
SNUG 2013 1 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

World Class Verilog, SystemVerilog & OVM/UVM Training

OVM/UVM Scoreboards - Fundamental Architectures

Clifford E. Cummings
Sunburst Design, Inc.

cliffc@sunburst-design.com
www.sunburst-design.com

ABSTRACT

One of the most complex components in an OVM/UVM testbench is the scoreboard. Simple
tutorials on the theory behind and the creation of the scoreboard are scarce.

This paper will describe two fundamental OVM/UVM scoreboard architectures. The first
architecture is a standalone scoreboard component with two UVM analysis implementation
ports, which poses unique challenges when declaring and using UVM ports and methods. The
second architecture is a highly reusable scoreboard with predictor class and comparator class
and the fundamental theories that make this architecture relatively easy to use. The comparator
also employs two uvm_tlm_analysis_fifos, to help simplify the implementation. This simple
tutorial will assist engineers to become acquainted and proficient with scoreboard development.

The techniques described in this paper can be used with either OVM or UVM verification
environments.

SNUG 2013 2 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

Table of Contents

1. Introduction ... 4

2. Scoreboard Fundamental Purpose... 4

3. New() Constructor -vs- Factory Creation ... 4

4. Key Scoreboard Issues .. 4

5. Analysis port - export - implementation path ... 5

6. Transaction Class Definition ... 6

7. Simple scoreboard architecture ... 8
7.1. Using uvm_tlm_analysis_fifos .. 12

7.2. Second scoreboard architecture .. 13

7.3. tb_scoreboard ... 14

7.4. sb_predictor .. 15

7.5. sb_calc_exp .. 17

7.6. sb_comparator .. 17

8. Conclusions ... 20

9. Acknowledgements ... 21

10. References ... 21

11. AUTHOR & CONTACT INFORMATION ... 21

Appendix ... 22

SNUG 2013 3 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

Table of Figures

Figure 1 - First scoreboard architecture block diagram using uvm_tlm_fifos 8

Figure 2 - First scoreboard architecture block diagram using uvm_tlm_analysis_fifos 12

Figure 3 - Second scoreboard architecture block diagram .. 13

Figure 4 - Scoreboard predictor block diagram .. 16

Figure 5 - Scoreboard comparator block diagram .. 18

Table of Examples

Example 1 - Transaction class defined using UVM filed macros .. 7

Example 2 - `uvm_analysis_imp_decl(_suffix) usage in port-type and write-method name 9

Example 3 - `uvm_analysis_imp_decl(_suffix) usage in port-name and port construction 9

Example 4 - Simple scoreboard example code ... 11

Example 5 - write_drv() method to store the expected output transaction 11

Example 6 - write_mon() method to store the actual output transaction 12

Example 7 - sb_scoreboard.sv - Scoreboard code with all required scoreboard components
properly included .. 15

Example 8 - sb_predictor.sv - Scoreboard predictor code with extern function sb_calc_exp()
reference .. 16

Example 9 - sb_calc_exp.sv - Example scoreboard external calc_exp() function definition 17

Example 10 - sb_comparator.sv - Scoreboard comparator code - no modification required 20

Example 11 - trans1 transaction class type w/ code to implement both copy() and output-
compare() methods.. 22

Example 12 - tb_scoreboard architecture implementation #1 - tb_scoreboard.sv 24

Example 13 - tb_scoreboard architecture implementation #2 - tb_scoreboard.sv file 25

Example 14 - tb_scoreboard architecture implementation #2 - sb_comparator.sv file 27

Example 15 - tb_scoreboard architecture implementation #2 - sb_predictor.sv file 28

Example 16 - tb_scoreboard architecture implementation #2 - sb_calc_exp.sv file 29

SNUG 2013 4 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

1. Introduction

There are many examples and descriptions of OVM/UVM basic testbench components, but good
tutorial materials related to the theories behind, and the development of OVM/UVM scoreboards
are somewhat scarce.

Although there are multiple scoreboard architectures that can be employed, there are two
fundamental architectures that, if well understood, can assist verification engineers to further
develop and expand additional testbench scoreboard architectures.

This paper describes fundamental OVM/UVM testbench architectures. The author welcomes
feedback and additional examples of high-level scoreboard architectures. I am sharing a couple
of the best fundamental techniques known and others are encouraged to share with me the best
techniques that they have discovered through their own experience.

2. Scoreboard Fundamental Purpose

The fundamental purpose of a scoreboard is to:
 Examine DUT inputs to predict the expected output.
 Compare the expected output to the actual output.
 Report the success or failure of those comparisons.

Outside of high tech environments, the term "scoreboard" conjures up the image of a sports
scoreboard that keeps track of runs, points or goals, but that is an incomplete description of
verification scoreboards. A verification scoreboard typically includes some way to predict
expected outputs, compare the expected outputs to actual outputs, and to keep track of pass and
failure rates identified in the comparison process.

3. New() Constructor -vs- Factory Creation

As a reminder, in OVM and UVM testbench environments, ports, and TLM fifos should be
new()-constructed, because you should never substitute different functionality for port or TLM
fifos, while all other UVM components and sequence_items/sequences should be created from
the factory so that the top-level test can make test-specific substitutions without modifying
multiple files (Cummings [1]).

4. Key Scoreboard Issues

There is certain basic functionality that should be included in every testbench scoreboard. Below
is a simplified list of that activity.

In a simple transaction based verification environment, scoreboard development includes:
(1) take a copy of the input transaction.
(2) extract the sampled input signals.
(3) use the extracted input signals to predict the expected output.
(4) take a copy the sampled actual output transaction.
(5) compare the expected transaction outputs to the actual transaction outputs.
(6) track success and failure rates from the comparison.

