
SNUG 2014 1 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

World Class Verilog, SystemVerilog & OVM/UVM Training

UVM Transactions - Definitions, Methods and Usage

Clifford E. Cummings

Sunburst Design, Inc.
cliffc@sunburst-design.com
www.sunburst-design.com

ABSTRACT

Fundamental questions most novice UVM users have include: Why uses classes instead of structs
to define transactions for verification environments? What are advantages of using classes to
represent transactions in a verification environment? What methods should be defined in a
UVM transaction class and why are there both field macros and do_methods() for creating the
transaction methods?

This paper will detail advantages related to using class-based transactions and answer questions
about why there is so much confusion surrounding transaction method definitions and usage.
This paper will also detail transaction method usage and field definition guidelines and
tradeoffs.

SNUG-2014
Silicon Valley, CA

Voted Best Technical
Paper - 3rd Place

SNUG 2014 2 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Table of Contents

1. Introduction ... 7

2. Classes -vs- structs .. 7

3. Transaction class types ... 8
3.1. Class parameter types: uvm_sequence_item & int .. 8

3.2. UVM transactions .. 8

3.3. Unnecessary Output Randomization .. 10

4. UVM transaction types ... 10
4.1. Standard class formatting ... 10

5. Transaction class methods .. 11

6. Introduction to standard transaction methods ... 12
6.1. Factory registration of transactions .. 12

6.2. `uvm_object_utils() -vs- `uvm_object_utils_begin()/_end .. 12

6.3. __m_uvm_field_automation() method ... 15

6.4. Proposed Future UVM Macro Change... 15

7. Inherited standard transaction methods .. 16
7.1. Should I override the standard transaction methods? ... 18

7.2. Inherited transaction utility methods .. 20

7.3. create() method ... 20

7.4. clone() method .. 21

7.5. convert2string() .. 21

7.6. Plan for extended convert2string() methods .. 22

7.7. Transaction printAll() method?? .. 23

8. Do_methods() ... 24
8.1. Virtual method rules and virtual do_method() prototypes ... 25

8.2. base-class casting to extended class handle ... 25

8.3. rhs & rhs_ do_method() arguments .. 26

8.4. uvm_object default do_methods() .. 27

8.5. copy() and do_copy() ... 27

8.6. Using the copy() method: to_tr.copy(from_tr) ... 29

8.7. print(), sprint() and do_print() .. 30

8.8. record() and do_record() .. 32

8.9. pack() and do_pack() .. 32

8.10. unpack() and do_unpack() .. 32

8.11. compare() and do_compare() .. 33

SNUG 2014 3 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

8.12. uvm_comparer policy class methods .. 35

8.13. do_methods & super.do_methods() .. 37

8.14. Templates with do_methods() .. 38

9. Field macros .. 40
9.1. Field macro types ... 42

9.2. Field macro flags .. 44

9.3. Combining Field Macros with do_methods() .. 50

10. Benchmarks.. 51
10.1. Benchmarking methodology ... 51

10.2. Benchmarking do_methods() with nonrand-outputs and rand-outputs 53

10.3. Benchmarking field macros with nonrand-outputs and rand-outputs 54

11. Summary & Conclusions ... 56

12. Acknowledgements .. 57

13. References: ... 57

14. AUTHOR & CONTACT INFORMATION .. 58

15. Appendix A .. 59
15.1. UVM classes parameterized to uvm_sequence_item ... 59

15.2. UVM classes parameterized to int .. 59

16. Appendix B .. 62
16.1. Benchmark files to test simulation efficiency .. 62

16.2. Benchmark vcs_benchmark_times file ... 65

16.3. Benchmark test1 file with repeat-loop.. 66

16.4. trans1f - randomized outputs - uses field macros - no UVM_ALL_ON flags 72

Table of Tables

Table 1 - uvm_comparer methods .. 37

Table 2 - Field macros defined in UVM ... 43

Table 3 - UVM field macro flag parameters defined in base/uvm_object_globals.svh 45

Table 4 - UVM field macro onehot flag settings in base/uvm_object_globals.svh 46

SNUG 2014 4 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Table of Figures

Figure 1 - Transaction passing .. 9

Figure 2 - Standard class formatting ... 10

Figure 3 - Transaction formatting w/ field macros ... 11

Figure 4 - Transaction formatting w/ do_methods() ... 11

Figure 5 - Actual `define uvm_object_utils macro definition .. 13

Figure 6 - Actual `define uvm_object_utils_begin macro definition .. 13

Figure 7 - Actual `define uvm_object_utils_end macro definition ... 13

Figure 8 - Illegal Syntax - Calling both `uvm_object_utils() and `uvm_field_utils_begin() 14

Figure 9 - Proposed UVM Change - new definition for `uvm_object_utils(T) 16

Figure 10 - Important, inherited utility non-virtual methods .. 16

Figure 11 - Standard transaction methods - two ways to create them .. 17

Figure 12 - Important utility non-virtual method prototypes .. 17

Figure 13 - UVM 1.1d - src/base/uvm_object.svh - compare() method implementation 19

Figure 14 - Important, inherited utility virtual methods ... 20

Figure 15 - Important utility virtual method prototypes ... 20

Figure 16 - uvm_object create() method - manual definition ... 21

Figure 17 - uvm_object source code for convert2string() .. 21

Figure 18 - Extended transaction function calls to super.output2string() & super.input2string() 23

Figure 19 - Creating the standard transaction methods by overriding the built-in do_methods() 24

Figure 20 - Inherited do_method() hooks to define standard transaction methods 25

Figure 21 - Overriding the do_copy() and do_compare() methods with uvm_object inputs 26

Figure 22 - Common do_copy() coding example with trans1 declared using rhs_ handle name . 27

Figure 23 - Preferred do_copy() coding example with trans1 declared using tr handle name 27

Figure 24 - Transaction copy() and compare() methods - common usage block diagram 28

Figure 25 - Example sb_predictor.sv - collecting transactions using the tr.copy() method 29

Figure 26 - do_copy() inherited virtual method prototype and source code 29

Figure 27 - trans1 example with do_copy() and do_compare() methods defined 30

Figure 28 - NULL do_print() method ... 31

Figure 29 - do_print() inherited virtual method prototype and source code 31

Figure 30 - do_record() inherited virtual method prototype and source code 32

Figure 31 - do_pack() inherited virtual method prototype and source code 32

SNUG 2014 5 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Figure 32 - do_unpack() inherited virtual method prototype and source code 33

Figure 33 - do_compare() inherited virtual method prototype and source code 33

Figure 34 - Example sb_comparator.sv - comparing transactions using out_tr.compare(exp_tr) 35

Figure 35 - do_compare() method that does not use the uvm_comparer 36

Figure 36 - do_compare() method that DOES use the uvm_comparer methods 36

Figure 37 - Non-comparer output -vs- uvm_comparer reported messages 37

Figure 38 - Example trans1.sv template file with do_copy() & do_compare() templates 39

Figure 39 - Creating the standard transaction methods by using the UVM field macros 40

Figure 40 - Creating the standard transaction methods by using the field macros 41

Figure 41 - ERROR - combining variables into a single field macro - VCS error shown 42

Figure 42 - ERROR - concatenating variables into a single field macro - VCS error shown 42

Figure 43- UVM field macro onehot flag settings diagram .. 46

Figure 44 - Field macro flags implicitly enable UVM_ALL_ON .. 47

Figure 45 - trans2 legally defined using multiple +-separated field macro flags 48

Figure 46 - test2: copies and compares trans2 objects .. 48

Figure 47 - test2 simulation output - b-variable comparison fails as expected 49

Figure 48 - UVM_NOCOPY flag accidentally |-specified twice - nocopy remains active 49

Figure 49 - UVM_NOCOPY flag accidentally +-specified twice - removing the nocopy setting 49

Figure 50 - trans8b base with field macros extended in trans8 with do_methods() 50

Figure 51 - Benchmark test1.sv run_phase() with randomize(), copy() and compare() loop 52

Figure 52 - Common benchmark trans1 code ... 52

Figure 53 - Benchmark script to run the first transactions five times ... 53

Figure 54 - First benchmark trans1 with non-rand outputs and do_methods()............................. 54

Figure 55 - Third benchmark trans1 with non-rand outputs and field macros 55

Figure 56 - UVM classes parameterized to the uvm_sequence_item type 59

Figure 57 - UVM classes parameterized to the int type .. 61

Figure 58 - vcs_benchmark_times report file for a loop CNT=10,000,000 65

SNUG 2014 6 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Table of Examples

Example 1 - File: tb_pkg1a.sv .. 62

Example 2 - File: run1a.f .. 62

Example 3 - File: tb_pkg1b.sv .. 62

Example 4 - File: run1b.f .. 62

Example 5 - File: tb_pkg1c.sv .. 62

Example 6 - File: run1c.f .. 62

Example 7 - File: tb_pkg1d.sv .. 62

Example 8 - File: run1d.f .. 62

Example 9 - File: tb_pkg1e.sv .. 62

Example 10 - File: run1e.f .. 62

Example 11 - File: tb_pkg1f.sv ... 62

Example 12 - File: run1f.f ... 62

Example 13 - File: doit1a.vcs ... 63

Example 14- File: doit1b.vcs .. 63

Example 15- File: doit1c.vcs .. 63

Example 16- File: doit1d.vcs .. 63

Example 17- File: doit1e.vcs .. 63

Example 18 - File: doit1f.vcs .. 63

Example 19 - File: report.vcs - gathers benchmark simulation times ... 64

Example 20 - File: doitall.vcs - execute after setting loop CNT value in the CNT_file file 64

Example 21 - trans_printing.sv - common printing methods included in each trans1 class 64

Example 22 - File: top.sv - wrapper top-module to permit testing ... 65

Example 23 - File: CNT_file - holds loop-CNT value ... 65

Example 24 - File: test1.sv - randomizes, copies and compares in a repeat(`CNT) loop 66

Example 25 - File: trans1a.sv - no rand outputs - uses do_methods() - no field macros 67

Example 26- File: trans1b.sv - rand outputs - uses do_methods() - no field macros 68

Example 27 - File: trans1c.sv - no rand outputs - uses field macros - no do_methods() 69

Example 28- File: trans1d.sv - rand outputs - uses field macros - no do_methods() 70

Example 29 - File: trans1e.sv - no rand outputs - uses do_methods() - no super.do_methods() .. 71

Example 30 - File: trans1f.sv - no rand outputs - uses field macros - no UVM_ALL_ON flags . 72

SNUG 2014 7 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

1. Introduction

All advanced class-based verification methodologies use classes to represent transactions, but
why? Why not use structs?

To advanced users the answers are obvious but to novice users the questions never seem to be
addressed in any literature. The problem is, most existing UVM texts and reference guides were
written by really, really smart software engineers that assume that all users naturally know the
answer to this and many other questions, which is not a valid assumption.

The first step to understand the answers to these questions is to compare class-based transaction
capabilities to struct-based transaction capabilities.

