.convert2string(), UVM_MEDIUM)
 seq_item_port.item_done();
 end
 endtask
endclass

Example 25 - tb_driver.sv driver (non-factory version)

SNUG 2012 36 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

test1 simulation output - non-factory version

The structural printout for the non-factory version of test1 is shown in Figure 11. In this table,
we can see all of the testbench components, but unlike the factory version of thie printout, we
only see the base class names for the non-registered components. Remember that the test1
component had to be registered with the factory, so that name is visible in the report.

--
Name Type Size Value
--
uvm_test_top test1 - @484
 e uvm_env - @494
 agnt uvm_agent - @503
 drv uvm_driver #(REQ,RSP) - @513
 rsp_port uvm_analysis_port - @530
 sqr_pull_port uvm_seq_item_pull_port - @521
 sqr uvm_sequencer - @539
 rsp_export uvm_analysis_export - @547
 seq_item_export uvm_seq_item_pull_imp - @653
 arbitration_queue array 0 -
 lock_queue array 0 -
 num_last_reqs integral 32 'd1
 num_last_rsps integral 32 'd1
--

Figure 11 - test1 structure printout using this.print (non-factory version)

As might be expected, we only see that the test1 type is registered with the factory.

Factory Configuration (*)
 No instance or type overrides are registered with this factory

All types registered with the factory: 39 total
(types without type names will not be printed)

 Type Name

 test1
 (*) Types with no associated type name will be printed as <unknown>

Figure 12 - test1 factory.print (non-factory version)

SNUG 2012 37 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

And we do see 10 trans type transactions were created during the simulation.

UVM_INFO tb_driver.sv(25) @ 10: uvm_test_top.e.agnt.drv [tb_driver] trans: addr = 65cf data = 5b
UVM_INFO tb_driver.sv(25) @ 20: uvm_test_top.e.agnt.drv [tb_driver] trans: addr = ce3c data = 58
UVM_INFO tb_driver.sv(25) @ 30: uvm_test_top.e.agnt.drv [tb_driver] trans: addr = da4b data = 03
UVM_INFO tb_driver.sv(25) @ 40: uvm_test_top.e.agnt.drv [tb_driver] trans: addr = 6af2 data = 79
UVM_INFO tb_driver.sv(25) @ 50: uvm_test_top.e.agnt.drv [tb_driver] trans: addr = dc6a data = 6f
UVM_INFO tb_driver.sv(25) @ 60: uvm_test_top.e.agnt.drv [tb_driver] trans: addr = fd5d data = f5
UVM_INFO tb_driver.sv(25) @ 70: uvm_test_top.e.agnt.drv [tb_driver] trans: addr = 9697 data = fa
UVM_INFO tb_driver.sv(25) @ 80: uvm_test_top.e.agnt.drv [tb_driver] trans: addr = 0720 data = ac
UVM_INFO tb_driver.sv(25) @ 90: uvm_test_top.e.agnt.drv [tb_driver] trans: addr = ffc5 data = 49
UVM_INFO tb_driver.sv(25) @ 100: uvm_test_top.e.agnt.drv [tb_driver] trans: addr = 41d9 data = 23
UVM_INFO /home/uvm/src/base/uvm_objection.svh(1120) @ 100: reporter [TEST_DONE] 'run' phase
is ready to proceed to the 'extract' phase

--- UVM Report Summary ---

** Report counts by severity
UVM_INFO : 13
UVM_WARNING : 0
UVM_ERROR : 0
UVM_FATAL : 0
** Report counts by id
[NO_DPI_TSTNAME] 1
[RNTST] 1
[TEST_DONE] 1
[tb_driver] 10
** Note: $finish : /home/uvm/src/base/uvm_root.svh(408)
 Time: 100 ns Iteration: 60 Instance: /top [RNTST] 1

Figure 13 - test1 UVM simulation output (non-factory version)

16. test2 With Modified Transaction

Now it is time to see what is required to run a second version of the test with the trans2 type,
when we do not have access to the components or transactions from the factory.

