
SNUG 2014 1 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

World Class Verilog & SystemVerilog Training

UVM Message Display Commands
Capabilities, Proper Usage and Guidelines

Clifford E. Cummings
Sunburst Design, Inc.

cliffc@sunburst-design.com
www.sunburst-design.com

ABSTRACT

UVM message display commands offer great flexibility in printing of UVM messages, but their
usage is frequently misunderstood. In fact, the first printings of two respected UVM texts
released in 2013 as well as the UVM Users Guide and UVM Reference Manual all either
incorrectly describe UVM verbosity, incorrectly use UVM verbosity settings in examples, or
both.

Many new users incorrectly assume the built-in verbosity settings represent printing priority, but
this is exactly backwards from reality.

With so many respected resources offering false or ill-advised guidelines regarding the use of
UVM verbosity, it is time to set the record straight, give a correct description of UVM verbosity
and suggest important UVM verbosity usage guidelines.

This paper details strategies and guidelines for proper usage of UVM display commands and the
built-in method convert2string().

SNUG-2014
Austin, TX

Voted Best Paper
1st Place

SNUG 2014 2 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

Table of Contents
1. Introduction ... 4

1.1. VCS version and execution command ... 4

2. Verilog $display .. 4

3. UVM reporting arguments ... 5

3.1. uvm_severity definitions .. 5

3.2. uvm_action definitions ... 5

3.3. UVM_VERBOSITY definitions .. 6

4. How to change verbosity settings .. 6

4.1. Verbosity command line switches.. 6

4.2. Changing verbosity using method calls ... 8

5. UVM messages and message-macros .. 9

6. UVM Message Guidelines... 9

7. Simulation reporting goals ... 10

7.1. Initial testing ... 10

7.2. Early testing .. 11

7.3. Routine testing.. 11

7.4. Block-level regression testing .. 11

7.4.1. Deep regression testing .. 12

8. The Verilog $display command should not be used in UVM ... 12

9. Changing the verbosity of simulations .. 13

9.1. Verbosity versus priority .. 13

10. Message catch & throw .. 13

11. Using get_type_name() .. 16

12. Conditional verbosity printing ... 17

13. transaction.print() -vs- transaction.sprint() .. 18

14. convert2string() .. 18

15. OVM libraries versus UVM libraries .. 19

16. UVM message documentation errors ... 19

16.1. Cooper - improper usage examples .. 20

16.2. Meade/Rosenberg - improper usage examples ... 22

16.3. UVM 1.2 Class Reference - improper usage examples .. 23

16.4. UVM 1.1 User's Guide - improper usage examples ... 23

17. UVM_VERBOSITY proposed extensions .. 24

SNUG 2014 3 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

17.1. `uvm_info() macro with default verbosity setting of UVM_MEDIUM 24

17.2. `uvm_warning() macro with default verbosity setting of UVM_NONE 24

17.3. New `uvm_info_pass() macro and UVM_PASS verbosity setting 25

17.4. New `uvm_debug() macro .. 25

18. Conclusions .. 26

19. Acknowledgements .. 26

20. References: ... 26

21. AUTHOR & CONTACT INFORMATION .. 27

22. Appendix .. 28

Table of Examples

Example 1 - test1_demoter class example .. 15

Example 2 - Extended class example with demoter enabled .. 15

Example 3 - test_report_catcher class example .. 16

Example 4 - get_*_name() method calls and printed output displays .. 17

Example 5 - Conditional display of test configuration and factory configuration 18

Example 6 - File: trans1.sv ... 28

Example 7 - File: CYCLE.sv .. 28

Example 8 - File: env.sv ... 28

Example 9 - File: run.f .. 29

Example 10 - File: tb_agent.sv ... 29

Example 11 - File: tb_driver.sv .. 29

Example 12 - File: tb_pkg.sv .. 30

Example 13 - File: tb_sequencer.sv .. 30

Example 14 - File: test1.sv.. 31

Example 15 - File: test1_demoter.sv .. 31

Example 16 - File: test1x.sv.. 32

Example 17 - File: top.sv .. 32

Example 18 - File: tr_sequence.sv .. 32

Example 19 - File: tb_agent2.sv ... 33

Example 20 - File: test2x.sv.. 33

Example 21 - File: test_report_catcher.sv .. 33

SNUG 2014 4 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

1. Introduction

UVM verbosity settings are NOT message priority settings!

Lest anyone fell asleep while reading the above text, I repeat,

UVM verbosity settings are NOT message priority settings!

UVM verbosity settings are the opposite of message priority settings.

A `uvm_info message labeled with UVM_LOW does not mean it is a low priority message that
should be rarely displayed. In fact UVM_LOW info-messages are some of the highest priority
messages and they are very difficult to disable.

This paper will properly describe UVM verbosity theory and recommend proper usage of UVM
verbosity settings.

1.1. VCS version and execution command

For this paper, all examples were run using VCS version H-2013.06-SP1, which includes UVM
library version 1.1d.

Compilations with a command file named run.f were done using the command:

vcs -sverilog -ntb_opts uvm -timescale=1ns/1ns -f run.f

Simulations were executed using the command:

simv +UVM_TESTNAME=<testname> <other + options as noted>

2. Verilog $display

Verilog engineers have customarily used the $display command to show information and report
results in a verification environment. Verilog engineers have frequently added additional
debugging display commands surrounded by `ifdef DEBUG to turn on and off additional debug
messages. Controlling the display and debug-display of messages has been an annoying and non-
trivial task that frequently required that a design be re-compiled between simulation runs.

UVM has a rich set of message-display commands and methods to change the number and types
of messages that are displayed without re-compilation of a design. The same message
mechanism also includes the ability to mask or change the severity of the message to adapt to the
required verification environment.

Unfortunately there is significant confusion on how the messages work and how the message
capabilities should be used. The confusion has been compounded by the release of two very good
UVM books in 2013 that improperly use the UVM messaging capabilities.

SNUG 2014 5 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

This paper will clarify the definitions of the UVM messaging capabilities and offer proven
recommendations to properly use those capabilities.

3. UVM reporting arguments

Many of the reporting commands take one or more of the following reporting arguments:
uvm_severity, uvm_action and uvm_verbosity. A brief description of these arguments and
their legal values is shown in the following three subsections.

3.1. uvm_severity definitions

There are four uvm_severity reporting definitions: UVM_INFO, UVM_WARNING, UVM_ERROR and
UVM_FATAL.

These severity definitions correspond to the UVM messages and macros by the same name.

3.2. uvm_action definitions

There are eight uvm_action reporting definitions and a description of how these actions work
can be found in the UVM-1-2 Class Reference Manual. That description is shown below.

Defines all possible values for report actions. Each report is configured to execute one or
more actions, determined by the bitwise OR of any or all of the following enumeration
constants.

UVM_NO_ACTION No action is taken

UVM_DISPLAY Sends the report to the standard output

UVM_LOG Sends the report to the file(s) for this (severity,id) pair

UVM_COUNT Counts the number of reports with the COUNT attribute. When this
value reaches max_quit_count, the simulation terminates

UVM_EXIT Terminates the simulation immediately.

UVM_CALL_HOOK Callback the report hook methods

UVM_STOP Causes $stop to be executed, putting the simulation into interactive
mode.

UVM_RM_RECORD Sends the report to the recorder

Of the above action settings, only UVM_NO_ACTION will be described and used in this paper. The
above uvm_action documentation from the UVM Class Reference is included to make the
reader aware of other possible actions.