This paper will also go into detail on the creation of transaction classes with standard transaction
methods. The methods will be created using two techniques, (1) do_methods() and (2) UVM
field macros.

2. Classes -vs- structs

New users often ask the question, why use class types instead of structs for verification?

To better understand why classes are used instead of structs, it is useful to compare the different
capabilities between classes and structs in SystemVerilog.

 Classes and structs both have multiple fields.
 Classes can have randomized fields while struct fields cannot be automatically

randomized.
 Classes can include randomization constraints while structs cannot include automatic

randomization constraints.
 Classes can have important built-in methods while structs cannot have built-in methods.
 Classes are a dynamic type and you can generate as many as you need at runtime while

structs are a static type and the user must anticipate and statically declare all required
structs at the beginning of the simulation.

 Class types can be extended while new versions of a struct must be copied from the
original version and new fields added.

 Classes can be put into a UVM factory for easy runtime substitution while structs cannot.

Classes are basically dynamic, ultra-flexible structs that can be easily randomized, easily control
the randomization, and be created whenever they are needed. Classes have the multiple field
encapsulation capability that exist in structs, plus so much more. That is why classes are the
preferred structure to represent testbench transactions.

Another advantage shared by both classes and structs is that they are passed around the testbench
as a unit, whether there is one signal or 1,000 signals in the transaction, so it is easy to pass
signals around the testbench environment with single unit operations. If signals are added or
removed from the transaction, most of the testbench structure requires no modification. There are

SNUG 2014 8 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

just a few testbench components that need to interact with all of the component signals
individually. Some of those components will be discussed in later sections.

3. Transaction class types

Once it is accepted that transactions should be class types, the next question is what should UVM
transaction classes be? UVM testbench transactions are all extensions of the
uvm_sequence_item type, which is a derivative of the uvm_object type, and uvm_object is the
base class type for all UVM components and transactions (not counting the uvm_void type).1

3.1. Class parameter types: uvm_sequence_item & int

The default transaction type for UVM components parameterized to a transaction type and the
uvm_sequence type is the uvm_sequence_item type. Example component types that are
parameterized to uvm_sequence_item include uvm_driver and uvm_sequencer. All user
transactions will be derivatives of the uvm_sequence_item type.

A complete list of the eight UVM classes that are parameterized to the uvm_sequence_item type
is shown in Appendix A on page 59.

The default type for many of the other UVM base class types parameterized to a transaction type
is the 32-bit, 2-state int type.

NOBODY would ever us the int type as a transaction type. The int type is just the default,
type-based, place holder inside of parameterized classes to make sure the class-based UVM
library will compile correctly. EVERYBODY replaces the int type, typically with a class-based
transaction type. Examples of commonly used components that are parameterized to the int
type include uvm_tlm_fifo and uvm_analysis_tlm_fifo.

A complete list of the of the 69 UVM base classes that are parameterized to the int type is also
shown in Appendix A on page 59.

3.2. UVM transactions

When approaching class-based verification for the first time a verification engineer is tempted to
create one transaction type for the inputs and another transaction type for the outputs, because
verification engineers who have done directed testing are accustomed to sending inputs into the
design and then sampling the outputs for verification purposes.

When comparing UVM transactions to directed testing methods, transactions have fields for both
inputs and outputs in the same transaction, while directed testing separates the input fields from
the output fields. This is an important point when initially learning class-based verification.

1 uvm_void is the root base class for all UVM components and transactions, but it is an empty virtual class that is
extended to create the uvm_object base class. Nobody works with uvm_void but uvm_object is extensively
used within all UVM testbenches.

SNUG 2014 9 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

In a UVM testbench environment the agent includes both a driver and a monitor. Even though
the driver is given a copy of an entire transaction object that includes both inputs and outputs, the
driver collects and only sends the transaction inputs to the design under test (DUT). The
transaction outputs are ignored by the driver. The driver is one of the testbench components that
must extract and properly send the individual input signals to the DUT.

The monitor actually samples both inputs and outputs from the DUT interface. The driver side
agent has a monitor that will sample both the inputs and outputs but only the inputs will be
processed by to the predictor inside of a scoreboard as noted in Figure 1. The sampled outputs
are still in that transaction but they are completely ignored.

The output-side agent uses the exact same monitor, which samples both the inputs and the
outputs from the DUT interface, but on the output-side monitor, even though both the inputs and
outputs have been sampled and sent to the scoreboard, the inputs will be discarded by the
comparator in the scoreboard as noted in Figure 1 and the actual DUT outputs will be used for
comparison against the predicted outputs.

Figure 1 - Transaction passing

The novice UVM verification user is tempted to create two different types of transactions, one
that only holds sampled inputs and another that only holds sampled outputs, but if two different
transaction types are used in two different monitors it means that the agent is not reusable on

SNUG 2014 10 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

both the stimulus-driving and output-sampling sides of the environment. By sampling both
inputs and outputs in the same monitor and discarding the outputs on the stimulus-driving side
and the inputs on the output-sampling side, we can reuse the exact same monitoring agents.

Understanding this technique explains how the same transaction can be used on both the input-
side and output-side of the verification environment. This technique is typically unknown to
engineers who have only done Verilog directed testbenches in the past.

3.3. Unnecessary Output Randomization

If the transaction class has separately defined output and input variables, there is no need to
randomize the output variables.

The randomized inputs will be sent to the DUT while any randomized outputs would just be
discarded; hence, randomization of outputs would just be an inefficient additional simulation
step.

4. UVM transaction types

As previously mentioned, all user-defined transaction types should be extended from the
uvm_sequence_item type, and the uvm_sequence_item class type is a derivative of the
uvm_object class type.

4.1. Standard class formatting

Although not required by UVM, I prefer to follow a standard code-layout for my UVM testbench
components and UVM transaction definitions. A standard format helps with the readability of the
code and helps me to quickly find important sections of the code. The formatting steps and order
that I follow are shown in Figure 2.

(0) Declare transaction variables | (if field macros are used)
(1) Register class with factory |
 Optional: declare field macros | (mostly in transactions)
(2) Declare variables & covergroups | (if any)
(3) Declare virtual interface | (if any)
(4) Declare ports & components | (if any)
(5) Standard new() constructor |
(6) build_phase() | (if any)
(7) connect_phase() | (if any)
(8) Other pre-run phases | (if any)
(9) run_phase() | (if any)
(10) Other post-run phases | (if any)
(11) Common component methods | (if any)

Figure 2 - Standard class formatting

As noted, the above format and order is not only used for transactions but also for testbench
components. For transactions, there are no phase methods, so my preferred order looks like this:

SNUG 2014 11 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Using Field Macros
(0) Declare transaction variables
(1) Register class with factory
 and declare field macros
(2) Declare vars & covergroups
(5) Standard new() constructor
(11) Common transaction methods
 convert2string() method

Figure 3 - Transaction formatting w/ field macros

Using do_methods()

(1) Register class with factory

(2) Declare vars & covergroups
(5) Standard new() constructor
(11) Common transaction methods
 convert2string() methods
 do_copy() / do_compare() /
 other do_methods()

Figure 4 - Transaction formatting w/ do_methods()

The differences between using field macros and do_methods() will be described in later
sections.

5. Transaction class methods

One of the advantages of using transaction classes is that they can contain important utility
methods. These important methods remove many coding requirements that existed in Verilog
testbenches.

There are two ways to implement important transaction methods: the first is to use field macros,
the second is to use manual coding techniques by overriding the built-in do_methods().

Using field macros is relatively simple but they can be inefficient during simulation and difficult
to debug if something does go wrong. The UVM User Guide[8] was largely written by Cadence
UVM experts and Cadence recommends using these field macros. Mentor UVM experts
typically recommend that verification engineers avoid using the field macros due to their coding
and simulation inefficiencies.[1][3][5][12]

Unfortunately, the UVM User Guide only documents the use of field macros and does not
include any documentation about an alternate approach, that of using the do_methods() to
define the standard transaction methods. Similarly, the Verification Academy [12] only shows
the use of do_method() overrides to define the standard transaction methods and does not
demonstrate the alternate approach of using field macros. Verification engineers that reference
these two sources are often perplexed about the divergent recommendations and this becomes a
source of much confusion to novice UVM users. It would have been better if the two major
sources of information had promoted their preferred approach and then acknowledge that there
was an alternate method. Adam Erickson's paper on "Evil Macros"[1] discusses both approaches
and promotes the use of the do_methods(), while many of my professional colleagues prefer the
ease-of-use of the field macros.

Overriding the built-in do_methods() requires more manual coding by the verification engineer
but the overridden do_methods() are more simulation efficient and not too difficult to code once
a few important techniques are understood.

SNUG 2014 12 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Both of these techniques will be described in later sections.

6. Introduction to standard transaction methods

In this paper, the important convenience functions are referred to as standard transaction
methods.

The standard transaction methods are zero-time functions that should be defined in a transaction
class and should always include user defined copy(), compare() and convert2string()
methods. One other method that is important to define is the print() function, just because
many users expect it to be available, even though convert2string() is often both more
simulation and more print-space efficient.

If the design includes serial-to-parallel or parallel-to-serial activities that are very common
among network packet-based designs, additional functions that will be included in the standard
transaction function list, include: pack() and unpack(). One other standard transaction function
is the record() function that is somewhat tool specific and used to help debug transient
transaction objects.

The user should never override the standard transaction methods directly, but instead should
indirectly define the required methods by overriding the base class do_methods() or by
implementing field macros.

Each user transaction class that extends from uvm_sequence_item inherits the standard
transaction methods, which are mostly-empty methods defined in the uvm_object virtual base
class. One or more of these methods should be either directly or indirectly defined in the user
transaction class.

6.1. Factory registration of transactions

The user's transaction class must be registered with the factory.

If you are going to create the standard transaction methods by overriding the built-in
do_methods() you must use the `uvm_object_utils() macro.

If you are going to create the standard transaction methods by using field macros, you must use
the `uvm_object_utils_begin() / `uvm_object_utils_end macros.

What is different about these macros? The details are described in `uvm_object_utils() -vs-
`uvm_object_utils_begin()/_end section.

6.2. `uvm_object_utils() -vs- `uvm_object_utils_begin()/_end

In the UVM src/macros/uvm_object_define.svh file, there exists two forms of
`uvm_object_utils() macros to register the transaction with the factory, along with other
important transaction class based setup. The pertinent code is shown below.

SNUG 2014 13 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

`define uvm_object_utils(T) \
 `uvm_object_utils_begin(T) \
 `uvm_object_utils_end

Figure 5 - Actual `define uvm_object_utils macro definition

The first observation to make is that calling `uvm_object_utils(T) is equivalent to calling the
back-to-back commands `uvm_object_utils_begin(T) / `uvm_object_utils_end. If a
transaction is defined using the `uvm_object_utils(T) macro, no field macros are permitted in
the transaction class definition. This is the technique recommended by Mentor UVM
experts.[1][3]

As shown below, the `uvm_object_utils_begin(T) macro actually implements some
important user-transaction functionality, including:

`m_uvm_object_registry_internal - register the transaction class with the factory
`m_uvm_object_create_func - define the create() method for this class
`m_uvm_get_type_name_func - define the get_type_name() method for this class
`uvm_field_utils_begin() - prepares to process defined field macros, if used

The actual `uvm_object_utils_begin(T) macro definition is shown in Figure 6.