Factory-based trans2 transaction

The transaction class shown in Example 26 includes all of the same code as the factory-version
of this class, except for the omission of the command, `uvm_object_utils(trans2). This
transaction is not registered with the factory, but since it is extended from the trans base class,
it is assignment compatible, which is why it is not necessary to make new copies of the
tb_driver and tb_sequencer, which are both parameterized to the trans transaction type,

SNUG 2012 38 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

are only passed between the tb_driver and tb_sequencer and are not created in either of
these components.

class trans2 extends trans;
 rand bit valid;

 function new (string name="trans2");
 super.new(name);
 endfunction

 function string convert2string;
 string s;
 $sformat(s, "trans2: addr = %4h data = %2h valid=%b",addr,data,valid);
 return s;
 endfunction
endclass

Example 26 - trans2.sv sequence_item (non-factory version)

Non-Factory-based test2

The test2 class shown in Example 27 includes all of the same code as the factory-version of
this class, except for the omission of the command, `uvm_component_utils(test2) and the
build_phase() creates the environment using the standard new() class constructor. This test
is registered with the factory but still generates an envronment object directly.

class test2 extends uvm_test;
 `uvm_component_utils(test2)
 env e;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 e = new("e", this);
 endfunction

 function void end_of_elaboration_phase(uvm_phase phase);
 super.end_of_elaboration_phase(phase);
 this.print();
 factory.print();
 endfunction

 task run_phase(uvm_phase phase);
 trans_sequence2 seq;
 phase.raise_objection(this);
 seq = new("seq");
 seq.start(e.agnt.sqr);
 phase.drop_objection(this);
 endtask
endclass

Example 27 - test2.sv test (non-factory version)

SNUG 2012 39 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Non-Factory-based sequence

The trans_sequence2 class shown in Example 28 includes all of the same code as the factory-
version of this class, except for the omission of the command,
`uvm_component_utils(trans_sequence2) and the build_phase() creates the trans2
transaction using the standard new() class constructor. Because the transaction is new()-
constructed, we could not use the trans_sequence class.

Without access to factory versions of the transactoin types, all sequences will need to be
duplicated in order to directly generate transactions of the trans2 type. This shows why the
factory is so important to efficient testbench management.

class trans_sequence2 extends uvm_sequence #(trans2);

 function new (string name="trans_sequence2");
 super.new(name);
 endfunction

 task body();
 trans2 tx = new("tx");
 repeat(10) begin
 start_item(tx);
 assert(tx.randomize());
 finish_item(tx);
 end
 endtask
endclass

Example 28 - trans_sequence2.sv sequence (non-factory version)

SNUG 2012 40 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Factory-based package - test2

In order to run the second test with the override transaction type, the tb_pkg must also be
modified to include the trans2.sv file, the test2.sv file and the trans_sequence2.sv
file, as shown in Example 29.

`ifndef TB_PKG
`define TB_PKG

`include "uvm_macros.svh"

package tb_pkg;
 import uvm_pkg::*;

 `include "trans.sv"
 `include "trans2.sv" // *NEW*

 `include "tb_driver.sv"
 `include "tb_sequencer.sv"
 `include "tb_agent.sv"
 `include "env.sv"

 `include "trans_sequence.sv"
 `include "trans_sequence2.sv" // *NEW*
 `include "test1.sv"
 `include "test2.sv" // *NEW*
endpackage

`endif

Example 29 - tb_pkg2.sv package file

test2 simulation - non-factory version

The test2 version of this testbench simulates as expected and the factory.print() report
shows that now both tests, test1 and test2, are registered with the factory. The reports were
not included in the paper.

17. test3 simulation - non-factory version

The code for a third test using a second version of the tb_driver command without using the
factory would introduce significant extra effort. Since the tb_driver2 cannot be automatically
created from the agent, a second version of the agent would be necessary. And since the
tb_agent2 cannot be automatically created from the environment, a second version of the
environment would also be necessary.

SNUG 2012 41 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

This demonstration example is a small subset of an actual UVM testbench, so the problem would
only get worse when more components and more sequences are needed to run a different version
of the tests with a second transaction type and a second tb_driver (and tb_monitor).

It does not take too much imagination to realize that the factory overrides greatly reduce the
coding effort of UVM verification environments when just a few transactions or components
need to be replaced.

18. Where Does The ::type_id::create Command Come From?

If you use UVM, you do not need to fully understand how each command is defined and where
the definitions exist inside of the UVM source code. If you efficiently use UVM to create
powerful testbenches and if you really do not care about how certain commands work, skip this
section! If you want to understand where the ::type_id::create command comes from, read
this section.