SNUG 2013 5 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

(7) report comparison failures as they are detected.
(8) report the final success/failure results at the end of the simulation.

In an architected transaction based verification environment, scoreboard development includes:
Predictor functionality
(1) take a copy of the input transaction.
(2) extract the sampled input signals.
(3) use the extracted input signals to predict the expected output.
(4) convert the extracted output back into a transaction.
Comparator functionality
(5) copy the expected transaction to the comparator.
(6) copy the sampled actual output transaction to the comparator.
(7) compare the expected transaction outputs to the actual transaction outputs.
(8) track success and failure rates from the comparison.
(9) report comparison failures as they are detected.
(10) report the final success/failure results at the end of the simulation.

One of the key techniques to simplify required scoreboard activity is to make sure the base
transaction was developed with functional, fully-coded, copy and compare methods. The copy
method is used to collect the input transaction and sampled-output transaction in both scoreboard
architectures, and is used to copy the expected output transaction from the predictor to the
comparator in the architected scoreboard environment. The compare method is used to do the
actual comparison between the expected and actual outputs.

The ability to include the comparison method in the transaction type definition greatly simplifies
the comparison task over older Verilog and SystemVerilog directed testing techniques. Now the
transaction data developer can specify what the important fields are that are required to be
compared in a self-checking testbench.

5. Analysis port - export - implementation path

A quick review of the analysis-transaction path may be useful and is included in this section.

Analysis ports are basically broadcast ports that write a transaction to the analysis port for any
component to take a copy. Unlike other Transaction Level Model (TLM) ports that require a one-
to-one, port-to-export or port-to-implementation, connection, analysis ports can broadcast to any
number of receivers including no receiver at all. The analysis port does not wait for any
confirmation of receipt of the broadcast transaction so each connected export or implementation
must provide a void write function that takes the transaction copy in zero time.

Engineers with Verilog testbench experience are accustomed to passing data from module output
ports through wire types to module input ports, making a direct connection between the modules.
SystemVerilog classes do not have traditional module input and output ports and are not
connected by wire data types, so classes have to pass copies of the transaction from one class to
another by way of TLM connections, which is similar to copying data from one module to
another without any module ports but instead by using hierarchical references.

SNUG 2013 6 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

Analysis TLM communication follows a path of the form: analysis-port to analysis port (if
needed) to one or more analysis exports, each connected to another analysis export (if needed)
and finally connected to an analysis implementation. The analysis implementation(s) is required
to provide a write void function(s) that takes a local copy of the broadcast transaction without
consuming any simulation time.

Examples of analysis paths, from simple to more complex) include:
analysis_port -> analysis_implementation (simplest)
analysis_port -> analysis_export ->analysis_implementation (common)
analysis_port (monitor) -> analysis_port (agent) -> analysis_export (scoreboard)
-> analysis_implementation (scoreboard predictor)

6. Transaction Class Definition

The transaction class includes definitions of all of the input and output data and control signals.
Input signals are typically declared to be rand variables (variables that can be randomized with
specified constraints), while outputs are typically not randomizable, since there is no need to
randomize data outputs that will never be driven to the DUT.

Three other important features of the transaction class include the definition of copy(),
compare() and convert2string() methods. The copy() and compare() methods can either be
defined by the user by doing a manual override of the do_copy() and do_compare() methods or
can be auto-generated by using UVM Field Macros.

class trans1 extends uvm_sequence_item;
 logic [15:0] dout;
 rand bit [15:0] din;
 rand bit ld, inc, rst_n;

 `uvm_object_utils_begin(trans1)
 `uvm_field_int(dout, UVM_ALL_ON)
 `uvm_field_int(din, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_field_int(ld, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_field_int(inc, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_field_int(rst_n, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_object_utils_end

 typedef enum {reset, load, incr, any} cmd_e;
 rand cmd_e cmd_type;

 constraint c1 {(cmd_type==reset) -> (rst_n =='0);}
 constraint c2 {(cmd_type==load) -> ({rst_n,ld} =='1);}
 constraint c3 {(cmd_type==incr) -> ({rst_n,ld,inc}==3'b101);}

 function new (string name="trans1");
 super.new(name);
 endfunction

 function string convert2string();
 string s;
 s = $sformatf("dout=%4h din=%4h ld=%b inc=%b rst_n=%b",
 dout, din, ld, inc, rst_n);

SNUG 2013 7 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

 return s;
 endfunction

 function string output2string();
 string s;
 s = $sformatf("dout=%4h", dout);
 return s;
 endfunction
endclass

Example 1 - Transaction class defined using UVM filed macros

The copy() method should copy all of the signals, inputs and outputs, while the compare()
method should typically only include the outputs; the signals that will be compared in the
scoreboard.

The convert2string() method is user-defined and should also be defined by the creator of the
transaction class. The convert2string() method is a courtesy provided by the transaction class
creator to allow all users of the transaction class to call this method to print out the current
contents of a transaction class. The convert2string() method is a "show my contents" method.

In addition to a convert2string() method, it is also useful to provide an output2string()
method that can be called by the comparison code whenever the predicted output does not match
the actual output. The predicted output should be reported using the convert2string() method
as it will show what the inputs were that were used to calculate the predicted output, while the
actual output transaction could be shown using the output2string() method. This way, the
error message can report: transaction inputs, predicted output and actual output as part of the
miscompare message. Having all of this information can be useful to help debug the problem.