`define uvm_object_utils_begin(T) \
 `m_uvm_object_registry_internal(T,T) \
 `m_uvm_object_create_func(T) \
 `m_uvm_get_type_name_func(T) \
 `uvm_field_utils_begin(T)

Figure 6 - Actual `define uvm_object_utils_begin macro definition

If the `uvm_object_utils() macro is used, the `uvm_field_utils_begin() macro, which
prepares the appropriate setup code for using field macros, is not populated with any field
macros. As stated earlier, the `uvm_object_utils() macro should only be used if important
transaction class methods are defined by overriding the do_methods().

The `uvm_field_utils_begin() macro defines a few functions important to field macros then
opens a function definition that will be populated by field macros, if used.

The `uvm_object_utils_end macro simply closes off the `uvm_field_utils_begin() macro
using a macro name that intuitively finishes the field_utils block. The actual (and trivial)
`uvm_object_utils_end macro definition is shown in Figure 7.

`define uvm_object_utils_end \
 end \
 endfunction

Figure 7 - Actual `define uvm_object_utils_end macro definition

SNUG 2014 14 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Unfortunately, because there are two different macros to register the transaction with the factory,
there are also two different coding styles that are commonly used to define transactions and the
style chosen depends on whether do_method() overrides or field macros are employed.

When I use the do_method() style, the transaction class definition resembles this:

class trans1 extends uvm_sequence_item;
 `uvm_object_utils(trans1) -- `uvm_object_utils() before declaration
 <declare variables>
 <standard constructor>
 <override do_methods()>

When I use the field macros style, the transaction class definition resembles this:

class trans1 extends uvm_sequence_item;
 <declare variables>
 `uvm_object_utils_begin(trans1) -- `uvm_object_utils() after declaration
 <declare field macros for variables>
 `uvm_object_utils_end
 <standard constructor>

It is annoying that I must use two different `uvm_object_utils() placements just because I
choose to use do_methods() or field macros, but the field macro style requires the variables to
be declared before they are referenced by field macros, where the declared field macros must be
encapsulated within the `uvm_object_utils_begin(T) / `uvm_object_utils_end pair.

It is certainly possible to place the `uvm_object_utils() macro call after declaring variables
when using the do_methods() style, but I prefer to see my `uvm_object_utils() command at
the top of the class definition, just beneath the class header, just as I do for all testbench
component and sequences classes.

What I really want is a pair of macros to encapsulate the field macros without requiring that they
be placed within a `uvm_object_utils_begin(T) / `uvm_object_utils_end pair, perhaps
macros called `uvm_field_utils_begin() / `uvm_field_utils_end. From Figure 6 shown on
page 13, I saw that these macros already existed! So I tried placing the `uvm_object_utils()
macro at the top of the transaction class, declared variables, and tried using
`uvm_field_utils_begin() with field macro declarations, as shown in Figure 8.

class trans1 extends uvm_sequence_item;
 `uvm_object_utils(trans1)
 rand bit [7:0] q;
 rand bit [7:0] a, b, c;

 `uvm_field_utils_begin(trans1) // ** Error this line
 `uvm_field_int(q, UVM_ALL_ON)
 `uvm_field_int(a, UVM_ALL_ON)
 `uvm_field_int(b, UVM_ALL_ON)
 `uvm_field_int(c, UVM_ALL_ON)
 `uvm_field_utils_end
 ...

Figure 8 - Illegal Syntax - Calling both `uvm_object_utils() and `uvm_field_utils_begin()

SNUG 2014 15 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Unfortunately, this did not work and the compiler reported the error:

** Error: '__m_uvm_field_automation' already exists;
 must not be redefined as a function.

The problem is that the `uvm_object_utils() macro also calls the
`uvm_field_utils_begin(T) macro, and since the `uvm_field_utils_begin(T) macro
defines the __m_uvm_field_automation function, the function is defined twice, which is illegal.

6.3. __m_uvm_field_automation() method

The `uvm_object_utils_begin() macro, defined in the
uvm/src/macros/uvm_object_defines.svh file, defines the first 20 lines of an internal
__m_uvm_field_automation() method and the `uvm_object_utils_end macro defines the
last 7 lines of the same macro. If field macros are used to define the standard transaction
methods, each field macro contributes to the middle section of the
__m_uvm_field_automation() method. For example, each call to the `uvm_field_int()
macro adds 59 more lines of code to the middle of the __m_uvm_field_automation() macro.

The 59-line block of code added to the __m_uvm_field_automation() method is mostly a very
large case() statement that executes the proper code for the case values of:
UVM_CHECK_FIELDS, UVM_COPY, UVM_COMPARE, UVM_PACK, UVM_UNPACK, UVM_RECORD,
UVM_PRINT and UVM_SETINT. When the user calls the compare() method, the compare method
actually calls the internally constructed __m_uvm_field_automation() method with the
UVM_COMPARE argument to execute the UVM_COMPARE code in each of the added case()
statements.

For each field macro defined, another large block of code is added to the middle of the
internal__m_uvm_field_automation() method, and each block of code includes multiple calls
to other methods within a __m_uvm_status_container class, so if there are ever any problems
related to the field macros, the debugging task is extremely verbose and complex. Fortunately,
the field macros work properly most of the time, but when they don't work, debugging is time-
consuming and extremely frustrating.

6.4. Proposed Future UVM Macro Change

It seems that the previous `uvm_field_utils_begin(T) macro problem described in section 6.2
could be easily fixed by modifying the definition for the `uvm_object_utils(T) macro. Instead
of calling `uvm_object_utils_begin(T) / `uvm_object_utils_end, which calls four other
macros, redefine `uvm_object_utils() to just call three of the macros, omitting the call to the
`uvm_field_utils_begin() macro, which appears to be completely unnecessary in a non-field
macros transaction class definition. The newly proposed definition is shown in Figure 9.

SNUG 2014 16 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

`define uvm_object_utils(T) \
 `m_uvm_object_registry_internal(T,T) \
 `m_uvm_object_create_func(T) \
 `m_uvm_get_type_name_func(T)

Figure 9 - Proposed UVM Change - new definition for `uvm_object_utils(T)

If it is determined that there are no backward compatibility issues, I request that the UVM
Standards Committee implement this change. Time to step off the soap box and get back to
technical usage detail.

7. Inherited standard transaction methods

The user's transaction class is extended from the uvm_sequence_item class, which is derived
from the top-level uvm_object class type. Through this inheritance path, the user's transaction
class inherits the following important utility methods:

 copy(),
compare(),
 print(), sprint(),
 pack(), pack_bytes(), pack_ints(),
 unpack(), unpack_bytes(), unpack_ints(),
 record()

Figure 10 - Important, inherited utility non-virtual methods

These 11 standard transaction methods are non-virtual functions or non-virtual void functions
and the user should NEVER extend or override any of these important utility methods in a
transaction class. These standard transaction methods execute a large amount of UVM overhead
code and then call the __m_uvm_field_automation() method (which executes operations built
from user-declared field macros) followed by calling do_methods(), which can be overridden
by the user, as shown in Figure 11.

As described in the preceding paragraph, it is important to note that calling any of the standard
transaction methods actually executes both field macro code AND the corresponding
do_methods(). The significance of this fact is that an engineer can properly define field macros
and then exclude the implementation of field macro functionality if that functionality is
subsequently implemented using the corresponding do_methods(). Conversely, it is very risky
to implement any of the standard transaction methods by combining partial implementation using
field macros and completing the implementation with a partial-functionality definition in a
do_method(). The latter is never seen in standard industry practice and is highly discouraged.

SNUG 2014 17 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Figure 11 - Standard transaction methods - two ways to create them

The actual prototypes for these 11 methods are shown in Figure 12.

function void copy (uvm_object rhs);
function bit compare (uvm_object rhs, uvm_comparer comparer=null);
function void record (uvm_recorder recorder=null);
function void print (uvm_printer printer =null);
function string sprint (uvm_printer printer =null);
function int pack (ref bit bitstream [],
 input uvm_packer packer=null);
function int pack_bytes (ref byte unsigned bytestream[],
 input uvm_packer packer=null);
function int pack_ints (ref int unsigned intstream [],
 input uvm_packer packer=null);
function int unpack (ref bit bitstream [],
 input uvm_packer packer=null);
function int unpack_bytes (ref byte unsigned bytestream[],
 input uvm_packer packer=null);
function int unpack_ints (ref int unsigned intstream [],
 input uvm_packer packer=null);

Figure 12 - Important utility non-virtual method prototypes

SNUG 2014 18 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

7.1. Should I override the standard transaction methods?

So why do I have to declare field macros or override do_methods() to help implement the non-
virtual methods shown in Figure 10. Why don't I just override these standard transaction methods
directly and bypass the field macros and do_methods()?

Are you kidding? Have you seen the code for these methods in the uvm_object.svh file??

WARNING: you should not take any time to try to read, examine or figure out the following 69
lines of compare() code from the uvm_object base class. It is inserted into this paper to
discourage you from ever considering the option to override the built-in compare() method. You
should either use field macros or override the do_compare() method.