SNUG 2014 6 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

3.3. UVM_VERBOSITY definitions

There are predefined UVM verbosity settings built into UVM (and OVM). These settings are
included in the UVM src/uvm_object_globals.svh file and the settings are part of the
enumerated uvm_verbosity type definition. The settings actually have integer values that
increment by 100 as shown below.

UVM_NONE = 0 (highest priority messages)
UVM_LOW = 100
UVM_MEDIUM = 200
UVM_HIGH = 300
UVM_FULL = 400
UVM_DEBUG = 500 (lowest priority messages)

By default, when running a UVM simulation, all messages with verbosity settings of
UVM_MEDIUM or lower (UVM_MEDIUM, UVM_LOW and UVM_NONE) will print.

To display more verbose simulations and the corresponding messages with verbosity settings of
UVM_HIGH, UVM_FULL and UVM_DEBUG, a new verbosity setting must be specified on the
simulation command line or using a verbosity setting embedded within one of the test
components.

The developers of OVM/UVM wisely chose verbosity settings with corresponding integer values
spaced by units of 100. Incrementing by 100 between the defined verbosity settings allows future
versions of UVM to add verbosity settings between the settings defined in all versions of OVM
and UVM through UVM version 1.2.

4. How to change verbosity settings

There are two principal approaches to select or modify verbosity settings: (1) command line
switches, and (2) coded method calls.

4.1. Verbosity command line switches

The primary advantage of using command line switches is that if the design has been compiled
into a simulation executable, such as the VCS simv executable, the design can be re-simulated
using a different verbosity setting without re-compiling the design and testbench.

The most common option is the command line switch:

+UVM_VERBOSITY=<verbosity>

Where <verbosity> is one of the following: UVM_NONE, UVM_LOW, UVM_MEDIUM, UVM_HIGH,
UVM_FULL, UVM_DEBUG, and the default setting is UVM_MEDIUM.

After compiling the design and testbench, to run a VCS simulation with a verbosity setting that
produces more messages (UVM_HIGH or lower), execute the command:

SNUG 2014 7 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

simv +UVM_VERBOSITY=UVM_HIGH

Additional command line options to target the verbosity of sepcific components are shown
below. If the output from a simulation seems to be excessively verbose, the simulation can be re-
run with command line switches to filter some of the noise that appears on the screen.

+uvm_set_verbosity=<comp>,<id>,<verbosity>,<phase>
+uvm_set_verbosity=<comp>,<id>,<verbosity>,time,<time>

For example, to change the verbosity to UVM_LOW for the uvm_test_top.e.agnt.drv
(tb_driver) in the run phase, which would suppress all messages with a verbosity of
UVM_MEDIUM or higher, execute the command:

simv +UVM_TESTNAME=test1
+uvm_set_verbosity=uvm_test_top.e.agnt.drv,DRIVER,UVM_LOW,run

You could also change the verbosity to UVM_LOW for all <id> values and for all components in the
tb_agent using the command:

simv +UVM_TESTNAME=test1
+uvm_set_verbosity=uvm_test_top.e.agnt.*,_ALL_,UVM_LOW,run

Note that the run_phase() is specified as run and not run_phase (the latter does not work).

Quoting from the UVM-1.2 Class Reference Manual:

<these switches> allow the users to manipulate the verbosity of specific components at
specific phases (and times during the “run” phases) of the simulation. The id argument
can be either _ALL_ for all IDs or a specific message id.

The UVM-1.2 Class Reference Manual also explains that use of wild cards to select multiple
message <id> values is not supported due to concerns over tool performance.

To be clear, wild cards are supported for selecting components. All of the following are
supported:

simv +UVM_TESTNAME=test1
+uvm_set_verbosity=uvm_test_top.e.agnt.drv,_ALL_,UVM_LOW,run

simv +UVM_TESTNAME=test1
+uvm_set_verbosity=uvm_test_top.e.agnt.*,_ALL_,UVM_LOW,run

simv +UVM_TESTNAME=test1 +uvm_set_verbosity=*.agnt.*,_ALL_,UVM_LOW,run

Since your tests will be recognized as uvm_test_top, and since you frequently use the same
environment, wild card usage is often a convenient shorthand to select components under the
test/environment as shown in the last simulation command above.

The UVM-1.2 Class Reference Manual further clarifies argument priorities by noting:

SNUG 2014 8 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

Settings for non-”run” phases are executed in order of occurrence on the command line.
Settings for “run” phases (times) are sorted by time and then executed in order of
occurrence for settings of the same time.

Another command line option to target the messages of sepcific components is shown below. If
the output from a simulation seems to be excessively verbose, the simulation can be re-run with
switches to filter some of the noise that appears on the screen.

+uvm_set_action=<comp>,<id>,<severity>,<action>

For example, to suppress all messages reported from the uvm_test_top.e.agnt.drv
(tb_driver), execute the command:

simv +UVM_TESTNAME=test1
+uvm_set_action=uvm_test_top.e.agnt.drv,_ALL_,_ALL_,UVM_NO_ACTION

-or-

simv +UVM_TESTNAME=test1 +uvm_set_action=*.drv,_ALL_,_ALL_,UVM_NO_ACTION

As another example, to suppress all UVM_INFO messages reported from the
uvm_test_top.e.agnt.drv (tb_driver), but still allow UVM_WARNING, UVM_ERROR and
UVM_FATAL messages to be displayed, execute the command:

simv +UVM_TESTNAME=test1 +uvm_set_action=*.drv,_ALL_,UVM_INFO,UVM_NO_ACTION

As shown in the preceding examples, the _ALL_ UVM keyword can be used for all <id> and for
all <severity> values.

4.2. Changing verbosity using method calls

The uvm_component base class includes a hierarchical reporting interface with set_report_*
methods that are applied to a component or recursively to the specified component and all child
subcomponents.

The primary advantage of using verbosity method calls is that it is relatively simple to extend a
test (or another testbench component) and include verbosity method calls that selectively change
verbosity settings for specific components or entire component hierarchies.

Most of the following information is taken nearly verbatim from the UVM-1.2 Class Reference
Manual and more details can be found in that Reference Manual.

The following methods recursively apply the specified verbosity to messages that include the
given severity, id, or severity-id pair.

set_report_id_verbosity_hier
set_report_severity_id_verbosity_hier

SNUG 2014 9 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

The following methods recursively apply the specified action to messages that include the given
severity, id, or severity-id pair.

set_report_severity_action_hier
set_report_id_action_hier
set_report_severity_id_action_hier

The following methods recursively apply the specified FILE descriptor to messages that include
the given severity, id, or severity-id pair.

set_report_default_file_hier
set_report_severity_file_hier
set_report_id_file_hier
set_report_severity_id_file_hier

The following method recursively sets the maximum verbosity level to messages for this
component and all those below it.

set_report_verbosity_level_hier

5. UVM messages and message-macros

There are two forms of message-display commands included in UVM: built-in UVM message-
methods and UVM message-macros. Although there is disagreement between simulation
vendors on the usefulness and efficiency of some of the UVM macros [1], there is universal
agreement that UVM-message macros should be used over UVM message methods.

The interesting fact is that UVM message-macros are more simulation efficient than the UVM
message methods even though they call the built-in UVM message methods. How is this
possible? The UVM message methods perform time consuming string processing on the user-
specified strings, whether the message will be displayed or not. The UVM message macros first
check simulation verbosity settings to determine if the string will be printed and if the message
will not be printed, the message method is not called; hence, the expensive string processing is
avoided.