One frequently asked question is, should the transaction also include the built-in error message to
be used by the comparator in the case of a mismatch between predicted input and actual outputs.
The answer is no. Exactly how the error is formatted and reported is the job of the engineer who
is coding the comparator. Having access to the transaction-convenience methods
convert2string() and output2string() is useful but imposing a requirement upon the
transaction coder to determine the output format of miscompare methods exceeds reasonable
expectations.

SNUG 2013 8 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

7. Simple scoreboard architecture

The simple scoreboard architecture uses a class extended from the uvm_scoreboard base class
and includes two uvm_analysis_imp (implementation) ports. A block diagram of the first
scoreboard architecture is shown in Figure 1.

Figure 1 - First scoreboard architecture block diagram using uvm_tlm_fifos

Implementation ports require the implementation of a method called write(), which must be a
void function (it must execute in 0-time and does not return a value). Since the simple
scoreboard architecture uses two implementation ports, in theory each implementation port must
have its own write() method but since there are two implementation ports, the simple
scoreboard would be required to have two methods both named write, which is illegal. To
address this problem, UVM provides a macro called `uvm_analysis_imp_decl(_suffix) that is
used to declare unique uvm_analysis_imp ports with unique names that include the _suffix
argument included in the macro call.

The macro suffix names are required in two places and typically used in other places. The
required places are:
(1) as part of the uvm_analysis_imp_suffix port declarations.
(2) as part of the write_suffix function name.

`uvm_analysis_imp_decl(_drv)
`uvm_analysis_imp_decl(_mon)

class tb_scoreboard extends uvm_scoreboard;
 `uvm_component_utils(tb_scoreboard)

 uvm_analysis_imp_drv #(...) ...;
 uvm_analysis_imp_mon #(...) ...;

SNUG 2013 9 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

 ...

 function void write_drv(...);
 ...
 endfunction

 function void write_mon(...);
 ...
 endfunction
 ...
endclass

Example 2 - `uvm_analysis_imp_decl(_suffix) usage in port-type and write-method name

The suffix names are typically also included in:
(1) the port name of the port declaration
(2) the port string name when the declared ports are constructed in the build_phase() method.

`uvm_analysis_imp_decl(_drv)
`uvm_analysis_imp_decl(_mon)

class tb_scoreboard extends uvm_scoreboard;
 `uvm_component_utils(tb_scoreboard)

 uvm_analysis_imp_drv #(trans_item, tb_scoreboard) aport_drv;
 uvm_analysis_imp_mon #(trans_item, tb_scoreboard) aport_mon;
 ...

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 aport_drv = new("aport_drv", this);
 aport_mon = new("aport_mon", this);
 endfunction
 ...

 function void write_drv(trans_item tr);
 ...
 endfunction

 function void write_mon(trans_item tr);
 ...
 endfunction
 ...
endclass

Example 3 - `uvm_analysis_imp_decl(_suffix) usage in port-name and port construction

Using the `uvm_analysis_imp_decl() macro allows the construction of two analysis
implementation ports with corresponding, uniquely named, write methods. The write methods
are called automatically whenever a source-component issues an analysis-port write command,
and the write methods have the responsibility to copy all of the required transaction fields that
will be used by the appropriate functionality. The copy operation is typically accomplished either
by direct assignment from the transaction or by calling the transactions own copy() method.

SNUG 2013 10 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

`uvm_analysis_imp_decl(_drv)
`uvm_analysis_imp_decl(_mon)
class tb_scoreboard extends uvm_scoreboard;
 `uvm_component_utils(tb_scoreboard)

 uvm_analysis_imp_drv #(trans1, tb_scoreboard) aport_drv;
 uvm_analysis_imp_mon #(trans1, tb_scoreboard) aport_mon;

 uvm_tlm_fifo #(trans1) expfifo;
 uvm_tlm_fifo #(trans1) outfifo;

 function new (string name, uvm_component parent); ...

 ...

 function void write_drv(trans1 tr);
 ...
 endfunction

 function void write_mon(trans1 tr);
 ...
 endfunction

 task run_phase(uvm_phase phase);
 trans1 exp_tr, out_tr;
 forever begin
 `uvm_info("scoreboard run task", "WAITING for expected output",
 UVM_DEBUG)
 expfifo.get(exp_tr);
 `uvm_info("scoreboard run task", "WAITING for actual output",
 UVM_DEBUG)
 outfifo.get(out_tr);
 if (out_tr.compare(exp_tr)) begin
 PASS();
 `uvm_info ("PASS ", $sformatf("Actual=%s Expected=%s \n",
 out_tr.output2string(), exp_tr.convert2string()), UVM_HIGH)
 end
 else begin
 ERROR();
 `uvm_error("ERROR", $sformatf("Actual=%s Expected=%s \n",
 out_tr.output2string(), exp_tr.convert2string()))
 end
 end
 endtask

 int VECT_CNT, PASS_CNT, ERROR_CNT;

 function void report_phase(uvm_phase phase);
 super.report_phase(phase);
 if (VECT_CNT && !ERROR_CNT)
 `uvm_info("PASSED",
$sformatf("\n\n\n*** TEST PASSED - %0d vectors ran, %0d vectors passed ***\n",
 VECT_CNT, PASS_CNT), UVM_LOW)
 else
 `uvm_error("FAILED",
$sformatf("\n\n\n*** TEST FAILED - %0d vectors ran, %0d vectors passed, %0d vectors failed ***\n",

SNUG 2013 11 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

 VECT_CNT, PASS_CNT, ERROR_CNT))
 endfunction

 function void PASS();
 VECT_CNT++;
 PASS_CNT++;
 endfunction

 function void ERROR();
 VECT_CNT++;
 ERROR_CNT++;
 endfunction
endclass

Example 4 - Simple scoreboard example code

This simple scoreboard also employs two uvm_tlm_fifo components named expfifo (expected
data transaction fifo) and outfifo (actual output transaction fifo). These TLM fifos store the
calculated and actual transaction data until both an expected output and actual output have been
stored.