 1 // compare
 2 // -------
 3
 4 function bit uvm_object::compare (uvm_object rhs,
 5 uvm_comparer comparer=null);
 6 bit t, dc;
 7 static int style;
 8 bit done;
 9 done = 0;
10 if(comparer != null)
11 __m_uvm_status_container.comparer = comparer;
12 else
13 __m_uvm_status_container.comparer = uvm_default_comparer;
14 comparer = __m_uvm_status_container.comparer;
15
16 if(!__m_uvm_status_container.scope.depth()) begin
17 comparer.compare_map.clear();
18 comparer.result = 0;
19 comparer.miscompares = "";
20 comparer.scope = __m_uvm_status_container.scope;
21 if(get_name() == "")
22 __m_uvm_status_container.scope.down("<object>");
23 else
24 __m_uvm_status_container.scope.down(this.get_name());
25 end
26 if(!done && (rhs == null)) begin
27 if(__m_uvm_status_container.scope.depth()) begin
28 comparer.print_msg_object(this, rhs);
29 end
30 else begin
31 comparer.print_msg_object(this, rhs);
32 uvm_report_info("MISCMP",
33 $sformatf("%0d Miscompare(s) for object %s@%0d vs. null",
34 comparer.result,
35 __m_uvm_status_container.scope.get(),
36 this.get_inst_id()),
37 __m_uvm_status_container.comparer.verbosity);
38 done = 1;
39 end
40 end
41

SNUG 2014 19 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

42 if(!done && (comparer.compare_map.get(rhs) != null)) begin
43 if(comparer.compare_map.get(rhs) != this) begin
44 comparer.print_msg_object(this, comparer.compare_map.get(rhs));
45 end
46 done = 1; //don't do any more work after this case, but do cleanup
47 end
48
49 if(!done && comparer.check_type && (rhs != null) &&
50 (get_type_name() != rhs.get_type_name())) begin
51 __m_uvm_status_container.stringv = { "lhs type = \"", get_type_name(),
52 "\" : rhs type = \"", rhs.get_type_name(), "\""};
53 comparer.print_msg(__m_uvm_status_container.stringv);
54 end
55
56 if(!done) begin
57 comparer.compare_map.set(rhs, this);
58 __m_uvm_field_automation(rhs, UVM_COMPARE, ""); // LINE 58-field macros
59 dc = do_compare(rhs, comparer); // LINE 59-do_compare()
60 end
61
62 if(__m_uvm_status_container.scope.depth()==1) begin
63 __m_uvm_status_container.scope.up();
64 end
65
66 if(rhs != null)
67 comparer.print_rollup(this, rhs);
68 return (comparer.result == 0 && dc == 1);
69 endfunction

Figure 13 - UVM 1.1d - src/base/uvm_object.svh - compare() method implementation

REMINDER: you should not take any time to try to read, examine or figure out the preceding 69
lines of compare() code. It is inserted into this paper to discourage you from ever considering
the option to override the built-in compare() method. You should either use field macros or
override the do_compare() method. Anybody who tries to correctly override the built-in
compare() method either needs to get-a-life or get-a-hobby! (Writing this paper makes me think
that I need to get-a-life!!)

From the code in Figure 13, it can be seen that the default compare() method will make a call to
implement the field macros (red-highlighted code on line 58) and will also call the user-defined
do_compare() method (red-highlighted code on line 59). Your job is to either define field
macros or override the do_compare() method and they will be automatically called by callbacks
from the compare() method.

The problem you face if you try to override the compare() code is that there are 57 lines of
important code before you either call the field macros on line 58, or call your implementation of
the do_compare() method on line 59 (both of which are embedded in an internal if-statement).
Then you still need to add 10 more lines of code after field macros or do_compare(). This
means you cannot simply make a call to super.compare(). You would need something like a
call to super.pre_59_lines_compare(), add you compare code, then call something like a
super.post_10_lines_compare(), which of course is ridiculous!

SNUG 2014 20 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

There is similarly cryptic uvm_object base class code for the other important standard
transaction methods. The value of the existing field macros and do_method() callbacks should
now begin to be more obvious!

Guideline: do not directly override the copy(), compare() and other uvm_object base class
standard transaction methods.

7.2. Inherited transaction utility methods

The user's transaction class, ultimately derived from the top-level uvm_object class type, also
inherits the 3 important utility methods shown in Figure 14.

create(),
clone(),
convert2string(),

Figure 14 - Important, inherited utility virtual methods

These 3 methods are virtual functions or virtual void functions. The actual prototypes for these 3
methods are shown in Figure 15.

virtual function uvm_object create (string name="");
 return null;
endfunction

virtual function uvm_object clone ();
 uvm_object tmp;
 tmp = this.create(get_name());
 if (tmp == null) `uvm_warning("CRFLD", "... create failed ...")
 else tmp.copy(this);
 return(tmp);
endfunction

virtual function string convert2string();
 return "";
endfunction

Figure 15 - Important utility virtual method prototypes

The virtual do_methods() will be described in later sections, but the create(), clone() and
convert2string() methods are described in the next three sections.

7.3. create() method

Per the UVM Class Reference manual, "Every class deriving from uvm_object, directly or
indirectly, must implement the create method."[7] When the `uvm_object_utils(T) macro is
called, one of the actions of that macro is to automatically implement the create() method (the
utils macro calls the `m_uvm_object_create_func(T) macro). If we do not call the
`uvm_object_utils() macro, among other things, we would need to implement the create()
method manually. A manual implementation example of the create() method from the UVM
Class Reference manual is shown in Figure 16.

SNUG 2014 21 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

class mytype extends uvm_object;
 ...
 virtual function uvm_object create(string name="");
 mytype t = new(name);
 return t;
 endfunction

Figure 16 - uvm_object create() method - manual definition

Guideline: never manually implement the create() method. Call the `uvm_object_utils()
macro to automatically implement the create() method.

7.4. clone() method

By default, the clone() method calls the create() method (constructs an object of the same
type) and then calls the copy() method. It is a one-step command to create and copy an existing
object to a new object handle.

Guideline: never override the clone() method. The existing default behavior is good.

7.5. convert2string()

The convert2string() method is one of the most important methods to define within a
transaction. In the absence of a convert2string() method, each user has to decide how to print
transaction values at different locations in the testbench.

The default convert2string() method defined in the uvm_object virtual base class is basically
a placeholder and just returns an empty string. The relevant code snippets for the uvm_object
base class convert2string() method are shown in Figure 17.

extern virtual function string convert2string();
…
function string uvm_object::convert2string();
 return "";
endfunction

Figure 17 - uvm_object source code for convert2string()

It is a common courtesy that the designer of every transaction class should override the
convert2string() method with a well formatted string of the transaction variables. The
convert2string() method is more efficient than calling the transaction print() method,
which has to format the variables into table or tree-like formats.

Guideline: Every user-defined transaction method should include a convert2string() method.

By creating a convert2string() method, the transaction class developer is providing, to
anybody who uses the transaction objects, the ability to print out the transaction object contents
without the trouble to create their own display-type command.

SNUG 2014 22 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

The convert2string() method returns a formatted string of the transaction object's field
contents. The convert2string() method should be called from a message macro, which also
includes an "id" string field and a verbosity setting.

7.6. Plan for extended convert2string() methods

The convert2string() method of a transaction class extended from a base transaction class
will either need to reformat all of the base class convert2string() transaction variables
(discouraged) or call super.convert2string() to pick up the string information for the base
transaction variables (preferred).

When printing, I prefer to group transaction inputs together followed by grouped transaction
outputs. If you call super.convert2string(), you will probably have the extended input and
output signals mixed with the base class input and output signals.

To avoid a mixed order of inputs and outputs, I recommend the creation of two more transaction
functions called output2string() and input2string().

In the following example (Figure 18), trans2 extends trans1 and both classes have
input2string() and output2string() methods. The extended class makes super.string-
method() calls, concatenating extended variables to base class variables in the respective return
statements:
intputs: return ({super.input2string(), " " ,s});
outputs: return ({super.output2string(), " " ,s});
The trans2 transaction class has a very simple definition for convert2string(), which
includes: return ({output2string(), " ", input2string()});
This way the inputs are grouped together and outputs are grouped together when printed.

class trans1 extends uvm_sequence_item;
 `uvm_object_utils(trans1)
 bit [7:0] a; // base output
 rand bit [7:0] b; // base input
 …
 function string input2string();
 return($sformatf("b=%2h", b));
 endfunction

 function string output2string();
 return($sformatf("a=%2h", a));
 endfunction

 function string convert2string();
 return ({input2string(), " ", output2string()});
 endfunction
endclass

class trans2 extends trans1;
 `uvm_object_utils(trans2)
 bit [7:0] c; // extended output

SNUG 2014 23 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

 rand bit [7:0] d; // extended input
 …
 function string input2string();
 string s;
 s = $sformatf("d=%2h", d);
 return ({super.input2string()," ",s});
 endfunction

 function string output2string();
 string s;
 s = $sformatf("c=%2h", c);
 return ({super.output2string()," ",s});
 endfunction

 function string convert2string();
 return ({input2string(), " ", output2string()});
 endfunction
endclass

Figure 18 - Extended transaction function calls to super.output2string() & super.input2string()

7.7. Transaction printAll() method??

There are some examples in industry where the creators of transaction classes also create built-in
printAll() methods that can be called directly without the need to call the convert2string()
method from a `uvm_info() macro. This is not recommended because although inserting a
printAll() method into the transaction would certainly make printing transaction information
easier, it unfortunately also semi-permanently fixes the "id" string and verbosity setting.

The convert2string() method returns a string value that should be called from a
`uvm_info(), `uvm_error() or `uvm_fatal() message macro.2

There are times when you will want to report debug information and you will want to print
transaction values with a verbosity setting of UVM_DEBUG. At other times you will want the
transaction values to print using the default UVM_MEDIUM verbosity setting, while at other times
you will want to only print successful transaction values if you enable the UVM_HIGH verbosity
setting. It is also useful to use unique "id" values in different places so that printing of some
transactions can be masked while printing of other transactions can be promoted to always print.

If field macros are used, the built-in print() method will be populated, but when using the
print() method the printed values will again be largely unmaskable and printed in a somewhat
verbose multi-line table or tree format. For these reasons and for better verbosity control, I tend
to skip the print() method in favor of the convert2string() method.

2 The `uvm_warn message macro is almost worthless because it has a verbosity setting of
UVM_NONE and is therefore difficult to suppress. I prefer to use `uvm_info message macros with
different verbosity settings to replace the cumbersome `uvm_warn message macro.

SNUG 2014 24 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

8. Do_methods()

As was mentioned earlier, there are two ways to implement the important standard transaction
methods. The standard transaction methods can be implemented using either the field macros or
by overriding the built-in do_methods() shown in Figure 20. This section describes the
implementation of the standard transaction methods by overriding the do_methods().

The 11 standard transaction methods shown in Figure 19 can be implemented by overriding the 6
do_methods() also shown in Figure 19. The do_methods() are empty callback methods defined
in the uvm_object base class. The user should never directly call any of the do_methods(). The
do_methods() are called by the like-named, 11 standard transaction methods that are inherited
from the uvm_object base class.

Figure 19 - Creating the standard transaction methods by overriding the built-in do_methods()

The user can override the built-in do_methods(), shown in Figure 20, which will affect how the
standard transaction methods behave when called.

SNUG 2014 25 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

do_copy()
do_compare()
do_print()
do_pack()
do_unpack()
do_record()

Figure 20 - Inherited do_method() hooks to define standard transaction methods

8.1. Virtual method rules and virtual do_method() prototypes

All of the user-overridable do_methods() are virtual methods, and SystemVerilog virtual
methods have strict argument compatibility rules. When extending a SystemVerilog class and
overriding a virtual method in an extended class, all argument types, names and return types
must match the base class virtual method argument types and names, which means the method
argument types and names cannot be changed.

This is simply a rule of object oriented languages like SystemVerilog and has nothing to do with
the UVM methodology. UVM users must simply follow SystemVerilog rules and this is one of
those rules.

Since all of the do_methods() in the uvm_object base class are virtual methods, overriding
those methods in the user transaction class requires the user to use the exact same argument types
and names.

8.2. base-class casting to extended class handle

Nonspecific to UVM is the concept of assigning a base class handle to an extended class handle.
Although it is a somewhat side-topic, it is an important topic when using UVM so it discussed in
this section.