6. UVM Message Guidelines

(1) Quit using the $display command!
(2) Use the message macros, not the message methods.
(3) Use `uvm_info("id", "msg", UVM_NONE) for only the most important messages that

should NEVER be filtered, such as test-passing messages.
(4) Use `uvm_info("id", "msg", UVM_LOW) for only very important messages that should

be rarely filtered. These might include block-level test-passing messages.
(5) Use `uvm_info("id", "msg", UVM_MEDIUM) as your new default $display command.

These messages will always be displayed by default but are easily disabled.

SNUG 2014 10 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

(6) Use `uvm_info("id", "msg", UVM_HIGH) to display information that should only be
shown occasionally.

(7) Use `uvm_info("id", "msg", UVM_FULL) to display design status and UVM testbench
status messages.

(8) Use `uvm_info("id", "msg", UVM_DEBUG) to display debug messages added to the
design or UVM testbench.

(9) Use the `uvm_fatal("id", "msg"), and `uvm_error("id", "msg"), macros as
appropriate - consider these to be non-maskable messages.

(10) Use the `uvm_warning("id", "msg") macro very sparingly. Unfortunately, these
warnings cannot be disabled using verbosity settings.

(11) Add the UVM-standard convert2string() method to all of your transaction data
classes.

(12) Project and IP providers should implement an intelligent "ID" scheme to help modify
severities and mask unwanted messages.

Each of these guidelines will be discussed in detail in this paper.

Who knew message guidelines could be so complex! Following these guidelines will save time
and trouble later in the project since most projects eventually try to apply some form of
intelligent message mechanism after it is difficult to implement a forward thinking approach.

7. Simulation reporting goals

To properly take advantage of the UVM verbosity capabilities, it is important to set goals that are
related to different phases of testing and simulation. Below are suggested goals and
recommendations regarding the use of UVM verbosity.

7.1. Initial testing

When executing initial testing of the design and testbench, it is sometimes useful to see proper
completion of each UVM phase. These are basically status messages to show that the testbench
has been properly assembled and is functioning as expected. UVM phase status messages should
have been added using a verbosity setting of UVM_FULL, to ensure that these messages are off by
default and only on when doing early testing of the verification environment by using the
simulation command line switch:

+UVM_VERBOSITY=UVM_FULL

UVM_FULL is level 400 and should be used to increase report verbosity by showing UVM phase
status information as well as both failing and passing transaction information.

SNUG 2014 11 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

7.2. Early testing

When doing early testing of both the design and testbench, it is often desirable to see messages
about passing transactions as well as failing transactions. Viewing reports about passing
transactions gives greater confidence that the design and testbench are performing as expected.
Showing passing transaction information will significantly increase the volume of messages
displayed during simulation, so this should not be the default mode. One should be able to turn
on these messages by using the simulation command line switch:

+UVM_VERBOSITY=UVM_HIGH

UVM_HIGH is level 300 and should be used to increase report verbosity by showing both failing
and passing transaction information, but does not show annoying UVM phase status information
after it has been established that the UVM phases are working properly.

7.3. Routine testing

Routine testing includes messages that you would normally display using a Verilog $display
command.

+UVM_VERBOSITY=UVM_MEDIUM

UVM_MEDIUM is level 200 and should be used to as the default $display command. If an engineer
does not select a verbosity setting, these messages will print by default (roughly equivalent to a
default $display command). This verbosity setting should not be used for any debugging
messages or for standard test-passing messages.

7.4. Block-level regression testing

Any display macro with a verbosity setting of UVM_LOW should be considered a message that is
difficult to turn off, and thus should be reserved for only very important messages. Turning off
UVM_LOW info messages can typically only be accomplished by setting a command-line verbosity
setting of 99 or less, and there is only one standard verbosity setting that meets this criteria and
that is UVM_NONE. This is why most of the examples in existing texts that include UVM_LOW as a
verbosity setting are so wrong! It is hard to "silence" UVM_LOW messages.

The other way to disable UVM_LOW info messages is to trap the messages and change their
verbosity setting in each test, which is a tedious process.

+UVM_VERBOSITY=UVM_LOW

UVM_LOW is level 100 and should be used to reduce report verbosity and only shows important
messages

SNUG 2014 12 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

7.4.1. Deep regression testing

Any display macro with a verbosity setting of UVM_NONE cannot be turned off except by
intercepting the message the disabling it.

Another common misconception about UVM is related to tests extended from the uvm_test base
class. Engineers often ask, "how do I run multiple tests (extended from uvm_test)?" the answer is
it cannot be done. You can only run one test from the command line using
+UVM_TESTNAME="testname_string"

UVM tests, extended from the uvm_test base class, should be considered regression suites. Users
should also consider creating three or more levels of sequences, extended from the
uvm_sequence base class, following these simplified guidelines:
(1) Level 1 sequences: Create basic tests that run a few transactions (extended from the
uvm_sequence_item base class) using sequences.
(2) Level 2 sequences: Create larger tests that run Level 1 sequences. A Level 2 sequence is a
sequence of sequences (Level 1 sequences). Level 2 sequences should be considered "tests" and
multiple Level 2 sequences can be called from a top-level test. This is how you can run multiple
tests. A Level 2 sequence is what has traditionally been considered a test by Verilog verification
engineers.
(3) Level 3 sequences: Create block-level or system-level regression suites of Level 2 Sequences
using a Level 3 sequence. Level 3 sequences should be considered "regression suites" and one or
more Level 3 sequences can be called from a top-level test to make execution of a regression
suite possible by using the standard +UVM_TESTNAME simulation switch. These regression suites
should use the non-maskable verbosity setting of UVM_NONE to show pass/fail status of each Level
3 regression suite.

+UVM_VERBOSITY=UVM_NONE

UVM_NONE is level 0 and should be used to reduce report verbosity to a bare minimum of vital
simulation regression suite messages.

8. The Verilog $display command should not be used in UVM

The Verilog $display command is simple but inadequate for proper message strategies.

One source suggested that $display only be used for table headers. I believe this is wrong.
Using the $display command will indeed print table headers but the table headers cannot be
turned off using verbosity settings.

Guideline: Use `uvm_info() to print table headers. Use the id-string "HDR" and use the same
verbosity setting that is used to print the table entries.

SNUG 2014 13 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

If the table entries use a verbosity setting of UVM_HIGH, one should print the table headers using
UVM_HIGH. If the table entries use UVM_LOW, print the table headers using UVM_LOW. Using the
same verbosity setting for both table headers and table entries will cause headers and table
entries to print or not-print in a coordinated fashion.

Guideline: Quit using the $display command in UVM testbenches.

$display is a non-maskable print command that requires recompilation of a design to disable or
enable. The $display command should be considered a forbidden command in UVM
verification environments.

9. Changing the verbosity of simulations

One of the advantages offered by UVM is the ability to re-run a simulation with more or fewer
simulation messages without the need to re-compile the design or testbench. The command line
option that is used to re-run a simulation without re-compiling the design is the
+UVM_VERBOSITY=UVM_<verbosity_setting>

9.1. Verbosity versus priority

With UVM messages, the user specifies verbosity, not priority! The user specifies just how
verbose the message reporting should be and which messages should be included with each
simulation run. Users do not directly specify message priority.