The write_drv() method can either take a copy of the broadcast input transaction or it can
directly calculate the expected output in zero time, which is how the write_drv() method of
Example 5 is implemented. If a state value must be maintained from one clock cycle to the next,
then state variables can be declared as static (the next_dout value in this example must be kept
between cycles) to store the value between calls to the write_drv() method. After calculating
the expected output value, it is placed back into the transaction that was passed to this method,
overwriting the existing output values, and then the transaction is put into a TLM fifo using the
expfifo.try_put(tr) fifo-method call.

function void write_drv(trans1 tr);
 static logic [15:0] next_dout;
 logic [15:0] dout;
 //---
 `uvm_info("write_drv STIM", tr.convert2string(), UVM_HIGH)
 dout = next_dout;
 if (!tr.rst_n) {next_dout,dout} = '0;
 else if (tr.ld) next_dout = tr.din;
 else if (tr.inc) next_dout++;
 tr.dout = dout;
 void'(expfifo.try_put(tr));
endfunction

Example 5 - write_drv() method to store the expected output transaction

The job of the write_drv() method was to collect the input transaction, calculate an expected
output, copy the expected value into back into the transaction, then put the expected output
transaction into the expfifo TLM fifo.

The write_mon() method simply collects the broadcast output transaction and puts into a TLM
fifo using the outfifo.try_put(tr) fifo-method call as shown in Example 6.

SNUG 2013 12 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

function void write_mon(trans1 tr);
 `uvm_info("write_mon OUT ", tr.convert2string(), UVM_HIGH)
 void'(outfifo.try_put(tr));
endfunction

Example 6 - write_mon() method to store the actual output transaction

The job of the write_mon() method was to collect the output transaction, then put the actual
output transaction into the outfifo TLM fifo.

The run_phase() has a forever loop the gets the expected and actual-output transactions and
compares them with the used-defined compare method that should have been added to the
transaction code. If the transaction class was properly coded, the compare method only compares
the outputs between transactions, which makes it easy to do the comparison in the scoreboard.

The run_phase() code also includes calls to PASS() and ERROR() methods which increment the
vector count (VECT_CNT), passing vectors count (PASS_CNT) and failing vectors count
(ERROR_CNT) int-variables respectively.

The simple scoreboard also includes a report_phase() function to report pass-fail messages at
the end of the simulation. The report_phase() function does a simple determination of pass-
fail based on the vector counts generated in the run_phase().

The full tb_scoreboard code can be found in the appendix.

7.1. Using uvm_tlm_analysis_fifos

The simple scoreboard architecture can also be implemented using uvm_tlm_analysis_fifos
instead of uvm_tlm_fifos, as shown in Figure 2.

Figure 2 - First scoreboard architecture block diagram using uvm_tlm_analysis_fifos

SNUG 2013 13 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

The uvm_tlm_analysis_fifo component has a built-in analysis implementation port, so the
tb_scoreboard simply declares analysis exports instead of analysis implementation ports and
connects the analysis exports to the uvm_tlm_analysis_fifo components. When an analysis
port broadcasts a transaction to the tb_scoreboard, that transaction is passed through the
analysis exports directly to the connected analysis implementation port of the
uvm_tlm_analysis_fifo. The uvm_tlm_analysis_fifo has implemented the required
write() method, which stores the transaction into the fifo storage. The tb_scoreboard then
extracts the required transaction when it is needed for comparison.

Using the uvm_tlm_analysis_fifo in the tb_scoreboard eliminates the need to call the
`uvm_analysis_imp_decl() macros and corresponding port-restrictions and multiple-
write_suffix() methods.

These uvm_tlm_analysis_fifo components will be used in the second scoreboard architecture.

7.2. Second scoreboard architecture

A second approach to scoreboard development is to use the simple scoreboard architecture
shown in Figure 3.

Figure 3 - Second scoreboard architecture block diagram

The second testbench architecture uses a scoreboard that declares two uvm_analysis_exports,
which do not require write functions. The uvm_analysis_export is a pass-through port that
passes the transaction handles through to uvm_analysis_imp ports implemented in the
uvm_tlm_analysis_fifos, which provide the required write methods. By deferring the
implementation to the fifo uvm_analysis_imp ports, each uvm_tlm_analysis_fifo is a
separate object of this class and each only has one implementation port, therefore no multi-
write() method problem exists. Plus the uvm_tlm_analysis_fifo is pre-coded with the
necessary analysis implementation and corresponding write() method and includes an
unbounded, parameterized (to the transaction type) SystemVerilog mailbox that acts as a

SNUG 2013 14 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

blocking FIFO to be used by the comparator. A blocking FIFO, in mailbox-form, provides a
get() method that can be used by the comparator to "get" the predicted output (wait until a
predicted output is available before continuing execution of the comparator code; hence, the
comparator operation is blocked until the get() method succeeds), then the comparator can do a
"get" on the actual output uvm_tlm_analysis_fifo and wait (block) until an actual output
transaction has been sampled and stored into the actual-output uvm_tlm_analysis_fifo.

The biggest advantage of the second scoreboard architecture is that most of the code can be used
as-is and only requires the user to properly setup common transaction methods and to code an
external sb_calc_exp() method. Details are in the following sections.

The second scoreboard architecture consists of four files, three of which are fully coded:

tb_scoreboard.sv - No code modification required.
sb_predictor.sv - No code modification required.
sb_calc_exp.sv - External function called by the sb_predictor - user implementation

required.
sb_comparator.sv - No code modification required.