Trying to understand the inner workings of UVM by examining the source code can be a difficult
task. The myriad of intertwined macro definitions coupled with frequent polymorphic
replacement and indirection of base classes with extended classes, and repeated use of similar or
the same method names in different classes makes it difficult to understand how some of the
UVM features actually work. There is no greater example of this indirection and confusion than
the ::type_id::create command.

To understand this command, first recognize that the use of the :: operators in this command
indicate that you are probably using one or more static function calls, which is indeed the case.

SNUG 2012 42 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

To better understand this command, consider the following lines of code from the creation of the
tb_agent in the simple example used in this paper:

tb_driver drv; // declaration of a tb_driver handle
…

function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 drv = tb_driver::type_id::create("drv", this);
 ...
endfunction

This command is going to call the ::type_id::create command from the tb_driver,
which happens to be code largely inherited from other macros and classes. The source of this
command can be traced to the following:
(1) tb_driver is an extension of uvm_driver, which is an extension of uvm_component,
which is a derivative of uvm_object, which defines a virtual method called create() with a
single input argument. So how can the tb_driver::type_id::create("drv", this)
command pass two arguments to this virtual method? The create() method defined in the
uvm_object base class and passed down to the tb_driver class IS NOT THE create()
COMMAND USED IN THIS FACTORY CONSTRUCTOR! (This is a point of confusion!)
(2) At the top of the tb_driver class definition is the macro-invocation:

`uvm_component_utils(tb_driver)

(3) The `uvm_component_utils macro is defined in the
<uvm_src_dir>/src/macros/uvm_object_defines.svh file
(4) In this file, `uvm_component_utils(T) is defined to be the macros:

`define uvm_component_utils(T) \
 `m_uvm_component_registry_internal(T,T) \
 `m_uvm_get_type_name_func(T)

(5) In this same file, `m_uvm_component_registry_internal(T,S) is defined to be:
`define m_uvm_component_registry_internal(T,S) \
 typedef uvm_component_registry #(T,`"S`") type_id; \
 static function type_id get_type(); \
 return type_id::get(); \
 endfunction \
 virtual function uvm_object_wrapper get_object_type(); \
 return type_id::get(); \
 endfunction

(6) And in this same file, `m_uvm_get_type_name_func(T) is defined to be:
`define m_uvm_get_type_name_func(T) \
 const static string type_name = `"T`"; \
 virtual function string get_type_name (); \
 return type_name; \
 endfunction

SNUG 2012 43 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Doing the macro expansion, the top of the tb_driver class now includes the code:

class tb_driver extends uvm_driver #(trans);

//`uvm_component_utils(tb_driver)
//`define uvm_component_utils(T) \
// `m_uvm_component_registry_internal(T,T) \
// `m_uvm_get_type_name_func(T)

//`define m_uvm_component_registry_internal(T,S) \

 typedef uvm_component_registry #(tb_driver,"tb_driver") type_id;

 static function type_id get_type();
 return type_id::get();
 endfunction

 virtual function uvm_object_wrapper get_object_type();
 return type_id::get();
 endfunction

//`define m_uvm_get_type_name_func(T) \

 const static string type_name = "tb_driver";

 virtual function string get_type_name ();
 return type_name;
 endfunction

This macro added the type_id type definition, get_type() method, get_object_type()
method, static type_name string, and get_type_name() method, to the tb_driver class
code.

The type_id type definition is part of the ::type_id::create command, and type_id is
just a type definition for the class type:

uvm_component_registry #(tb_driver,"tb_driver")

SNUG 2012 44 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

(7) The uvm_component_registry parameterized class is defined in the
<uvm_src_dir>/src/base/uvm_registry.svh file
(8) In this file, is the definition for the uvm_component_registry class. An abbreviated
section of this class definition is shown below:

 1 class uvm_component_registry #(type T=uvm_component, string Tname="")
 2 extends uvm_object_wrapper;
 3
 4 typedef uvm_component_registry #(T,Tname) this_type;
 5
 6 virtual function uvm_component
 7 create_component (string name, uvm_component parent);
 8 T obj;
 9 obj = new(name, parent);
10 return obj;
11 endfunction
12
13 const static string type_name = Tname;
14
15 virtual function string get_type_name();
16 return type_name;
17 endfunction
18
19 local static this_type me = get();
20
21 static function this_type get();
22 if (me == null) begin
23 uvm_factory f = uvm_factory::get();
24 me = new;
25 f.register(me);
26 end
27 return me;
28 endfunction
29
30 static function T create(string name, uvm_component parent, ...);
31 uvm_object obj;
32 uvm_factory f = uvm_factory::get();
33 ...
34 obj = f.create_component_by_type(get(),contxt,name,parent);
35 if (!$cast(create, obj)) begin
36 string msg;
37 msg = {<"... error message ...">};
38 uvm_report_fatal("FCTTYP", msg, UVM_NONE);
39 end
40 endfunction
41 ...
42 endclass

On line 4, this_type is set to

uvm_component_registry #(tb_driver,"tb_driver")

On line 21 is the static get() function that, if the this_type (tb_driver registry
class) is null, will call the uvm_factory static get() method to create a handle for this
tb_driver registry and copy that handle to the this_type handle, register the tb_driver

SNUG 2012 45 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

registry with the factory and then return the handle to the caller of the get() function. The same
get() function just returns the handle if it already exists.

On line 19 is the static handle declaration for the local static this_type me declaration,
which calls the static get() function (described in the preceding paragraph) to register this
tb_driver registry class with the factory and assign the corresponding handle. Since this
handle and the get() function are both static, they will both happen automatically when the
testbench is compiled without any required user invocation.

In this way, when the `uvm_component_utils() macro is called from each component, it
literally registers the corresponding registry class with the factory, which makes it possible to
::type_id::create any registered component from anywhere in the testbench class
components.

Line 30 - When the uvm_component_registry #(tb_driver,"tb_driver") is
compiled, the static create() command is also made statically available. The most confusing
piece of the static create() command code is on line 35. It took me 2 hours to figure out this
command happens to be a rather simple command, once you understand the code.

Most of the function methods in the UVM base classes use the SystemVerilog return command
to return the correct value from the function, but line 35 is using the old Verilog way to return a
function value. On line 34, the factory is asked to create the requested component by type and
return the component handle to a uvm_object handle (obj - declared on line 31). This handle
is then cast to the correct component type, which happens to be the type of the create()
function. By casting back to the function name, the cast is actually assigned back to type of the
function, and the caller of this function is then given a handle to the created component.
Assigning (casting) to the function name is the old Verilog way to return a function value. The
new SystemVerilog way to return a value would have been to declare a handle of the function
type (T), cast the uvm_object handle to declared T-type function handle, and then call
return to give back the T-type function handle. Hopefully this description just saved you 2
hours!

In any uvm_*_registry class, is the static create() function. This is the last piece of the
::type_id::create() command. This explains where this command comes from. For
components, the <component_type>::type_id::create(<component_handle>, this)
command comes from the uvm_component_registry class parameterized to the component
type. Similarly, for transactions, the <object_type>::type_id::create(<object_handle>,
this) command comes from the uvm_object_registry class parameterized to the object
type.

uvm_object_wrappers are the proxy (substitute, place holder) types that are actually stored in
the factory. When you create a component, you have actually created a
uvm_component_registry class that is an extension of the uvm_object_wrapper. When
you create a transaction, you have actually created a uvm_object_registry class that is an

SNUG 2012 46 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

extension of the uvm_object_wrapper. It is handles of these component and object extensions
of the wrapper class that are actually stored in the type-based factory.

19. Factory Overrides - Debugging

If the factory override does not appear to be working, what are some of the common errors that
can keep the override from working?

The most common problem is probably the inadvertent use of a new() constructor in place of
the ::type_id::create command. I personally have experienced a frustrating failure to
override the transaction type in a design where I accidentally used the new() command in one of
the test sequences. The problem with the inadvertent new() command is that it is a perfectly
legal way to construct components and sequences, so if it sneaks into the component-structure or
test transactions inadvertently, it will still allow the testbench to compile and simulate, but will
then fail to create a component or transaction at some point during the simulation. Short
summary: the testbench compiles and simulates but fails to create all of the necessary
components or transactions from the factory.