Many new UVM users mistakenly believe that UVM_HIGH means that a message has high priority
and that UVM_LOW means that a message has low priority, which is exactly backwards from
reality.

Verbosity refers to the number of messages that should be reported during a simulation. Highly
verbose (UVM_HIGH) simulations would display a large number of messages, while minimally
verbose (UVM_LOW) simulations would show only a small number of messages.

10. Message catch & throw

There are times when Verification IP includes code that issues a `uvm_fatal message that will
abort the simulation. Although the message is both correct and useful, it may be appropriate to
display the message without aborting the simulation. One example would be a test-sequence that
is checking that an error occurred when certain error conditions were issued. In examples like
this, the verification engineer would like to trap the fatal error and demote the message to a
`uvm_error that would continue to report the error without aborting the test-sequence.

UVM provides a built-in callback mechanism to demote or modify specified messages. The user
can define a test-demoter class that is an extension of the uvm_report_catcher class. The

SNUG 2014 14 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

extended demoter class overrides the catch() method of the uvm_report_catcher class and
this method returns an enumerated variable of the action_e type. The action_e values that can
be returned are either CAUGHT or THROW.

The uvm_report_catcher has many builtin methods and the reader should examine the UVM
Class Reference Manual to discover all of the capabilities, but this paper will show examples
using some of the more common uvm_report_catcher methods.

To test the current message state inside of the catch() method that is inside each registered
report catcher, you can use the following methods:

get_severity Returns the uvm_severity of the message that is currently
being processed.

get_verbosity Returns the verbosity of the message that is currently
being processed.

get_id Returns the string id of the message that is currently
being processed.

get_message Returns the string message of the message that is currently
being processed.

Other message-testing methods include: get_context, get_client, get_action, get_fname,
get_line and get_element_container.

Each catch() method can execute the following methods:

set_severity Change the severity of the message to severity.
set_verbosity Change the verbosity of the message to verbosity.
set_message Change the text of the message to message.
set_action Change the action of the message to action.

Other execution methods include: set_id, set_context, add_int, add_string and
add_object.

There are also a number of debug and reporting methods, including: uvm_report_fatal,
uvm_report_error, uvm_report_warning, uvm_report_info, uvm_report, issue and
summarize .

The first report catcher example is a demoter that catches any UVM_FATAL message and uses the
set_severity() method to change the caught message and reissue the message with UVM_ERROR
severity.

class test1_demoter extends uvm_report_catcher;
 ...

 function action_e catch();
 if(get_severity() == UVM_FATAL) begin
 set_severity(UVM_ERROR);
 `uvm_info("demoter", "Caught FATAL / demoted to ERROR", UVM_MEDIUM)
 end
 //return CAUGHT;

SNUG 2014 15 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

 return THROW;
 endfunction
endclass

Example 1 - test1_demoter class example

As shown in the test1_demoter class of Example 1, the get_severity() command is
intercepting UVM_FATAL messages, changing the severity using the set_severity(UVM_ERROR)
method call, printing a "… FATAL / demoted …" message and then throwing the new message
for display (return THROW). It is not required to print a message using the `uvm_info() macro,
in which case the test-and-set command would simply take the form:

if(get_severity() == UVM_FATAL) set_severity(UVM_ERROR);

The above demoter is demoting all UVM_FATAL messages, but it is also possible to select fatal
messages from specific components by further qualifying the get_severity() if-test by adding
a get_id() test as shown below:

if(get_severity() == UVM_FATAL && get_id() == "AGENT")
 set_severity(UVM_ERROR);

There are many industry examples where the demoter is placed in the top module, but I prefer
to add the demoter to extended test classes, making it possible to run the original test with the
fatal-abort action, and then run the extended class that catch-es the UVM_FATAL message and
performs a throw-action to demote the UVM_FATAL to a UVM_ERROR of the same message.

class test1x extends test1;
 ...
 // env e; // inherited from the test1 class
 test1_demoter demoter;
 ...

 function void build_phase(uvm_phase phase);
 demoter = test1_demoter::type_id::create("demoter");
 uvm_report_cb::add(e, demoter);
 super.build_phase(phase);
 endfunction
endclass

Example 2 - Extended class example with demoter enabled

As shown in the extended test1x class of Example 2, a test1_demoter demoter handle is
declared at the top of the class, then in the build_phase() method, the demoter is factory-
created followed by a call to the uvm_report_cb::add(e, demoter) static method to add the
demoter to the environment using the e handle inherited from the test1 class. The fully coded
test1x.sv file is shown in Example 16 in the Appendix.

For reasons that I do not fully understand, the demoter in the examples of my extended test class
required the creation of the demoter and a call to the uvm_report_cb() method BEFORE calling
super.build_phase(). Calling super.build_phase() first or deleting the call to
super.build_phase() did not work.

SNUG 2014 16 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

Perhaps Verification IP only reports warnings or errors and continues the simulation when the
verification engineer would like to promote the warnings or errors to abort the simulation with a
fatal error.

The second report catcher of Example 3 uses the get_severity() and get_id() state tests to
catch any UVM_WARNING message in the tb_agent with <id> "AGENT" and uses the
set_severity() and set_message() methods to change the caught message and reissue the
message with UVM_ERROR severity and "Caught AGENT WARNING / promoted to ERROR"
message.

class test_report_catcher extends uvm_report_catcher;
 ...

 // This example promotes "AGENT" warnings to error messages
 function action_e catch();
 if(get_severity() == UVM_WARNING && get_id() == "AGENT") begin
 set_severity(UVM_ERROR);
 set_message("Caught AGENT WARNING / promoted to ERROR");
 end
 return THROW;
 endfunction
endclass

Example 3 - test_report_catcher class example

The extended report catcher catch() method must either return(THROW), which basically
executes the message per the settings in the catch() method, or catch() must retun(CAUGHT),
which appears to show how many messages of each type (FATAL, ERROR and WARNING) are
observed by the simulation, but then halts report processing with the first return(CAUGHT)
command executed. At the time of this writing, I had not found a compelling reason to use the
return(CAUGHT) command.

11. Using get_type_name()

It is a somewhat common practice to display messages with an <id> set to get_type_name().
This may be a verbose way to request information that is already provided by default with
message macros.

The get_type_name() macro returns the class type name, which is often added in abbreviated
form by the user in the `uvm_info messages, but all of the message macros already return the
full test path name by default, so the get_type_name(), or the other common name-type mthod
calls, get_name() and get_full_name(), offer little additional information or advantage to the
verification engineer while debugging.

Consider the slightly modified start_of_simulation_phase() method from the env class
shown in Example 8 of the Appendix. The modification is that four `uvm_error messages are

SNUG 2014 17 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

displayed, the first with a user defined <id>, and the remaining three with builtin
"get_*_name()" method calls. The default output from this simulation run shows the four env
error messages and all four already include the same information as the get_full_name()
method call.

function void start_of_simulation_phase(uvm_phase phase);
 `uvm_error("ENV", "env error")
 `uvm_error(get_name(), "env error")
 `uvm_error(get_full_name(), "env error")
 `uvm_error(get_type_name(), "env error")
endfunction

UVM_ERROR env.sv(15) @ 0: uvm_test_top.e [ENV] env error
UVM_ERROR env.sv(16) @ 0: uvm_test_top.e [e] env error
UVM_ERROR env.sv(17) @ 0: uvm_test_top.e [uvm_test_top.e] env error
UVM_ERROR env.sv(18) @ 0: uvm_test_top.e [env] env error

Example 4 - get_*_name() method calls and printed output displays

Adding get_type_name() to message macros is a somewhat verbose way to request information
that is largely already displayed. I typically discourage using get_type_name() as the <id> field
of a message macro.