The second scoreboard architecture also requires that the transaction class include copy() and
compare() methods either user-defined or auto-generated using UVM field macros.

7.3. tb_scoreboard

The tb_scoreboard code is mostly just a wrapper that includes the necessary export-ports to
capture transactions from both stimulus monitor and sampling monitor, plus the predictor and
comparator. If the user's base transaction class is named trans1 or a factory substituted
derivative of trans1, this code can be used without modification. If the user would prefer a
different default name for the transaction class, simply do a global replacement of trans1 with
the user-named transaction class.

As shown in Figure 3, the tb_scoreboard in Example 7 includes declarations for two
uvm_analysis_export ports called axp_in (input analysis export) and axp_out (output analysis
export). The same example declares handles for the sb_predictor and sb_comparator
components, called prd and cmp respectively.

The tb_scoreboard includes the standard new() constructor that is included with almost all
UVM components.

In the build() method, the analysis exports are new()-constructed while the sb_predictor and
sb_comparator are factory-created.

As can be seen from Figure 3, three connections are required: (1) connect the axp_in analysis
export to the sb_predictor, (2) connect the sb_predictor to the sb_comparator, and (3)
connect the sb_comparator to the axp_out analysis export. This is all done in the connect()
method.

SNUG 2013 15 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

class tb_scoreboard extends uvm_scoreboard;
 `uvm_component_utils(tb_scoreboard)

 uvm_analysis_export #(trans1) axp_in;
 uvm_analysis_export #(trans1) axp_out;
 sb_predictor prd;
 sb_comparator cmp;

 function new(string name, uvm_component parent); ...

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 axp_in = new("axp_in", this);
 axp_out = new("axp_out", this);
 prd = sb_predictor::type_id::create("prd", this);
 cmp = sb_comparator::type_id::create("cmp", this);
 endfunction

 function void connect_phase(uvm_phase phase);
 axp_in.connect (prd.analysis_export);
 axp_out.connect (cmp.axp_out);
 prd.results_ap.connect(cmp.axp_in);
 endfunction
endclass

Example 7 - sb_scoreboard.sv - Scoreboard code with all required scoreboard components properly included

The sb_scoreboard code shown in Example 7 is relatively simple and requires no user
modification.

7.4. sb_predictor

The sb_predictor in this architecture is extended from the uvm_subscriber class, which
includes a built-in uvm_analysis_imp port. The built-in analysis implementation port named
analysis_export that is connected to the tb_scoreboard axp_in analysis export and is used to
capture the transaction that is passed to the tb_scoreboard from the analysis port on the
stimulus monitor.

The sb_predictor code is mostly a wrapper that includes a built-in uvm_analysis_imp port
that the necessary export-ports use to capture transactions from both stimulus monitor and
sampling monitor, plus the predictor and comparator. If the user's base transaction class is
trans1 or a factory substituted derivative of trans1, this code can be used without modification.

SNUG 2013 16 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

Figure 4 - Scoreboard predictor block diagram

class sb_predictor extends uvm_subscriber #(trans1);
 `uvm_component_utils(sb_predictor)

 uvm_analysis_port #(trans1) results_ap;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 results_ap = new("results_ap", this);
 endfunction

 function void write(trans1 t);
 trans1 exp_tr;
 //---------------------------
 exp_tr = sb_calc_exp(t);
 results_ap.write(exp_tr);
 endfunction

 extern function trans1 sb_calc_exp(trans1 t);
endclass

Example 8 - sb_predictor.sv - Scoreboard predictor code with extern function sb_calc_exp() reference

The sb_predictor has implemented a write() method (called when an analysis port.write()
method is externally executed), to copy the broadcast transaction and pass it to an
sb_calc_exp() method. Declaring the sb_calc_exp() method to be an extern method means

SNUG 2013 17 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

that this predictor can be used without modification (if trans1 is the transaction class name), and
the sb_calc_exp() method is the only scoreboard file that needs to be user modified.

7.5. sb_calc_exp

The sb_calc_exp() external method has been placed in a separate file and is the only file that
needs to be completed by the user for the second scoreboard architecture.

Inside of the external sb_calc_exp() function, the scoreboard creator must examine the
transaction inputs that were sampled on the posedge clk by the monitor and predict what the
outputs should be for those inputs. The transaction outputs that are passed to this function are
ignored - the outputs are being predicted in this function.

function trans1 sb_predictor::sb_calc_exp (trans1 t);
 static logic [15:0] next_dout;
 logic [15:0] dout;
 trans1 tr = trans1::type_id::create("tr");
 //---------------------------
 `uvm_info(get_type_name(), t.convert2string(), UVM_HIGH)
 // async reset: reset the next_dout AND current dout values -OR-
 // non-reset : assign dout values & calculate the next_dout values
 dout = next_dout;
 if (!t.rst_n) {next_dout,dout} = '0;
 else if (t.ld) next_dout = t.din;
 else if (t.inc) next_dout++;
 // copy all sampled inputs & outputs
 tr.copy(t);
 // overwrite the dout values with the calculated values.
 // dout values were either calculated in the previous cycle
 // or asynchronously reset in this cycle
 tr.dout = dout;
 return(tr);
endfunction

Example 9 - sb_calc_exp.sv - Example scoreboard external calc_exp() function definition

Using the copy() method provided by the transaction coder, all of the transaction inputs and
outputs are copied into the tr transaction object, then the predicted outputs are used to overwrite
the copied outputs in this transaction object. This transaction object now includes the inputs that
were captured on the posedge clk of the DUT and the corresponding expected output value(s).