SystemVerilog permits direct assignment of an extended handle to a base handle. There might be
multiple different extensions of the same base class type, and each extension can add unique
variables and define different unique methods in the extended class. Since any of these extended
class handles can be assigned to the base class handle, the newly assigned base handle cannot
call the extended methods and variables that were added to extended classes since those variables
and methods could be different from assignment to assignment and the base class can only
guarantee existence of base methods and variables.

On the other hand, SystemVerilog does NOT permit direct assignment of a base class handle to a
derived class handle because the derived class typically expects to access more variables and
methods than existed in the base class definition and if the base class handle was assigned from a
completely different extended object, the expected methods and variables might not exist. The
base class handle type has no knowledge of the extended variables and methods.

If a constructed extended class object is assigned to a base class handle, the handle type is
converted to the base class handle type and access to extended methods and extended variables is

SNUG 2014 26 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

not possible using the base class handle, even though the methods and variables still exist. If this
base class handle is then $cast3 back to a declared extended class handle, then we again have
access to the original variables, their values, and the extended methods. This is an important
technique used with UVM standard do_methods().

 function void do_copy(uvm_object rhs);
 trans1 tr;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_copy() cast")
 a = tr.a;
 … (copy remaining variables)
 endfunction

 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 trans1 tr;
 bit eq;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_compare() cast")
 eq = super.do_compare(rhs, comparer);
 eq &= (a == tr.a);
 … (compare remaining variables)
 return(eq);
 endfunction

Figure 21 - Overriding the do_copy() and do_compare() methods with uvm_object inputs

In Figure 21, the first three lines of the do_copy() method and three of the first four lines of the
do_compare() method are standard required code. In all of the do_methods(), the first
argument of the prototype header is an input of the uvm_object base class handle type, but when
each do_method() is called, they will be passed an extended trans1 transaction class handle,
which will convert the trans1 transaction class handle into the rhs uvm_object base class
handle type.

Once a trans1 class handle has been converted into a uvm_object base-class handle type, it is
necessary to (1) declare a handle of the trans1 (derivative of uvm_object) handle type, and
then (2) $cast the uvm_object base class handle-type back into the trans1 (derivative) class
handle type, to recover all of the transaction variables and gain access to the transaction methods
that were hidden when the transaction handle was converted into a uvm_object handle.

This is why the first few lines of each UVM standard do_method() might look strange. This
$casting is simply a required step to recover all of the variables and methods of a transaction
type, and is just SystemVerilog overhead code required by the UVM standard do_methods().

8.3. rhs & rhs_ do_method() arguments

There are many industry example implementations of the do_methods() where the trans1 (or
equivalent) transaction class handle is declared with the handle name rhs_ as shown in Figure
22. Then the do_method() input argument rhs is $cast to the trans1 rhs_ handle. I

3 $cast performs checking. If the base class is holding a handle to a derived type that is different than the type being
assigned, $cast will fail. When $cast is called as a task, this failure results in a tool-generated error message. When
$cast is called as a function, the failure results in a return status of 0 (a success returns 1).

SNUG 2014 27 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

personally believe this adds confusion to the code. It is too easy for the reader to miss the trailing
"_" on the rhs_ handle and make incorrect assignments and assumptions.

 function void do_copy(uvm_object rhs);
 trans1 rhs_;
 $cast(rhs_, rhs);
 if(!$cast(rhs_, rhs)) `uvm_fatal("trans1", "ILLEGAL do_copy() cast")
 a = rhs_.a;
 … (copy remaining variables)
 endfunction

Figure 22 - Common do_copy() coding example with trans1 declared using rhs_ handle name

The uvm_object handle name of rhs in each of the standard transaction methods prototypes
cannot be modified, but the commonly used transaction rhs_ handle name can be changed. I
prefer to replace the rhs_ handle name with tr as shown in Figure 23, which is visibly distinct
from the input rhs handle name.

 function void do_copy(uvm_object rhs);
 trans1 tr;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_copy() cast")
 a = tr.a;
 … (copy remaining variables)
 endfunction

Figure 23 - Preferred do_copy() coding example with trans1 declared using tr handle name

I believe the code is more readable and less error prone by using the distinct tr handle name.

8.4. uvm_object default do_methods()

The UVM top-level base class (at least the one we care about) is the uvm_object class type. The
uvm_object virtual base class includes the following empty void virtual functions:
 do_copy() (Figure 26),
 do_print() (Figure 29),
 do_record() (Figure 30),
 do_pack() (Figure 31),
 do_unpack() (Figure 32).
The uvm_object virtual base class also includes one almost-empty status-returning virtual
function:
 do_compare() (Figure 33).

8.5. copy() and do_copy()

The built-in copy() method executes the __m_uvm_field_automation() method with the
required copy code as defined by the field macros (if used) and then calls the built-in do_copy()
virtual function. The built-in do_copy() virtual function, as defined in the uvm_object base

SNUG 2014 28 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

class, is also an empty method, so if field macros are used to define the fields of the transaction,
the built-in copy() method will be populated with the proper code to copy the transaction fields
from the field macro definitions and then it will execute the empty do_copy() method, which
will perform no additional activity.

The copy() method can be used as needed in the UVM testbench. One common place where the
copy() method is used is to copy the sampled transaction and pass it into a sb_calc_exp()
(scoreboard calculate expected) external function that is frequently used by the scoreboard
predictor[2] as shown in Figure 24.

Figure 24 - Transaction copy() and compare() methods - common usage block diagram

An example usage of the copy() method is shown in the scoreboard calculate-expected function
of the sb_predictor::sb_calc_exp() function in Figure 25. The transaction is passed through
a uvm_analysis_port (originating from the tb_monitor in the tb_agent) to the
sb_calc_exp() method in the sb_predictor located inside the tb_scoreboard class. The t
transaction is then copied to a locally declared and created (line 4) transaction object
(tr.copy(t); on line 14), then the calculated output value dout is copied to the transaction
dout variable (tr.dout = dout; on line 18) and returned to the calling sb_predictor
component (line 19).

SNUG 2014 29 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

 1 function trans1 sb_predictor::sb_calc_exp (trans1 t);
 2 static logic [15:0] next_dout;
 3 logic [15:0] dout;
 4 trans1 tr = trans1::type_id::create("tr");
 5 //---------------------------
 6 `uvm_info(get_type_name(), t.convert2string(), UVM_HIGH)
 7 // async reset: reset the next_dout AND current dout values -OR-
 8 // non-reset : assign dout values & calculate the next_dout values
 9 dout = next_dout;
10 if (!t.rst_n) {next_dout,dout} = '0;
11 else if (t.ld) next_dout = t.din;
12 else if (t.inc) next_dout++;
13 // copy all sampled inputs & outputs
14 tr.copy(t);
15 // overwrite the dout values with the calculated values.
16 // dout values were either calculated in the previous cycle
17 // or asynchronously reset in this cycle
18 tr.dout = dout;
19 return(tr);
20 endfunction

Figure 25 - Example sb_predictor.sv - collecting transactions using the tr.copy() method

	
8.6. Using the copy() method: to_tr.copy(from_tr)

The copy() method copies values from the from_tr object to the variables in the to_tr object
(you are copying the values of variables from another transaction into this transaction). The
transaction handle that is used to call the method name holds the destination variables. The
transaction handle that is passed as an argument to the method holds the source variable values.

The default do_copy() method defined in the uvm_object virtual base class is empty. The
relevant code snippets are shown in Figure 26.

extern virtual function void do_copy(uvm_object rhs);
…
function void uvm_object::do_copy(uvm_object rhs);
 return;
endfunction

Figure 26 - do_copy() inherited virtual method prototype and source code

The trans1 code with do_copy() method used with the sb_predictor class code of Figure 25
is shown in Figure 27.

class trans1 extends uvm_sequence_item;
 `uvm_object_utils(trans1)

 logic [15:0] dout; // outputs not randomized
 rand bit [15:0] din;
 rand bit rst_n;

SNUG 2014 30 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

 function new (string name="trans1");
 super.new(name);
 endfunction

 function void do_copy(uvm_object rhs);
 trans1 tr;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_copy() cast")
 dout = tr.dout;
 din = tr.din;
 rst_n = tr.rst_n;
 endfunction

 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 trans1 tr;
 bit eq;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_compare() cast")
 eq = super.do_compare(rhs, comparer);
 eq &= (dout === tr.dout);
 return(eq);
 endfunction

 function string input2string();
 return($sformatf("din=%4h rst_n=%b", din, rst_n));
 endfunction

 function string output2string();
 return($sformatf("dout=%4h", dout));
 endfunction

 function string convert2string();
 return($sformatf({input2string(), " ", output2string()}));
 endfunction
endclass

Figure 27 - trans1 example with do_copy() and do_compare() methods defined

8.7. print(), sprint() and do_print()

The built-in print() method is a void function that prints all of the field-macro defined fields in
a table format by default. A print() method would only print the table header and footer if field
macros are omitted and do_print() is not overridden by the user. Printing with the print()
method is not tracked in the final UVM Report Summary because it cannot be called from the
message macros with "id" string fields. Because the print() method is not called from the
message macros, it also cannot be suppressed by using different UVM verbosity settings.

By contrast, the built-in sprint() method is a function that returns a multi-line formatted string
with all of the defined fields in a table format (by default) and should be called from the message
macros. Printing with the sprint() method is tracked in the final UVM Report Summary and
since it is called from the message macros, it can be suppressed by using different UVM
verbosity settings.

SNUG 2014 31 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Since it is very likely that some user will attempt to call the transaction print() method, the
next two either-or guidelines are recommended to avoid unexpected results.

Guideline: Implement the print() method using field macros.
-OR-
Guideline: Implement a do_print() method that returns the following string, "print() and
sprint() are not implemented for this transaction type" as shown in Figure 28.

function void do_print(uvm_printer printer);
 $display("\n\n\t\t*** print() and sprint() are not implemented ",
 "for this transaction type ***\n\n");
endfunction

Figure 28 - NULL do_print() method

More important guidelines regarding transaction printing are shown below.

Guideline: Avoid using the print() method. Its output is verbose and cannot be suppressed by
using UVM verbosity settings.

Guideline: Avoid using the sprint() method. Its output is verbose.

Guideline: If you do use one of the built-in printing methods, choose sprint() over print()
and call it from a UVM message macro. Runtime verbosity settings can mask verbose sprint()
method printouts if desired.

Guideline: Define and use the convert2string() method discussed in earlier sections.
convert2string() is more simulation efficient, more print-space efficient and can be easily
suppressed by using different runtime UVM verbosity settings.

The built-in print() and sprint() methods either implement the required code as defined by
the field macros or they call the built-in do_print() virtual function. The built-in do_print()
virtual function, as defined in uvm_object, is an empty method, so if field macros are used to
define the fields of the transaction class, the built-in print() and sprint() methods will be
populated with the proper printing code from most field macros and then they will execute the
empty do_print() method, which will perform no additional activity.