12. Conditional verbosity printing

A useful debugging strategy is to display the entire UVM testbench structure and factory
configuration before entering the test-run_phase(s). The ideal place to display this information
is after the test has been built, connected and elaborated, or in other words, in the test's
start_of_simulation_phase() method. The start_of_simulation_phase() method is
basically a pre-run phase that runs after the build_phase(), connect_phase() and
end_of_elaboration_phase() have completed for the entire testbench construction.

The verification engineer will not want this information to be routinely displayed during
regression runs, after the testbench structure is working, so it is best to only display this
information when a verbosity setting of UVM_HIGH or higher is selected.

Calling this.print from the test causes an unconditional display of the entire UVM testbench
structure, while the this.sprint command can be called from `uvm_info with a corresponding
verbosity setting: `uvm_info("TCFG", this.sprint(), UVM_HIGH)

There is also a factory.print command that causes an unconditional display of the
components, transactions and sequences registered with the factory, including any active
overrides[3] but there is no corresponding factory.sprint command that could be put under
verbosity control from a `uvm_info command. However there is another technique to control the
printing of factory information that can be controlled by verbosity settings.

A verification engineer can use a UVM method to explicitly check what the current verbosity
setting is. The uvm_report_enabled() function will return a 0 or a 1 to inform the user if the

SNUG 2014 18 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

component is currently configured to print messages at the verbosity level selected from the
command line. Code can then explicitly check the current verbosity setting before calling
functions to display information (factory.print(), etc.).

 function void start_of_simulation_phase(uvm_phase phase);
 super.start_of_simulation_phase(phase);
 ...
 if (uvm_report_enabled(UVM_HIGH)) begin
 this.print;
 factory.print;
 end
 endfunction

Example 5 - Conditional display of test configuration and factory configuration

The code in Example 5 checks to see if UVM_HIGH messages should be printed. If they should be
printed, then both the test configuration and the factory configuration information will be
printed. I recommend using this block of code in a top-level test as shown in the fully coded
test1.sv code of Example 14 in the Appendix of this paper.

13. transaction.print() -vs- transaction.sprint()

Calling the transaction.print() method is discouraged as it cannot be put under verbosity
control.

Calling the transaction.sprint() method is a function that returns a string that can be called
from the message macros. If you must call a transaction printing method, use verbosity
controlled transaction.sprint() over the unconditional transaction.print().

The standard print() methods, by default, print transactions in a rather verbose tabular format
and consume significant simulation time to format. The tabular form of the standard print()
method also consumes large amounts of display space each time it is called on a transaction,
which generates a large amount of transcript data that has to be manually analyzed. In general it
is better to use transaction.convert2string().

14. convert2string()

The convert2string() standard transaction method should be implemented for all transaction
classes. The convert2string() method is user defined and formatted, and consumes less
simulation processing time and typically far fewer printed lines of code than the standard
print() method.

Whoever is in charge of implementing the transaction class should also implement the built-in
convert2string() method. This is a common courtesy to the rest of the verification team. See
[Cummings SNUG-SV 2014] for more details and recommendations.

SNUG 2014 19 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

15. OVM libraries versus UVM libraries

A somewhat amusing exercise is to run an old OVM testbench using the verbosity setting of
OVM_DEBUG. Using this setting will cause all user messages and a large number of stray OVM
library-debug messages to be displayed.

This exercise shows that the old OVM library was debugged using verbosity settings of
OVM_DEBUG and that some of those messages were forgotten and left in the released OVM library.

This situation actually causes me to suggest an enhancement to UVM and the current
UVM_VERBOSITY definitions, specifically, that a new definition of UVM_LIB_DEBUG with integer
setting of 600 be added to the standard verbosity settings. All library development messages
should use the UVM_LIB_DEBUG verbosity setting and it may even be beneficial to leave some of
those messages in the released UVM library if the information might prove useful to verification
engineers.

By using +UVM_VERBOSITY=UVM_DEBUG the user would only see the user-added debug messages
(level 500 and lower) while adding +UVM_VERBOSITY=UVM_LIB_DEBUG would show all of the
users defined messages and any useful library debug messages during simulation (level 600 and
lower).

Users would be cautioned to never use UVM_LIB_DEBUG in their own code. The setting, per
methodology guidelines, would be reserved for UVM library development only.

The UVM_LIB_DEBUG verbosity setting would be fully backward compatible with existing UVM
simulations since nobody currently uses a verbosity setting of greater than 500 (UVM_DEBUG).

16. UVM message documentation errors

Common UVM message documentation errors fall into three categories:
(1) Description and default documentation errors.
(2) Misleading or erroneous descriptions.
(3) Improper message usage in documented examples.

There were two very good UVM books that were released in 2013, but both books largely use
UVM_LOW for verbosity settings, which are difficult to disable. UVM_LOW should not be the default
verbosity setting. Both books also have either erroneous or misleading verbosity descriptions. It
is hard to fault Cooper and Meade/Rosenberg for the improper usage because the UVM User's
Guide and UVM Class Reference Manual also include the same improper usage.

Description errors or misleading text from the 2013 books include:

Cooper - pg. 28 - "The default verbosity is UVM_LOW." (This is wrong - should be UVM_MEDIUM)

SNUG 2014 20 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

Meade/Rosenberg - pg. 81 (end of 1st paragraph) - "By default, UVM will print messages with
the verbosity UVM_MEDIUM (200) and lower. (This is correct)

Meade/Rosenberg - pg. 81 (beginning of 1st paragraph) - "The verbosity level is an integer value
to indicate the relative importance of the message." (This is wrong or at least misleading).

Meade/Rosenberg - pg. 81 (Section 4.8.2) - "UVM_LOW -- For maskable messages that are printed
only rarely during simulation. (This is VERY misleading!)

The Meade/Rosenberg description of UVM_LOW is attempting to tell the reader that only important
messages, ones that print rarely and should almost always be displayed, should use the UVM_LOW
verbosity setting. Unfortunately, the wording suggests that messages that you only want to be
printed rarely and masked most of the time should use UVM_LOW. There is no mention of the
importance of the messages.

In the following subsections of the 2013 books and the UVM standard documentation, I cite
examples that, in my opinion, improperly use the wrong verbosity setting. Readers are left to
make their own judgment about the examples cited.

16.1. Cooper - improper usage examples

All citations are for the 2013 printing of the book. The book has very good beginner content but
most verbosity settings should be modified as shown below.

The following cited examples should replace UVM_LOW with UVM_MEDIUM. The examples do not
merit the use of the high-priority UVM_LOW verbosity setting but instead should be displayed by
default and easily suppressed using the command line option: +UVM_VERBOSITY=UVM_LOW

pp. 27, 32 and 92 - function displayAll - this is a transaction display (better yet, put this into a
convert2string() method inside of the transaction and each call to convert2string() can
select the appropriate verbosity setting for the transaction data being displayed). On pp. 32 and
92, this should also be a function, not a task (messages do not consume time).