7.6. sb_comparator

The sb_comparator in this architecture is extended from the uvm_component class. Two
analysis exports are declared and constructed in the sb_comparator and connected to two
declared and constructed uvm_tlm_analysis_fifo components. Each
uvm_tlm_analysis_fifo component includes a built-in uvm_analysis_imp port, and since the
tlm_fifos are connected directly to the sb_comparator analysis_exports, any transaction
broadcast to these external exports will be automatically put onto the respective tlm_fifo storage
arrays (SystemVerilog mailboxes).

SNUG 2013 18 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

The sb_comparator run_phase() has a forever loop that gets an expected transaction when
one is available (controlled by a blocking expfifo.get() call), then gets an actual transaction
with sampled outputs when one is available (controlled by a blocking outfifo.get() call), and
uses the user-defined compare() method from the transaction (if properly coded) to determine if
the actual output matches the expected output.

The sb_comparator code is mostly a wrapper that includes a built-in uvm_analysis_imp port
that the necessary export-ports use to capture transactions from both stimulus monitor and
sampling monitor, plus the predictor and comparator. If the user's base transaction class is
trans1 or a factory substituted derivative of trans1, this code can be used without modification.

Figure 5 - Scoreboard comparator block diagram

The comparator code is surprisingly simple in concept. The comparator will include two
uvm_analysis_export(s) and two uvm_tlm_analysis_fifo(s) (blocking FIFOs), one that is
used to store the predicted/expected transactions (exp_fifo), one that stores the actual output
transactions (outfifo) and a forever-running run_phase() task that blocks until both an
expected transaction and actual output transaction can be retrieved and compared. If the
transaction coder properly developed the transaction class such that only the output signals are
tested in a compare() method, the comparator code simply calls
if (out_tr.compare(exp_tr)) ... and the comparison is automatically executed. Doing
comparisons in Verilog directed tests was never this easy! The Verilog testbench coder had to
manually compare the predicted output signals to the actual output signals to determine if the
transaction had been successful. Verilog testbenches required real work!

SNUG 2013 19 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

class sb_comparator extends uvm_component;
 `uvm_component_utils(sb_comparator)

 uvm_analysis_export #(trans1) axp_in;
 uvm_analysis_export #(trans1) axp_out;
 uvm_tlm_analysis_fifo #(trans1) expfifo;
 uvm_tlm_analysis_fifo #(trans1) outfifo;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 axp_in = new("axp_in", this);
 axp_out = new("axp_out", this);
 expfifo = new("expfifo", this);
 outfifo = new("outfifo", this);
 endfunction

 function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 axp_in.connect (expfifo.analysis_export);
 axp_out.connect(outfifo.analysis_export);
 endfunction

 task run_phase(uvm_phase phase);
 trans1 exp_tr, out_tr;
 forever begin
 `uvm_info("sb_comparator run task",
 "WAITING for expected output", UVM_DEBUG)
 expfifo.get(exp_tr);
 `uvm_info("sb_comparator run task",
 "WAITING for actual output", UVM_DEBUG)
 outfifo.get(out_tr);
 if (out_tr.compare(exp_tr)) begin
 PASS();
 `uvm_info ("PASS ", $sformatf("Actual=%s Expected=%s \n",
 out_tr.output2string(),
 exp_tr.convert2string()), UVM_HIGH)
 end
 else begin
 ERROR();
 `uvm_error("ERROR", $sformatf("Actual=%s Expected=%s \n",
 out_tr.output2string(),
 exp_tr.convert2string()))
 end
 end
 endtask

 int VECT_CNT, PASS_CNT, ERROR_CNT;

 function void report_phase(uvm_phase phase);
 super.report_phase(phase);
 if (VECT_CNT && !ERROR_CNT)
 `uvm_info(get_type_name(),
 $sformatf(

SNUG 2013 20 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

"\n\n\n*** TEST PASSED - %0d vectors ran, %0d vectors passed ***\n",
 VECT_CNT, PASS_CNT), UVM_LOW)
 else
 `uvm_info(get_type_name(),
 $sformatf(
"\n\n\n*** TEST FAILED - %0d vectors ran, %0d vectors passed, %0d vectors failed ***\n",
 VECT_CNT, PASS_CNT, ERROR_CNT), UVM_LOW)
 endfunction

 function void PASS();
 VECT_CNT++;
 PASS_CNT++;
 endfunction

 function void ERROR();
 VECT_CNT++;
 ERROR_CNT++;
 endfunction
endclass

Example 10 - sb_comparator.sv - Scoreboard comparator code - no modification required

It should be noted that as long as four requirements have been met, the sb_comparator code can
be used as is without any modification. The four requirements are:

(1) The base class transaction class was called trans1 (if a different transaction class name
was used, simply replace the trans1 references with the new transaction class name).

(2) The transaction class has properly implemented the compare() method to only compare
the required output signals.

(3) The transaction class has properly implemented the convert2string() method to
display all transaction signals.

(4) The transaction class has properly implemented the output2string() method to only
display the compared transaction output signals.

8. Conclusions

The first scoreboard architecture shows how to handle a scoreboard that requires two analysis
implementation ports. The clear explanation of how this is accomplished will help any user who
wants to develop a scoreboard with two analysis implementation ports or any other testbench
component that might also require two analysis implementation ports. Good UVM verification
engineers should understand this architecture and the requirements that it imposes.

The second scoreboard architecture includes some very attractive features, which currently
makes it my own preferred architecture for developing a testbench scoreboard.

In the second scoreboard architecture, all of the scoreboard blocks are pre-coded and can be used
as-is, with the exception of the external sb_calc_exp() method. What is often perceived to be a
daunting task to create a tb_scoreboard has now been reduced to coding the correct prediction
logic in the sb_calc_exp() function of a single file. All other files can be copied and used as is.