The default do_print() method defined in the uvm_object virtual base class is empty. The
relevant code snippets are shown in Figure 29.

extern virtual function void do_print(uvm_printer printer);
…
function void uvm_object::do_print(uvm_printer printer);
 return;
endfunction

Figure 29 - do_print() inherited virtual method prototype and source code

SNUG 2014 32 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

8.8. record() and do_record()

The built-in record() method executes the __m_uvm_field_automation() method with the
required record code as defined by the field macros (if used) and calls the built-in do_record()
virtual function. The built-in do_record() virtual function, as defined in the uvm_object base
class, is also an empty method, so if field macros are used to define the fields of the transaction,
the built-in record() method will be populated with the proper code to record the transaction
fields from the field macro definitions and then it will execute the empty do_record() method
which will perform no additional activity.

The default do_record() method defined in the uvm_object virtual base class is empty. The
relevant code snippets are shown in Figure 30.

extern virtual function void do_record (uvm_recorder recorder);
…
function void uvm_object::do_record(uvm_recorder recorder);
 return;
endfunction

Figure 30 - do_record() inherited virtual method prototype and source code

8.9. pack() and do_pack()

The built-in pack(), pack_bytes(), and pack_ints() methods execute the
__m_uvm_field_automation() method with the required packing code as defined by the field
macros (if used) and then
they call the built-in do_pack() virtual function. The built-in do_pack() virtual function, as
defined in the uvm_object base class, is an empty method, so if field macros are used to define
the fields of the transaction class, the built-in pack(), pack_bytes(), and pack_ints()
methods will be populated with the proper packing code from most field macro definitions and
then they will execute the empty do_pack() method which, will perform no additional activity.

The default do_pack() method defined in the uvm_object virtual base class is empty. The
relevant code snippets are shown in Figure 31.

extern virtual function void do_pack (uvm_packer packer);
…
function void uvm_object::do_pack (uvm_packer packer);
 return;
endfunction

Figure 31 - do_pack() inherited virtual method prototype and source code

8.10. unpack() and do_unpack()

Similarly, the built-in unpack(), unpack_bytes(), and unpack_ints() methods execute the
__m_uvm_field_automation() method with the required unpacking code as defined by the field

SNUG 2014 33 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

macros (if used) and then they call the built-in do_unpack() virtual function. The built-in
do_unpack() virtual function, as defined in the uvm_object base class, is an empty method, so
if field macros are used to define the fields of the transaction class, the built-in unpack(),
unpack_bytes(), and unpack_ints() methods will be populated with the proper unpacking
code from most field macro definitions and then they will execute the empty do_unpack()
method, which will perform no additional activity.

The default do_unpack() method defined in the uvm_object virtual base class is empty. The
relevant code snippets are shown in Figure 32.

extern virtual function void do_unpack (uvm_packer packer);
…
function void uvm_object::do_unpack (uvm_packer packer);
 return;
endfunction

Figure 32 - do_unpack() inherited virtual method prototype and source code

8.11. compare() and do_compare()

The built-in compare() method executes the __m_uvm_field_automation() method with the
required comparison code as defined by the field macros (if used) and then calls the built-in
do_compare() virtual function. The built-in do_compare() virtual function, as defined in the
uvm_object base class, is an empty method that returns a "1" ("true") value, so if field macros
are used to define the fields of the transaction, the built-in compare() method will be populated
with the proper code to compare the transaction fields from the field macro definitions and then
it will perform an and operation with the "1" value returned from the do_compare() method,
which will perform no additional activity.

The default do_compare() method defined in the uvm_object virtual base class is almost empty,
but the default return value is 1 ("true"). The relevant code snippets are shown in Figure 33.

extern virtual function bit do_compare(uvm_object rhs, uvm_comparer comparer);
…
function bit uvm_object::do_compare(uvm_object rhs, uvm_comparer comparer);
 return 1;
endfunction

Figure 33 - do_compare() inherited virtual method prototype and source code

The compare() method can be used as needed in the UVM testbench. One common and very
important place where the compare() method is used is to compare the outputs of the expected
transaction to the outputs of the actual transaction as shown in Figure 24.

An example usage of the compare() method is shown in the run_phase() task of the
sb_comparator class in Figure 34. A forever-loop in the run_phase() task continuously gets
the expected transaction from the predictor (expfifo.get(exp_tr)), then gets the output

SNUG 2014 34 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

transaction (outfifo.get(out_tr)), and then compares the output values from each
transaction to each other (out_tr.compare(exp_tr)). Since the compare() method was
properly defined using the do_compare() method, and only compares outputs and not inputs for
this design in the trans1 transaction class of Figure 27, the comparison in the scoreboard
comparator is a very simple operation.

class sb_comparator extends uvm_component;
 `uvm_component_utils(sb_comparator)

 int VECT_CNT, PASS_CNT, ERROR_CNT;

 uvm_analysis_export #(trans1) axp_in;
 uvm_analysis_export #(trans1) axp_out;
 uvm_tlm_analysis_fifo #(trans1) expfifo;
 uvm_tlm_analysis_fifo #(trans1) outfifo;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 axp_in = new("axp_in", this);
 axp_out = new("axp_out", this);
 expfifo = new("expfifo", this);
 outfifo = new("outfifo", this);
 endfunction

 function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 axp_in.connect (expfifo.analysis_export);
 axp_out.connect(outfifo.analysis_export);
 endfunction

 task run_phase(uvm_phase phase);
 trans1 exp_tr, out_tr;

 forever begin
 expfifo.get(exp_tr);
 outfifo.get(out_tr);
 if (out_tr.compare(exp_tr)) PASS (exp_tr);
 else ERROR(exp_tr, out_tr);
 end
 endtask

 function void report_phase(uvm_phase phase);
 super.report_phase(phase);
 if (VECT_CNT && !ERROR_CNT)
 `uvm_info("COMPARATOR",
 $sformatf("\n\n\n*** TEST PASSED - %0d vectors ran, %0d vectors passed ***\n",
 VECT_CNT, PASS_CNT), UVM_LOW)
 else
 `uvm_error("COMPARATOR",
 $sformatf("\n\n\n*** TEST FAILED - %0d vectors ran, %0d vectors passed, %0d vectors failed ***\n",

 VECT_CNT, PASS_CNT, ERROR_CNT))
 endfunction

SNUG 2014 35 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

 function void PASS(trans1 exp_tr);
 `uvm_info("cmp vector",
 $sformatf("*** Vector Passed: %s ***", exp_tr.convert2string()), UVM_HIGH)
 VECT_CNT++;
 PASS_CNT++;
 endfunction

 function void ERROR(trans1 exp_tr, out_tr);
 `uvm_error("cmp vector",
 $sformatf("Actual %s does not match expected %s",
 out_tr.output2string(),
 exp_tr.convert2string()))
 VECT_CNT++;
 ERROR_CNT++;
 endfunction
endclass

Figure 34 - Example sb_comparator.sv - comparing transactions using out_tr.compare(exp_tr)

Implementing a proper compare() method using field macros or by overriding the
do_compare() method in the transaction class greatly simplifies the creation of a UVM
testbench.

8.12. uvm_comparer policy class methods

It should be noted that the do_compare() method has an often-overlooked second input
argument of the uvm_comparer policy class with handle-name comparer.

Many examples in industry ignore the comparer handle and run the comparison calculations
themselves and shown in the do_compare() method of Figure 35.

class trans9 extends uvm_sequence_item;
 rand bit [7:0] a, b, c;

 `uvm_object_utils_begin(trans9)
 `uvm_field_int(a, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_field_int(b, UVM_ALL_ON | UVM_NOCOMPARE | UVM_NOCOPY)
 `uvm_field_int(c, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_object_utils_end

 function new (string name="trans9");
 super.new(name);
 endfunction

 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 trans9 tr;
 bit eq;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_compare() cast")
 eq = super.do_compare(rhs, comparer);
 eq &= (a == tr.a); // Compare outputs
 eq &= (b == tr.b);
 eq &= (c == tr.c);
 return(eq);

SNUG 2014 36 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

 endfunction

 `include "print_trans.sv"
endclass

Figure 35 - do_compare() method that does not use the uvm_comparer

An engineer may choose to take advantage of the built-in uvm_comparer methods to run the
comparisons and print a standard output message when the compared fields do not match. The
trans10 class example in Figure 36 calls one of the uvm_comparer methods called
compare_field_int(), with arguments that include a string name for the field being compared
(for error reporting), the name of the local variable and the name of the compare-object variable
along with the size of the variables being compared. As an interesting side note, the example of
Figure 36 properly uses field macros to define most of the standard transaction methods but
excludes the compare() method from field macro implementation. The compare() functionality
is added by defining the do_compare() method in the trans10 class (this technique was
described at the beginning of Section 7).

class trans10 extends uvm_sequence_item;
 rand bit [7:0] a, b, c;

 `uvm_object_utils_begin(trans10)
 `uvm_field_int(a, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_field_int(b, UVM_ALL_ON | UVM_NOCOMPARE | UVM_NOCOPY)
 `uvm_field_int(c, UVM_ALL_ON | UVM_NOCOMPARE)
 `uvm_object_utils_end

 function new (string name="trans10");
 super.new(name);
 endfunction

 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 trans10 tr;
 bit eq;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_compare() cast")
 eq = super.do_compare(rhs, comparer);
 eq &= comparer.compare_field_int("a", a, tr.a, 8);
 eq &= comparer.compare_field_int("b", b, tr.b, 8);
 eq &= comparer.compare_field_int("c", c, tr.c, 8);
 return(eq);
 endfunction

 `include "print_trans.sv"
endclass

Figure 36 - do_compare() method that DOES use the uvm_comparer methods

In both the trans9 and trans10 class examples, the b-variable was intentionally not copied to
test the do_compare() methods and their accompanying error reporting capabilities. The trans9
class example did user defined comparisons and the only reported error actually came from the
top-level test. The trans10 class example called the comparer.compare_field_int()
methods, which did the comparisons and displayed additional [MISCMP] messages that are called
from the built-in compare_field_int() method. The miscompare messages from both the
trans9 and trans10 classes are shown in Figure 37.