The following cited examples should replace UVM_LOW with UVM_HIGH since these are passing
messages or useful status messages that should be off by default and only enabled by using the
command line option: +UVM_VERBOSITY=UVM_HIGH

pg. 21 - top of page - UVM testbench topology (off by default but easily enabled)
pg. 35 - task reset - useful runtime message (off by default but easily enabled)
pg. 37 - task reset - useful runtime message (off by default but easily enabled)
pg. 70 - In function end_of_elaboration_phase - UVM testbench topology (off by default but
easily enabled - this should not use UVM_DEBUG)
pg. 93 - task reset - useful runtime message (off by default but easily enabled)
pg. 94 - task reset - useful runtime message (off by default but easily enabled)

SNUG 2014 21 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

pg. 95 - task reset - useful runtime message (off by default but easily enabled)

The following cited examples should replace UVM_LOW with UVM_FULL since these are just UVM
testbench status messages that should be off by default and only enabled by using the command
line option: +UVM_VERBOSITY=UVM_FULL

pg. 19 - In function build_phase - UVM testbench status
pg. 20 - In function connect_phase - UVM testbench status
pg. 21 - In function build_phase - UVM testbench status
pg. 21 - In function start_of_simulation_phase - UVM testbench status
pg. 34 - In function build_phase - UVM testbench status
pg. 36 - In function build_phase - UVM testbench status
pg. 47 - In function build_phase - build_phase interface usage status
pg. 48 - In function build_phase - UVM testbench status
pg. 50 - In function build_phase - build_phase interface usage status
pg. 50 - In function build_phase - UVM testbench status
pg. 52 - In function build_phase - build_phase interface usage status
pg. 56 - In function build_phase - UVM testbench status
pg. 59 - In function build_phase - UVM testbench status
pg. 60 - In function build_phase - UVM testbench status
pg. 64 - In function build_phase - UVM testbench status
pg. 93 - In function build_phase - UVM testbench status
pg. 94 - In function build_phase - UVM testbench status
pg. 98 - In function build_phase - build_phase interface usage status
pg. 98 - In function build_phase - UVM testbench status
pg. 99 - In function build_phase - UVM testbench status
pg. 99 - In function connect_phase - UVM testbench status
pg. 100 - In function build_phase - UVM testbench status

The following cited examples should replace UVM_LOW with UVM_DEBUG since these are just debug
messages that should be off by default and only enabled by using the command line option:
+UVM_VERBOSITY=UVM_DEBUG

pg. 40 - task data_phase - 2 places - useful during debug
pg. 95 - task get_and_drive - useful during debug
pg. 95 - task data_phase - useful during debug
pg. 96 - task data_phase - useful during debug

The following cited examples, in my opinion, use proper verbosity settings.

pg. 48 - In function report_phase - Simulation report - UVM_LOW
pg. 53 - In function report_phase - Simulation report - UVM_LOW
pg. 66 - 2 places in function extract_phase - Simulation report - UVM_LOW
pg. 101 - 2 places in function extract_phase - Simulation report - UVM_LOW

SNUG 2014 22 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

16.2. Meade/Rosenberg - improper usage examples

All citations are for the second edition published in 2013. The book has great content but most
verbosity settings should be modified as shown below.

The following cited examples should replace UVM_LOW with UVM_MEDIUM. The examples do not
merit the use of the high-priority UVM_LOW verbosity setting but instead should be displayed by
default and easily suppressed using the command line option: +UVM_VERBOSITY=UVM_LOW

pg. 40 - Section 4.1.1 example - line 6
pg. 58 - Example 4-6 - line 31
pg. 82 - Example 4-20 - lines 5 and 6
pg. 92 - Example 4-23 - line 15 (this example might be useful to keep as UVM_LOW)
pg. 98 - Section 4.12 - lines 10, 12 and 14 (these infos might be useful to keep as UVM_LOW)
pg. 267 - Example 10-3 - line 35
pg. 272 - Example 10-6 - line 28
pg. 287 - Section 10.9.3 - 2 lines

The following cited examples should replace UVM_LOW with UVM_HIGH since these are passing
messages or useful status messages that should be off by default and only enabled by using the
command line option: +UVM_VERBOSITY=UVM_HIGH

pg. 53 - Example 4-5 - lines 38, 40 and 42
pg. 79 - Example 4-19 - lines 32 and 37
pg. 89 - Example 4-22 - two objection count examples on this page

The following cited examples should replace UVM_LOW with UVM_FULL since these are just UVM
testbench status messages that should be off by default and only enabled by using the command
line option: +UVM_VERBOSITY=UVM_FULL

pg. 53 - Example 4-5 - lines 10, 19 and 36
pg. 54 - Example 4-5 - lines 58 and 61
pg. 88 - Example 4-22 - two examples on this page
pg. 149 - Example 5-25 - line 8 (replace UVM_HIGH with UVM_FULL)

The following cited examples should replace UVM_LOW with UVM_DEBUG since these are just debug
messages that should be off by default and only enabled by using the command line option:
+UVM_VERBOSITY=UVM_DEBUG

pg. 76 - Example 4-17 - class my_project_driver
pg. 79 - Example 4-19 - lines 10, 19 and 21
pg. 84 - Section 4.9.1.2 - line 7
pg. 157 - line 7 (replace UVM_MEDIUM with UVM_DEBUG)
pg. 246 - lines 16 and 25 (replace UVM_HIGH with UVM_DEBUG)
pg. 248 - Example 9-10 - 2 lines (replace UVM_HIGH with UVM_DEBUG)
pg. 251 - Example 9-11 - line 8

SNUG 2014 23 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

pg. 296 - Example 11-1 - 2 places

The following cited examples, in my opinion, use proper verbosity settings.

pg. 130 - Example 5-13 - line 22 - UVM_MEDIUM for default display
pg. 179 - Example 7-6 - UVM_MEDIUM for default display

The following cited example, in my opinion, may or may not be using proper severity settings.

pg. 140 - Example 10-9 - line 10 - replace `uvm_error with `uvm_fatal (a missing virtual
interface will cause catastrophic testing errors and should probably abort the simulation with a
fatal message).

16.3. UVM 1.2 Class Reference - improper usage examples

Section 21.2:

uvm_report_info("MYINFO1", $sformatf("val: %0d", val), UVM_LOW);
`uvm_info("MYINFO1", $sformatf("val: %0d", val), UVM_LOW)

Section 21.2: Under Message Trace Macros

`uvm_info_begin("MY_ID", "This is my message...", UVM_LOW)

These examples are technically correct, but the Class Reference should not show typical usage
examples that call the UVM_LOW verbosity setting as it only encourages the improper usage of this
setting. These examples should use UVM_MEDIUM or higher.

16.4. UVM 1.1 User's Guide - improper usage examples

pg. 131 - Section 6.2.1: Replace the $display command with

`uvm_info("FACTORY", $sformatf("type of object is: %s", get_type_name()), UVM_DEBUG)

pg. 28 - Section 2.12 - BUG - `uvm_info requires verbosity setting - use UVM_MEDIUM
pg. 114 - Section 5.7.2.2 - BUG - `uvm_error requires <id> argument

The following cited example should replace UVM_LOW with UVM_MEDIUM. The examples do not
merit the use of the high-priority UVM_LOW verbosity setting but instead should be displayed by
default and easily suppressed using the command line option: +UVM_VERBOSITY=UVM_LOW

pg. 161 - Example: test_lib.sv - line 33

The following cited examples should replace UVM_LOW with UVM_DEBUG since these are just debug
messages that should be off by default and only enabled by using the command line option:
+UVM_VERBOSITY=UVM_DEBUG

pg. 137 - Section 6.3.2.1 - two example of UVM_LOW and one example of UVM_HIGH (replace with
UVM_DEBUG)

SNUG 2014 24 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

pg. 137 - Section 6.3.2.2 - two example of UVM_LOW (replace with UVM_DEBUG) and both examples
have a BUG, an extra driver argument at the end of the `uvm_info argument list.