SNUG 2013 21 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

9. Acknowledgements

I am grateful to my colleague and friend Al Czamara for his review and suggested improvements
to this paper.

10. References
[1] Clifford E. Cummings, “ The OVM/UVM Factory & Factory Overrides - How They Works - Why

They Are Important,” SNUG (Synopsys Users Group) 2012 (Santa Clara, CA), March 2012. Also
available at www.sunburst-design.com/papers

[2] Universal Verification Methodology (UVM) 1.1 Class Reference, May 2011, Accellera, Napa, CA.
www.accellera.org/home

[3] UVM source code (it is sometimes easier to grep the UVM source files than to search the UVM
Reference Guide)

11. AUTHOR & CONTACT INFORMATION

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 32 years of ASIC, FPGA and system design experience and 23 years of
SystemVerilog, synthesis and methodology training experience.

Mr Cummings has presented more than 100 SystemVerilog seminars and training classes in the
past nine years and was the featured speaker at the world-wide SystemVerilog NOW! seminars.

Mr Cummings has participated on every IEEE & Accellera SystemVerilog, SystemVerilog
Synthesis, SystemVerilog committee, and has presented more than 40 papers on SystemVerilog
& SystemVerilog related design, synthesis and verification techniques.

Mr Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Sunburst Design, Inc. offers World Class Verilog & SystemVerilog training courses. For more
information, visit the www.sunburst-design.com web site.
Email address: cliffc@sunburst-design.com

Last Updated: October, 2014

SNUG 2013 22 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

Appendix
This appendix contains fully coded scoreboard examples that correspond to the abbreviated
examples shown throughout this paper.

class trans1 extends uvm_sequence_item;
 logic [15:0] dout;
 rand bit [15:0] din;
 rand bit ld, inc, rst_n;

 `uvm_object_utils_begin(trans1)
 `uvm_field_int(dout, UVM_ALL_ON)
 `uvm_field_int(din, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_field_int(ld, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_field_int(inc, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_field_int(rst_n, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_object_utils_end

 typedef enum {reset, load, incr, any} cmd_e;
 rand cmd_e cmd_type;

 constraint c1 {(cmd_type==reset) -> (rst_n =='0);}
 constraint c2 {(cmd_type==load) -> ({rst_n,ld} =='1);}
 constraint c3 {(cmd_type==incr) -> ({rst_n,ld,inc}==3'b101);}

 function new (string name="trans1");
 super.new(name);
 endfunction

 function string convert2string();
 return($sformatf("dout=%4h din=%4h ld=%b inc=%b rst_n=%b",
 dout, din, ld, inc, rst_n));
 endfunction

 function string output2string();
 return($sformatf("dout=%4h", dout));
 endfunction
endclass

Example 11 - trans1 transaction class type w/ code to implement both copy() and output-compare() methods

SNUG 2013 23 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

`uvm_analysis_imp_decl(_drv)
`uvm_analysis_imp_decl(_mon)

class tb_scoreboard extends uvm_scoreboard;
 `uvm_component_utils(tb_scoreboard)

 uvm_analysis_imp_drv #(trans1, tb_scoreboard) aport_drv;
 uvm_analysis_imp_mon #(trans1, tb_scoreboard) aport_mon;

 uvm_tlm_fifo #(trans1) expfifo;
 uvm_tlm_fifo #(trans1) outfifo;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 aport_drv = new("aport_drv", this);
 aport_mon = new("aport_mon", this);
 expfifo = new("expfifo", this);
 outfifo = new("outfifo", this);
 endfunction

 function void write_drv(trans1 tr);
 static logic [15:0] next_dout;
 logic [15:0] dout;
 //---
 `uvm_info("write_drv STIM", tr.convert2string(), UVM_HIGH)
 dout = next_dout;
 if (!tr.rst_n) {next_dout,dout} = '0;
 else if (tr.ld) next_dout = tr.din;
 else if (tr.inc) next_dout++;
 tr.dout = dout;
 void'(expfifo.try_put(tr));
 endfunction

 function void write_mon(trans1 tr);
 `uvm_info("write_mon OUT ", tr.convert2string(), UVM_HIGH)
 void'(outfifo.try_put(tr));
 endfunction

 task run_phase(uvm_phase phase);
 trans1 exp_tr, out_tr;
 forever begin
 `uvm_info("scoreboard run task",
 "WAITING for expected output", UVM_DEBUG)
 expfifo.get(exp_tr);
 `uvm_info("scoreboard run task",
 "WAITING for actual output", UVM_DEBUG)
 outfifo.get(out_tr);
 if (out_tr.compare(exp_tr)) begin
 PASS();
 `uvm_info ("PASS ", $sformatf("Actual=%s Expected=%s \n",
 out_tr.output2string(),
 exp_tr.convert2string()), UVM_HIGH)
 end

SNUG 2013 24 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

 else begin
 ERROR();
 `uvm_error("ERROR", $sformatf("Actual=%s Expected=%s \n"
 out_tr.output2string(),
 exp_tr.convert2string()))
 end
 end
 endtask

 int VECT_CNT, PASS_CNT, ERROR_CNT;

 function void report_phase(uvm_phase phase);
 super.report_phase(phase);
 if (VECT_CNT && !ERROR_CNT)
 `uvm_info("PASSED",
$sformatf("\n\n\n*** TEST PASSED - %0d vectors ran, %0d vectors passed ***\n",
 VECT_CNT, PASS_CNT), UVM_LOW)
 else
 `uvm_info("FAILED",
$sformatf("\n\n\n*** TEST FAILED - %0d vectors ran, %0d vectors passed, %0d vectors failed ***\n",