How does one even notice these problems? In my example, I had a base transaction and an
extended transaction, and during simulation, it appeared that the extended transaction was not
being used. To verify the diagnosis, I included "trans1" as part of the convert2string()
method of the base transaction, and included "trans2" as part of the convert2string()
method of the extended transaction. During simulation, I called the convert2string()
methods when the transactions were used and indeed verified that in the override-version of my
test, I was still generating trans1 versions of my transaction.

So when the override-version of the simulation fails, how can an engineer find these types of
problems? In the example above, I suspected that I had forgotten to use the
::type_id::create command, so I did a "grep new <all sv-files>" and then searched through
the output until I found the use of a new() constructor where I should have used the
::type_id::create() command.

After replacing the inadvertent new() commands with the proper ::type_id::create
commands, the override-version of the simulation worked as expected.

20. Using the new() Constructor

What happens if you use the new() constructor in an OVM/UVM verificatoin environment
instead of the factory?

Advantage:

 It is a very simple syntax. This is the only advantage to using the new() constructor.

SNUG 2012 47 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

Disadvantages:
 The new() constructor will only create a transaction or component of the specified type.
 The new() consturtor fixes the type during constructon. No run-time changes will be

possible.
 Changing components and transactions frequently requires significant source code

changes.
 If you never intend to change the code, using the new() constructor is fine. But it is

highly unlikely that you will build a large verificatoin enviornment without some
required changes.

 If you want to use two transaction types, you will need extra components and sequences
to be coded.

21. Using the Factory

What happens if you use the OVM/UVM factory to create constructor in an OVM/UVM
verificatoin environment?

Disadvantage:

 Ugly syntax - ::type_id::create() - but it is a very common syntax to create
components and transactions.

Advantages:

 The create() command creates an object of the type_id stored in the factory.
 Tests (and some components) can make type_id substitutions using instance and type

override commands.
 Tests can insert modified components and transactions into factory before building the

rest of the test enviornment.
 Even if you never are required to change the code, the factory will work just fine.
 If you want to use two transaction types, you can more easily reuse components and

sequences.

22. Conclusions

Use factories in your OVM/UVM verification environments. It is already built into the
methodology and requires very little extra work on the part of the verification engineer; indeed, it
will likely save a great deal of effort in the future as the test components and sequences evolve.

Use the instance and type overrides to take full advantage of the benefits ofered by the
OVM/UVM factory.

SNUG 2012 48 The OVM/UVM Factory & Factory Overrides
Rev 1.1 How They Works - Why They Are Important

23. Acknowledgements

I am grateful to my colleague and good friend Janick Bergeron for suggested improvements to
the UVM examples in this paper. Janick was the one who informed me that it was not necessary
to replace the sequencer-driver pair with versions that referenced a new transaction type because
the extended transaction was compatible with the base transaction. That is an important point
that I had missed while coding the original examples.

24. References

[1] Mark Glasser, "Open Verification Methodology Cookbook", Springer, www.springeronline.com, 1st

Edition., 2009. ISBN: 978-1-4419-0967-1 Free downloadable PDF Version at: http://verification-
academy.mentor.com/content/open-verification-methodology-advanced-ovm-uvm-module

[2] OVM User Guide, March 2010, Available for download from:
https://verificationacademy.com/topics/verification-methodology

[3] Universal Verification Methodology (UVM) 1.1 Class Reference, May 2011, Accellera, Napa, CA.
www.accellera.org/home

[4] UVM source code (it is sometimes easier to grep the UVM source files than to search the UVM Ref-
erence Guide)

25. AUTHOR & CONTACT INFORMATION

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 30 years of ASIC, FPGA and system design experience and 21 years of SystemVeri-
log, synthesis and methodology training experience.

Mr Cummings has presented more than 100 SystemVerilog seminars and training classes in the
past nine years and was the featured speaker at the world-wide SystemVerilog NOW! seminars.

Mr Cummings has participated on every IEEE & Accellera SystemVerilog, SystemVerilog Syn-
thesis, SystemVerilog committee, and has presented more than 40 papers on SystemVerilog &
SystemVerilog related design, synthesis and verification techniques.

Mr Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Sunburst Design, Inc. offers World Class Verilog, SystemVerilog & OVM/UVM training cours-
es. For more information, visit the www.sunburst-design.com web site.
Email address: cliffc@sunburst-design.com

Last Updated: January 14, 2013