SNUG 2014 37 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

// trans9 output
UVM_INFO body_run.sv(6) @ 0: uvm_test_top [tr1] inputs:a=be b=93 c=44
UVM_INFO body_run.sv(7) @ 0: uvm_test_top [x1] inputs:a=be b=00 c=44
UVM_ERROR body_run.sv(9) @ 0: uvm_test_top [ERRORCMP] x1 fields do NOT match tr1
fields

// trans10 output
UVM_INFO body_run.sv(6) @ 0: uvm_test_top [tr1] inputs:a=be b=93 c=44
UVM_INFO body_run.sv(7) @ 0: uvm_test_top [x1] inputs:a=be b=00 c=44
UVM_INFO @ 0: reporter [MISCMP] Miscompare for x1.b: lhs = 'h0 : rhs = 'h93
UVM_INFO @ 0: reporter [MISCMP] 1 Miscompare(s) for object tr1@464 vs. x1@468
UVM_ERROR body_run.sv(9) @ 0: uvm_test_top [ERRORCMP] x1 fields do NOT match tr1
fields

Figure 37 - Non-comparer output -vs- uvm_comparer reported messages

It is beyond the scope of this paper to go into detail regarding the uvm_comparer policy class,
but there are a number of different knobs to control the uvm_comparer behavior, along with a
number of built-in methods to help conduct comparisons. A short list of the built-in methods and
an abbreviated description of their behavior as shown in the UVM Class Reference is shown in
Table 1. The reader should reference the UVM Class Reference manual and review the
uvm_comparer section.

compare field Compares two integral values.

compare_field_int
This method is the same as compare field except that the arguments are
small integers, less than or equal to 64 bits.

compare_field_real
This method is the same as compare field except that the arguments are
real numbers.

compare_object
Compares two class objects using the policy knob to determine whether
the comparison should be deep, shallow, or reference.

compare_string Compares two string variables.

print_msg
Causes the error count to be incremented and the message, msg, to be
appended to the miscompares string (a newline is used to separate
messages).

Table 1 - uvm_comparer methods

8.13. do_methods & super.do_methods()

All of the empty, return-only do_methods() in the uvm_object base class mean that it is not
necessary to ever call super.do_methods() from a transaction class that directly extends the
uvm_sequence_item. The empty calls probably do no harm aside from potential minimal
simulation efficiency issues related to calling empty void functions.

The default do_compare() method returns 1 because calls to super.do_compare() are typically
and-ed with other comparison expressions, so if calling super.do_compare() returned empty or
0-values, the compare method would always fail.

If the user-define transaction class is extended, then it becomes very important to call
super.do_methods() to execute deep actions, such as deep-copy and deep-compare.

SNUG 2014 38 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

8.14. Templates with do_methods()

Coding the required do_methods() from scratch can be daunting, but large amounts of the
do_methods() can be easily placed into a template file, which makes implementing the standard
transaction methods using the do_methods() a relatively easy task. I use the trans1 template
file shown in Figure 38 as a starting point for my UVM testbench transactions.

class trans1 extends uvm_sequence_item;
 // (1) Register class with factory |
 `uvm_object_utils(trans1)

 // (2) Declare variables & covergroups | (if any)
 logic [15:0] dout; // outputs not randomized
 rand bit [15:0] din;
 rand bit rst_n;

 // (5) Standard new() constructor |
 function new (string name="trans1");
 super.new(name);
 endfunction

 // (11) Common component & trans methods | (if any)
 function void do_copy(uvm_object rhs);
 trans1 tr;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_copy() cast")
 // super.do_copy(rhs); // if extending an existing transaction
 // copy the transaction variables. Example:
 dout = tr.dout;
 din = tr.din;
 rst_n = tr.rst_n;
 endfunction

 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 trans1 tr;
 bit eq;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_compare() cast")
 // super.do_compare(rhs, comparer); // if extending a transaction
 // compare the transaction output variables. Example:
 eq = super.do_compare(rhs, comparer);
 eq &= (dout === tr.dout);
 return(eq);
 endfunction

 function void do_print(uvm_printer printer);
 $display("\n\n\t\t*** print() and sprint() are not implemented ",
 "for this transaction type ***\n\n");
 endfunction

 function string input2string();
 return($sformatf("din=%4h rst_n=%b", din, rst_n));
 endfunction

 function string output2string();
 return($sformatf("dout=%4h", dout));
 endfunction

SNUG 2014 39 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

 function string convert2string();
 return($sformatf({input2string(), " ", output2string()}));
 endfunction
endclass

Figure 38 - Example trans1.sv template file with do_copy() & do_compare() templates

All of the proper overhead declarations for the transaction handles and $casting have been
captured in this trans1.sv template file, making it relatively easy to code the proper
do_methods() for this transaction. This template happens to be a fully coded transaction class
for a 16-bit, asynchronously resettable register.

SNUG 2014 40 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

9. Field macros

As previously mentioned and as shown in Figure 39, the second technique for defining all of the
standard transaction methods is to declare the class data fields using field macros. Declaring the
data fields using the built-in field macros is certainly easier to do than to redefine the
do_methods(), but the trade-off is simulation efficiency (see the section on Benchmarks for
more details). The UVM Users Guide written by Cadence recommends the use of the field
macros while Mentor developers discourage their use due to code expansion and simulation
inefficiencies. Many users like to use the field macros because of their simplicity.

Figure 39 - Creating the standard transaction methods by using the UVM field macros

Rule: when using field macros, it is required to declare the transaction variables before they are
specified in field macros.

Rule: when using field macros, the variables are declared before the registration of the
transaction with the factory.

SNUG 2014 41 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Rule: when using field macros, you must register the transaction with the factory using the
`uvm_object_utils_begin() / `uvm_object_utils_end macros.

Note that even though variables can be declared in groups, as was done with the output variables
a-e and the input variables g-k of Figure 40, the field macro declarations for these variables must
include a unique `uvm_field_int declaration for each separate variable.

class trans1 extends uvm_sequence_item;
 bit [7:0] a, b, c, d, e; // outputs
 rand bit [2:0] g, h, i, j, k; // inputs

 `uvm_object_utils_begin(trans1)
 `uvm_field_int(a, UVM_ALL_ON)
 `uvm_field_int(b, UVM_ALL_ON)
 `uvm_field_int(c, UVM_ALL_ON)
 `uvm_field_int(d, UVM_ALL_ON)
 `uvm_field_int(e, UVM_ALL_ON)
 `uvm_field_int(g, UVM_ALL_ON)
 `uvm_field_int(h, UVM_ALL_ON)
 `uvm_field_int(i, UVM_ALL_ON)
 `uvm_field_int(j, UVM_ALL_ON)
 `uvm_field_int(k, UVM_ALL_ON)
 `uvm_object_utils_end

 function new (string name="trans1");
 super.new(name);
 endfunction
 …
endclass

Figure 40 - Creating the standard transaction methods by using the field macros

Trying to combine the variables into grouped field macro declarations as shown in Figure 41
causes a compilation error to occur (VCS error message shown at the bottom of Figure 41).

`include "uvm_macros.svh"
import uvm_pkg::*;

class trans1 extends uvm_sequence_item;
 bit [7:0] a, b, c, d, e; // outputs
 rand bit [2:0] g, h, i, j, k; // inputs

 `uvm_object_utils_begin(trans1)
 `uvm_field_int(a, b, c, d, e, UVM_ALL_ON) // Error on this line
 `uvm_field_int(g, h, i, j, k, UVM_ALL_ON)
 `uvm_object_utils_end

 function new (string name="trans1");
 super.new(name);
 endfunction
endclass

// trans1_error2.sv, 9

SNUG 2014 42 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

// Macro argument number mismatch for macro 'uvm_field_int'
// "trans1_error2.sv", 9: token is ')'
// `uvm_field_int(a, b, c, d, e, UVM_ALL_ON)

Figure 41 - ERROR - combining variables into a single field macro - VCS error shown

A logical follow-up question is, can we concatenate multiple variables into a single concatenated
unit within a field macro declaration as shown in Figure 42? The answer is still no, and the
resultant syntax error from VCS is also shown at the bottom of Figure 42.

`include "uvm_macros.svh"
import uvm_pkg::*;

class trans1 extends uvm_sequence_item;
 bit [7:0] a, b, c, d, e; // outputs
 rand bit [2:0] g, h, i, j, k; // inputs

 `uvm_object_utils_begin(trans1)
 `uvm_field_int({a, b, c, d, a}, UVM_ALL_ON) // Error on this line
 `uvm_field_int({g, h, i, j, k}, UVM_ALL_ON)
 `uvm_object_utils_end

 function new (string name="trans1");
 super.new(name);
 endfunction
endclass

// Error-[SE] Syntax error
// Following Verilog source has syntax error :
// "trans1_error3.sv", 9 (expanding macro): token is '{'
// `uvm_field_int({a, b, c, d, a}, UVM_ALL_ON) // Error on this line

Figure 42 - ERROR - concatenating variables into a single field macro - VCS error shown

Rule: when using field macros, each variable must be declared with a separate field macro.
Variables cannot be grouped into a common field macro definition.

9.1. Field macro types

The most common field data type used in transactions is an integral numeric type (bits, vectors,
buses, etc.), which requires declarations to be made with the `uvm_field_int() macro. There
are certainly many other data types that can be used in a transaction.

To accommodate the multiple possible field types, UVM provides 35 field macros that can be
used with the corresponding data types and all 35 have been defined in the file:
uvm/src/macros/uvm_sequence_defines.svh.

SNUG 2014 43 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Data declarations - field macro types

`uvm_field_int (ARG, FLAG)
`uvm_field_enum (T, ARG, FLAG)
`uvm_field_object (ARG, FLAG)
`uvm_field_string (ARG, FLAG)
`uvm_field_real (ARG, FLAG)
`uvm_field_event (ARG, FLAG)

`uvm_field_sarray_int (ARG, FLAG)
`uvm_field_sarray_enum (ARG, FLAG)
`uvm_field_sarray_object (ARG, FLAG)
`uvm_field_sarray_string (ARG, FLAG)

`uvm_field_array_int (ARG, FLAG)
`uvm_field_array_enum (ARG, FLAG)
`uvm_field_array_object (ARG, FLAG)
`uvm_field_array_string (ARG, FLAG)

`uvm_field_queue_int (ARG, FLAG)
`uvm_field_queue_enum (ARG, FLAG)
`uvm_field_queue_object (ARG, FLAG)
`uvm_field_queue_string (ARG, FLAG)

`uvm_field_aa_string_int (ARG, FLAG)
`uvm_field_aa_string_string (ARG, FLAG)

`uvm_field_aa_object_int (ARG, FLAG)
`uvm_field_aa_object_string (ARG, FLAG)

`uvm_field_aa_int_int (ARG, FLAG)
`uvm_field_aa_int_int_unsigned (ARG, FLAG)
`uvm_field_aa_int_integer (ARG, FLAG)
`uvm_field_aa_int_integer_unsigned (ARG, FLAG)
`uvm_field_aa_int_byte (ARG, FLAG)
`uvm_field_aa_int_byte_unsigned (ARG, FLAG)
`uvm_field_aa_int_shortint (ARG, FLAG)
`uvm_field_aa_int_shortint_unsigned (ARG, FLAG)
`uvm_field_aa_int_longint (ARG, FLAG)
`uvm_field_aa_int_longint_unsigned (ARG, FLAG)
`uvm_field_aa_int_string (ARG, FLAG)
`uvm_field_aa_int_key (KEY, ARG, FLAG)
`uvm_field_aa_int_enumkey (KEY, ARG, FLAG)

Table 2 - Field macros defined in UVM

Commonly
used

Static
array

Dynamic
array

Queues

String
assoc. array

Class object
assoc. array

Number type
assoc. array

SNUG 2014 44 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

I divide the 35 UVM field macros into seven categories as shown in Table 2:

 The first 6 are the most commonly used field macros.
 The next 4 are static array field macros.
 The next 4 are one-dimensional dynamic array field macros.
 The next 4 are queue field macros.
 The next 2 are string associative array field macros.
 The next 2 are class object field macros.
 The last 13 are integral number associative array field macros.