 VECT_CNT, PASS_CNT, ERROR_CNT), UVM_LOW)
 endfunction

 function void PASS();
 VECT_CNT++;
 PASS_CNT++;
 endfunction

 function void ERROR();
 VECT_CNT++;
 ERROR_CNT++;
 endfunction
endclass

Example 12 - tb_scoreboard architecture implementation #1 - tb_scoreboard.sv

SNUG 2013 25 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

class tb_scoreboard extends uvm_scoreboard;
 `uvm_component_utils(tb_scoreboard)

 uvm_analysis_export #(trans1) axp_in;
 uvm_analysis_export #(trans1) axp_out;
 sb_predictor prd;
 sb_comparator cmp;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 axp_in = new("axp_in", this);
 axp_out = new("axp_out", this);
 prd = sb_predictor::type_id::create("prd", this);
 cmp = sb_comparator::type_id::create("cmp", this);
 endfunction

 function void connect_phase(uvm_phase phase);
 // Connect predictor & comparator to respective analysis exports
 axp_in.connect (prd.analysis_export);
 axp_out.connect (cmp.axp_out);
 // Connect predictor to comparator
 prd.results_ap.connect(cmp.axp_in);
 endfunction
endclass

Example 13 - tb_scoreboard architecture implementation #2 - tb_scoreboard.sv file

SNUG 2013 26 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

class sb_comparator extends uvm_component;
 `uvm_component_utils(sb_comparator)

 uvm_analysis_export #(trans1) axp_in;
 uvm_analysis_export #(trans1) axp_out;
 uvm_tlm_analysis_fifo #(trans1) expfifo;
 uvm_tlm_analysis_fifo #(trans1) outfifo;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 axp_in = new("axp_in", this);
 axp_out = new("axp_out", this);
 expfifo = new("expfifo", this);
 outfifo = new("outfifo", this);
 endfunction

 function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 axp_in.connect (expfifo.analysis_export);
 axp_out.connect(outfifo.analysis_export);
 endfunction

 task run_phase(uvm_phase phase);
 trans1 exp_tr, out_tr;
 forever begin
 `uvm_info("sb_comparator run task",
 "WAITING for expected output", UVM_DEBUG)
 expfifo.get(exp_tr);
 `uvm_info("sb_comparator run task",
 "WAITING for actual output", UVM_DEBUG)
 outfifo.get(out_tr);
 if (out_tr.compare(exp_tr)) begin
 PASS();
 `uvm_info ("PASS ", $sformatf("Actual=%s Expected=%s \n",
 out_tr.output2string(),
 exp_tr.convert2string()), UVM_HIGH)
 end
 else begin
 ERROR();
 `uvm_error("ERROR", $sformatf("Actual=%s Expected=%s \n",
 out_tr.output2string(),
 exp_tr.convert2string()))
 end
 end
 endtask

 int VECT_CNT, PASS_CNT, ERROR_CNT;

 function void report_phase(uvm_phase phase);
 super.report_phase(phase);
 if (VECT_CNT && !ERROR_CNT)
 `uvm_info(get_type_name(),
$sformatf("\n\n\n*** TEST PASSED - %0d vectors ran, %0d vectors passed ***\n",

SNUG 2013 27 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

 VECT_CNT, PASS_CNT), UVM_LOW)
 else
 `uvm_info(get_type_name(),
$sformatf("\n\n\n*** TEST FAILED - %0d vectors ran, %0d vectors passed, %0d vectors failed ***\n",
 VECT_CNT, PASS_CNT, ERROR_CNT), UVM_LOW)
 endfunction

 function void PASS();
 VECT_CNT++;
 PASS_CNT++;
 endfunction

 function void ERROR();
 VECT_CNT++;
 ERROR_CNT++;
 endfunction
endclass

Example 14 - tb_scoreboard architecture implementation #2 - sb_comparator.sv file

SNUG 2013 28 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

class sb_predictor extends uvm_subscriber #(trans1);
 `uvm_component_utils(sb_predictor)

 uvm_analysis_port #(trans1) results_ap;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 results_ap = new("results_ap", this);
 endfunction

 function void write(trans1 t);
 trans1 exp_tr;
 //---------------------------
 exp_tr = sb_calc_exp(t);
 results_ap.write(exp_tr);
 endfunction

 extern function trans1 sb_calc_exp(trans1 t);
endclass

Example 15 - tb_scoreboard architecture implementation #2 - sb_predictor.sv file

SNUG 2013 29 OVM/UVM Scoreboards
Rev 1.1 Fundamental Architectures

function trans1 sb_predictor::sb_calc_exp(trans1 t);
 static logic [15:0] next_dout;
 logic [15:0] dout;

 trans1 tr;
 tr = trans1::type_id::create("tr");
 //---------------------------
 `uvm_info(get_type_name(), t.convert2string(), UVM_HIGH)

 // async reset: reset the next_dout AND current dout values -OR-
 // non-reset : assign dout values & calculate the next_dout values
 dout = next_dout;
 if (!t.rst_n) {next_dout,dout} = '0;
 else if (t.ld) next_dout = t.din;
 else if (t.inc) next_dout = ++next_dout;

 // copy all sampled inputs & outputs
 tr.copy(t);

 // overwrite the dout values with the calculated values
 // dout values were either calculated in the previous cycle
 // or asynchronously reset in this cycle
 tr.dout = dout;
 return(tr);
endfunction

Example 16 - tb_scoreboard architecture implementation #2 - sb_calc_exp.sv file

This sb_calc_exp() method is used to test a simple program counter with asynchronous reset,
and synchronous load and increment control signals.