The following cited example, in my opinion, uses a proper verbosity setting.

pg. 162 - Example: test_lib.sv - line 48 - UVM_NONE for final test-PASS message.

17. UVM_VERBOSITY proposed extensions

One would think that the extensive verbosity settings along with the UVM message macros
would be enough to satisfy any testing display commands. After extended usage, I have found a
few places where minor enhancements would significantly simplify testbench development.
Those experiences have caused me to propose the following message-control enhancements.

17.1. `uvm_info() macro with default verbosity setting of UVM_MEDIUM

All of the UVM message macros have a default verbosity setting except `uvm_info(). It is
rather annoying to be forced to add a default verbosity setting of UVM_MEDIUM each time this
macro is coded.

Request to UVM Committee: add a default UVM_MEDIUM verbosity to `uvm_info(). This
does not break any backward compatibility and simplifies the use of the `uvm_info message
macro to do standard display commands.

17.2. `uvm_warning() macro with default verbosity setting of UVM_NONE

The `uvm_warning macro, in its current form, is almost useless. The unchangeable default for
`uvm_warning is a verbosity setting of UVM_NONE, which is almost impossible to turn off. There
are times when warnings are useful and there are times when some warnings are just verbose,
annoying, distracting and would be candidates to disable with a different verbosity setting.

I currently almost never use `uvm_warning() because these message cannot be easily disabled.
It was rather presumptuous of the UVM committee to assume that all warnings would be
unconditionally printed.

Request to UVM Committee: add a default UVM_NONE verbosity to `uvm_warning(). This does
not break any backward compatibility and allows users to reduce the verbosity setting of specific
warning messages as appropriate for the users UVM test environment.

SNUG 2014 25 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

17.3. New `uvm_info_pass() macro and UVM_PASS verbosity setting

By default, when running tests, the typical verification engineer does not want to see messages
for all tests that are passing, but an engineer might want to turn those messages on without
adding all of the other more verbose messages. I currently recommend using a verbosity setting
of UVM_HIGH to display information that should only be shown occasionally. This is the same
setting that I currently use to display messages for passing tests.

It would be most useful to have an additional verbosity setting between UVM_MEDIUM (200) and
UVM_HIGH (300), reserved by methodology to display messages for all passing tests. New
suggested verbosity names include UVM_PASS or UVM_SUCCESS (level 250). The actual name is
not that important and alternate suggested names could be evaluated.

I further propose the addition of `uvm_info_pass or `uvm_info_success message macros with
a default verbosity setting of UVM_PASS or UVM_SUCCESS (level 250) that could be changed by the
user if desired. It would be very useful to setup scoreboard comparisons to report failing tests
using `uvm_error() and passing tests using `uvm_info_pass() or `uvm_info_success().
The passing tests would not print by default but a verification engineer could enable all passing
test messages, without adding any other messages, by adding an option such as
+UVM_VERBOSTIY=UVM_PASS to the simulation command line.

Request to UVM Committee: add a verbosity setting of UVM_PASS or UVM_SUCCESS (or
equivalent) with a verbosity level of 250.

Request to UVM Committee: add a message macro called ` uvm_info_pass() or
`uvm_info_success() with a default verbosity of UVM_PASS (level of 250) or equivalent.

These are enhancement requests that do not break backward compatibility.

17.4. New `uvm_debug() macro

Adding debug messages is a typical and frequent verification activity. The current recommended
practice is to add `uvm_info(…, UVM_DEBUG) for each debug message. This activity is so
common that a little syntactic sugar would be most useful and appreciated.

Request to UVM Committee: add a message macro called `uvm_debug() that calls the
`uvm_info() message macro with a default verbosity of UVM_DEBUG.

This is an enhancement request that does not break backward compatibility, but adds an
extremely useful macro definition for a very common testbench coding activity.

SNUG 2014 26 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

18. Conclusions

UVM was released in 2011. UVM was the next generation of the combined efforts of OVM and
VMM, and included advanced features from both predecessor methodologies. The Best Known
Methods (BKMs) of UVM are still being developed and the industry is counting on smart
verification engineers to suggest and promote those methods.

This paper has recommended BKMs for using messaging capabilities in UVM. The author is not
deluded enough to believe that these techniques will ultimately be the very best techniques and
hence should never be challenged.

Authors of existing UVM texts and reference materials showed initial usage models, which I
believe were somewhat flawed, but they at least offered a starting point for message usage
methodologies. My paper is built upon the work of existing authors and I believe the
recommendations included in this paper form the next stage in message usage BKMs.

Readers are encouraged to further refine or build upon the recommendations in this paper and to
share those recommendations with the industry in general, and by email to me individually. I
welcome all feedback and suggested improvements to the recommendations included in this
paper.

To explore expert techniques related to creating Advanced UVM Report Servers, readers are
encouraged to review the paper by my colleague and friend Gordon McGregor[4].

19. Acknowledgements

I am grateful to my colleagues Jeff Montesano of Verilab, Jonathan Bromley or Verilab, and
Kevin Geiger, Verification AC at Synopsys for their reviews, and for identifying errors and
suggesting improvements to the content and flow of this paper.

20. References:

[1] Adam Erickson, "Are OVM & UVM Macros Evil? A Cost-Benefit Analysis," DVCon 2011. Copy

can also be requested at: http://www.mentor.com/products/fv/verificationhorizons/horizons-jun-11

[2] Clifford E. Cummings, "UVM Transaction - Definitions, Methods and Usage," SNUG-SV 2014 -
http://www.sunburst-design.com/papers/CummingsSNUG2014SV_UVM_Transactions.pdf

[3] Clifford E. Cummings, "The OVM/UVM Factory & Factory Overrides - How They Work - Why
They Are Important," SNUG-SV 2012 -
http://www.sunburst-design.com/papers/CummingsSNUG2012SV_UVM_Factories.pdf

[4] Gordon McGregor, "Applications of Custom UVM Report Servers," SNUG-Austin 2013-
http://www.verilab.com/files/SNUG_Applications_of_custom_UVM_report_servers.pdf

[5] Kathleen A. Meade, Sharon Rosenberg, A Practical Guide to Adopting the Universal Verification
Methodology (UVM), Second Edition, ISBN 978-1-300-53593-5. Published 2013

[6] OVM User Guide, March 2010, Available for download from:
https://verificationacademy.com/topics/verification-methodology

SNUG 2014 27 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

[7] Universal Verification Methodology (UVM) 1.1 Class Reference, May 2011, Accellera, Napa, CA.
www.accellera.org/home

[8] Universal Verification Methodology (UVM) 1.2 Class Reference, May 2014, Accellera, Napa, CA.
www.accellera.org/home

[9] Vanessa R. Cooper, Getting Started with UVM: A Beginner's Guide, ISBN-10: 0615819974 |
ISBN-13: 978-0615819976, Published 2013

[10] verificationacademy.com/cookbook/Reporting/Verbosity

21. AUTHOR & CONTACT INFORMATION

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 32 years of ASIC, FPGA and system design experience and 23 years of
SystemVerilog, synthesis and methodology training experience.

Mr Cummings has presented more than 100 SystemVerilog seminars and training classes in the
past nine years and was the featured speaker at the world-wide SystemVerilog NOW! seminars.

Mr Cummings has participated on every IEEE & Accellera SystemVerilog, SystemVerilog
Synthesis, SystemVerilog committee, and has presented more than 40 papers on SystemVerilog
& SystemVerilog related design, synthesis and verification techniques.

Mr Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Sunburst Design, Inc. offers World Class Verilog & SystemVerilog training courses. For more
information, visit the www.sunburst-design.com web site.
Email address: cliffc@sunburst-design.com

Last Updated: September 2014

SNUG 2014 28 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

22. Appendix

This Appendix includes the files that I used to test the features described in the paper.

class trans1 extends uvm_sequence_item;
 `uvm_object_utils(trans1)

 logic [15:0] dout;
 rand bit [15:0] din;
 rand bit rst_n;

 function new (string name="trans1");
 super.new(name);
 endfunction

 function string convert2string();
 return($sformatf("trans1: dout=%4h din=%4h rst_n=%b",
 dout, din, rst_n));
 endfunction
endclass

Example 6 - File: trans1.sv

`ifndef CYCLE
 `define CYCLE 10
`endif
`timescale 1ns/1n

Example 7 - File: CYCLE.sv

class env extends uvm_env;
 `uvm_component_utils(env)

 tb_agent agnt;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 agnt = tb_agent::type_id::create("agnt", this);
 endfunction

 function void start_of_simulation_phase(uvm_phase phase);
 `uvm_error("ENV", "env error")
 endfunction
endclass

Example 8 - File: env.sv

SNUG 2014 29 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

CYCLE.sv
tb_pkg.sv
+incdir+..
top.sv

Example 9 - File: run.f

class tb_agent extends uvm_agent;
 `uvm_component_utils(tb_agent)

 tb_driver drv;
 tb_sequencer sqr;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 virtual function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 drv = tb_driver::type_id::create("drv", this);
 sqr = tb_sequencer::type_id::create("sqr", this);
 endfunction

 virtual function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 drv.seq_item_port.connect(sqr.seq_item_export);
 endfunction

 function void start_of_simulation_phase(uvm_phase phase);
 `uvm_fatal("AGENT", "agnt fatal msg")
 endfunction
endclass

Example 10 - File: tb_agent.sv

class tb_driver extends uvm_driver #(trans1);
 `uvm_component_utils(tb_driver)

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 trans1 tr;
 `uvm_warning("DRIVER", "Starting tb_driver run_phase()")
 forever begin
 seq_item_port.get_next_item(tr);
 `uvm_info("DRIVER", tr.convert2string(), UVM_MEDIUM)
 seq_item_port.item_done();
 end
 endtask
endclass

Example 11 - File: tb_driver.sv

SNUG 2014 30 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

`ifndef TB_PKG
`define TB_PKG

`include "CYCLE.sv"

`include "uvm_macros.svh"

package tb_pkg;
 import uvm_pkg::*;

 `include "test_error_demoter.sv"
 `include "test1_demoter.sv"

 `include "trans1.sv"
 `include "tb_driver.sv"
 `include "tb_sequencer.sv"
 `include "tb_agent.sv"
 `include "env.sv"

 `include "tr_sequence.sv"

 `include "test1.sv"
 `include "test1x.sv"
 `include "test2.sv"
 `include "test3.sv"
endpackage

`endif

Example 12 - File: tb_pkg.sv

class tb_sequencer extends uvm_sequencer #(trans1);
 `uvm_component_utils(tb_sequencer)

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction
endclass

Example 13 - File: tb_sequencer.sv

SNUG 2014 31 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

class test1 extends uvm_test;
 `uvm_component_utils(test1)

 env e;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 e = env::type_id::create("e", this);
 endfunction

 function void start_of_simulation_phase(uvm_phase phase);
 super.start_of_simulation_phase(phase);
 `uvm_warning("test1", "Test1 warning message")
 if (uvm_report_enabled(UVM_HIGH)) begin
 this.print;
 factory.print;
 end
 endfunction

 task run_phase(uvm_phase phase);
 tr_sequence seq;
 seq = tr_sequence::type_id::create("seq");
 //--
 phase.raise_objection(this);
 seq.start(e.agnt.sqr);
 phase.drop_objection(this);
 endtask
endclass

Example 14 - File: test1.sv

class test1_demoter extends uvm_report_catcher;
 `uvm_object_utils(test1_demoter)

 function new(string name="test1_demoter");
 super.new(name);
 endfunction

 function action_e catch();
 if(get_severity() == UVM_FATAL) begin
 set_severity(UVM_ERROR);
 `uvm_info("demoter", "Caught FATAL / demoted to ERROR", UVM_MEDIUM)
 end
 //return CAUGHT;
 return THROW;
 endfunction
endclass

Example 15 - File: test1_demoter.sv

SNUG 2014 32 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

class test1x extends test1;
 `uvm_component_utils(test1x)

 test1_demoter demoter;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 demoter = test1_demoter::type_id::create("demoter");
 uvm_report_cb::add(e, demoter);
 super.build_phase(phase);
 endfunction
endclass

Example 16 - File: test1x.sv

`include "CYCLE.sv"
`include "uvm_macros.svh"
module top;
 import uvm_pkg::*;
 import tb_pkg::*;

 initial begin
 run_test();
 end
endmodule

Example 17 - File: top.sv

class tr_sequence extends uvm_sequence #(trans1);
 `uvm_object_utils(tr_sequence)

 function new (string name = "tr_sequence");
 super.new(name);
 endfunction

 task body;
 repeat(2) do_item();
 endtask

 task do_item ();
 trans1 tr;
 //`uvm_info("SEQ","Running sequence do_item()",UVM_HIGH)
 `uvm_warning("SEQ","Running sequence do_item()")
 repeat(4) `uvm_do(tr)
 endtask
endclass

Example 18 - File: tr_sequence.sv

SNUG 2014 33 UVM Message Display Commands
Rev 1.0 Capabilities, Proper Usage and Guidelines

class tb_agent2 extends tb_agent;
 `uvm_component_utils(tb_agent2)

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void start_of_simulation_phase(uvm_phase phase);
 `uvm_warning("AGENT", "agnt warning msg")
 endfunction
endclass

Example 19 - File: tb_agent2.sv

class test2x extends test2;
 `uvm_component_utils(test2x)

 test_report_catcher demoter;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void connect_phase(uvm_phase phase);
 demoter = test_report_catcher::type_id::create("demoter");
 uvm_report_cb::add(e.agnt, demoter);
 super.connect_phase(phase);
 endfunction
endclass

Example 20 - File: test2x.sv

class test_report_catcher extends uvm_report_catcher;
 `uvm_object_utils(test_report_catcher)

 function new(string name="test_report_catcher");
 super.new(name);
 endfunction

 // This example promotes "AGENT" warnings to error messages
 function action_e catch();
 if(get_severity() == UVM_WARNING && get_id() == "AGENT") begin
 set_severity(UVM_ERROR);
 set_message("Caught AGENT WARNING / promoted to ERROR");
 end
 return THROW;
 endfunction
endclass

Example 21 - File: test_report_catcher.sv