32 of the field macro take two arguments and three exception field macros require a third,
leading key-type argument (`uvm_field_enum , `uvm_field_aa_int_key and
`uvm_field_aa_int_enumkey). In Table 2, ARG is the name of the variable assigned to the
field macro and FLAG specifies which standard transaction methods will be built for each field.
As mentioned, enumerated type fields also require the corresponding T enumerated type, and
integral-number associative arrays that are keyed to a specific type require the KEY key-type or
enumerated-key-type.

9.2. Field macro flags

Field macro FLAG arguments are typically specified as either UVM_ALL_ON or UVM_DEFAULT,
combined with flags that disable standard transaction method capabilities for specific variables.

On the former UVM World forum (now one of the forums on Accellera.org) I asked the UVM
community which they preferred to use, UVM_DEFAULT or UVM_ALL_ON and why[10].

Two of the responses summarized prevailing opinions. From Kathleen Meade, UVM expert at
Cadence:

My recommendation is to use UVM_DEFAULT instead of UVM_ALL_ON even though
they both essentially do the same thing today. At some point the class library may add
another "bit-flag" which may not necessarily be the DEFAULT. If you use UVM_ALL_ON
that would imply that whatever flag it is would be "ON".

A second and contrary opinion came from Ajeetha Kumari of CVC, India:

… we prefer ALL_ON to DEFAULT as it is more "explicit" in naming … With DEFAULT -
it is possible that a newer version of UVM base code might change the definition of
default, and one (would need) to update the code!

Both opinions expressed on the UVM forum are reasonable approaches, but in practice, I prefer
to use the UVM_ALL_ON since I believe it better documents the action performed by this flag.

A related question is, what is the difference between UVM_ALL_ON and UVM_DEFAULT? To help
answer this question, it is worth examining definitions from the

SNUG 2014 45 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

uvm/src/base/uvm_object_globals.svh source code file. There are two back-to-back
sections in this file that shed some light and also introduce some confusion.

In the 23 lines of code shown in Table 3, it can be observed that there are 6 affirming field macro
parameters (UVM_DEFAULT to UVM_PACK), 5 negating field macro parameters (UVM_NOCOPY to
UVM_NOPACK), 3 depth and reference field macro parameters, and 1 more parameter called
UVM_READONLY. Their supposed corresponding actions are shown with each parameter name.

// Parameter: `uvm_field_* macro flags
//
// Defines what operations a given field should be involved in.
// Bitwise OR all that apply.
//
// UVM_DEFAULT - All field operations turned on
// UVM_COPY - Field will participate in <uvm_object::copy>
// UVM_COMPARE - Field will participate in <uvm_object::compare>
// UVM_PRINT - Field will participate in <uvm_object::print>
// UVM_RECORD - Field will participate in <uvm_object::record>
// UVM_PACK - Field will participate in <uvm_object::pack>
//
// UVM_NOCOPY - Field will not participate in <uvm_object::copy>
// UVM_NOCOMPARE - Field will not participate in <uvm_object::compare>
// UVM_NOPRINT - Field will not participate in <uvm_object::print>
// UVM_NORECORD - Field will not participate in <uvm_object::record>
// UVM_NOPACK - Field will not participate in <uvm_object::pack>
//
// UVM_DEEP - Object field will be deep copied
// UVM_SHALLOW - Object field will be shallow copied
// UVM_REFERENCE - Object field will copied by reference
//
// UVM_READONLY - Object field will NOT be automatically configured.

Table 3 - UVM field macro flag parameters defined in base/uvm_object_globals.svh

The Table 3 of parameter definitions does not appear in the UVM Reference Manual for three
good reasons, (1) the list is incomplete (missing UVM_ALL_ON, UVM_PHYSICAL, UVM_ABSTRACT),
(2) most of the affirming field macro parameters do nothing when put into user field macro
definitions, and (3) the DEEP, SHALLOW and REFERENCE parameters are defined but
commented out and hence are inactive, as shown in Table 4.

The field macro parameter values make up a 17-bit, onehot FLAG-vector. It can be seen in the
Table 3 code that UVM_DEFAULT and UVM_ALL_ON both enable copy, compare, print, record and
pack operations (all of these bits are hot), but UVM_DEFAULT also has the UVM_DEEP bit set. So
will UVM_DEFAULT fields do deep-copies while UVM_ALL_ON fields only do shallow copies? The
answer is no! There are more details about the various field macro flag settings following Figure
43.

parameter UVM_MACRO_NUMFLAGS = 17;
//A=ABSTRACT Y=PHYSICAL
//F=REFERENCE, S=SHALLOW, D=DEEP
//K=PACK, R=RECORD, P=PRINT, M=COMPARE, C=COPY
//--------------------------- AYFSD K R P M C

SNUG 2014 46 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

parameter UVM_DEFAULT = 'b000010101010101;
parameter UVM_ALL_ON = 'b000000101010101;
parameter UVM_FLAGS_ON = 'b000000101010101;
parameter UVM_FLAGS_OFF = 0;

//Values are or'ed into a 32 bit value
//and externally
parameter UVM_COPY = (1<<0);
parameter UVM_NOCOPY = (1<<1);
parameter UVM_COMPARE = (1<<2);
parameter UVM_NOCOMPARE = (1<<3);
parameter UVM_PRINT = (1<<4);
parameter UVM_NOPRINT = (1<<5);
parameter UVM_RECORD = (1<<6);
parameter UVM_NORECORD = (1<<7);
parameter UVM_PACK = (1<<8);
parameter UVM_NOPACK = (1<<9);
//parameter UVM_DEEP = (1<<10);
//parameter UVM_SHALLOW = (1<<11);
//parameter UVM_REFERENCE = (1<<12);
parameter UVM_PHYSICAL = (1<<13);
parameter UVM_ABSTRACT = (1<<14);
parameter UVM_READONLY = (1<<15);
parameter UVM_NODEFPRINT = (1<<16);

Table 4 - UVM field macro onehot flag settings in base/uvm_object_globals.svh

Figure 43- UVM field macro onehot flag settings diagram

From Table 4, it can be seen that UVM_DEEP, UVM_SHALLOW and UVM_REFERENCE are all
commented out, and in practice. UVM_DEFAULT and UVM_ALL_ON both perform deep operations.
Since there really are no active UVM_DEEP and UVM_SHALLON settings, UVM_DEFAULT and
UVM_ALL_ON perform the exact same field operations.

SNUG 2014 47 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

The next interesting observation is that when UVM_ALL_ON is selected and combined with
UVM_NOCOPY, both the copy-hot bit and the nocopy-hot bit are enabled, but the negating flag
operations take precedence over the affirming flag operation.

There is one other interesting side effect from using negating flag settings. Quoting from the
UVM Class Reference Manual, from the Field Macros section:

Each `uvm_field_* macro is named according to the particular data type it handles:
integrals, strings, objects, queues, etc., and each has at least two arguments: ARG and
FLAG.

ARG is the instance name of the variable, whose type must be compatible with the
macro being invoked. …

FLAG if set to UVM_ALL_ON, … the ARG variable will be included in all data
methods. If FLAG is set to something other than UVM_ALL_ON or
UVM_DEFAULT, it specifies which data method implementations will not
include the given variable. Thus, if FLAG is specified as NO_COMPARE,
the ARG variable will not affect comparison operations, but it will be
included in everything else.

The highlighted description for the FLAG argument leads to a rather surprising definition, which
is that turning off one flag actually enables all other flags even without specifying UVM_ALL_ON
or UVM_DEFAULT. The trans7 field macro definitions shown in Figure 44 actually enable
UVM_ALL_ON and then disable pack() for the a variable, disable copy() for the b-variable and
disable print() for the c-variable.

class trans7 extends uvm_sequence_item;
 rand bit [7:0] a, b, c;

 `uvm_object_utils_begin(trans7)
 `uvm_field_int(a, UVM_NOPACK)
 `uvm_field_int(b, UVM_NOCOPY)
 `uvm_field_int(c, UVM_NOPRINT)
 `uvm_object_utils_end

 function new (string name="trans7");
 super.new(name);
 endfunction

 `include "print_trans.sv"
endclass

Figure 44 - Field macro flags implicitly enable UVM_ALL_ON

In practice and for code clarity, engineers should specify either UVM_ALL_ON or UVM_DEFAULT
followed by off-flags in an |-separated list.

SNUG 2014 48 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Even though there are on-flags defined in the UVM class libraries, they do not appear to work as
expected. Specifying UVM_COPY with no other flags actually turns on all of the other operations
(copy(), compare(), print(), pack(), unpack(), record()).

The FLAG argument is frequently an or-separated list of flag settings but many industry
examples use a +-separated list of flag settings as shown in the trans2 definition of Figure 45

class trans2 extends uvm_sequence_item;
 rand bit [7:0] a, b, c;

 `uvm_object_utils_begin(trans2)
 `uvm_field_int(a, UVM_ALL_ON)
 `uvm_field_int(b, UVM_ALL_ON + UVM_NOCOPY)
 `uvm_field_int(c, UVM_ALL_ON)
 `uvm_object_utils_end

 function new (string name="trans2");
 super.new(name);
 endfunction

 `include "print_trans.sv"
endclass

Figure 45 - trans2 legally defined using multiple +-separated field macro flags

When the trans2 transaction is copied and compared using the test2 code from Figure 46, the
b-variable is intentionally not copied and the comparison for the b-variable fails, as can be seen
in the simulation output shown in Figure 47.

class test2 extends uvm_test;
 `uvm_component_utils(test2)

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 trans2 tr1 = trans2::type_id::create("tr1");
 trans2 x1 = trans2::type_id::create("x1");
 //--
 phase.raise_objection(this);
 if (!tr1.randomize()) `uvm_fatal("FATALRAND", "tr1 Rand failed");
 x1.copy(tr1);
 $display("--------------\n\n");
 `uvm_info("tr1", tr1.convert2string(),UVM_MEDIUM);
 `uvm_info("x1 ", x1.convert2string(),UVM_MEDIUM);
 if(x1.compare(tr1)) `uvm_info ("COMPARE" ,"x1 fields match tr1 fields",UVM_MEDIUM)
 else `uvm_error("ERRORCMP","x1 fields do NOT match tr1 fields")
 $display("\n\n--------------");
 phase.drop_objection(this);
 endtask
endclass

Figure 46 - test2: copies and compares trans2 objects

SNUG 2014 49 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

UVM_INFO body_run.sv(6) @ 0: uvm_test_top [tr1] inputs:a=be b=93 c=44
UVM_INFO body_run.sv(7) @ 0: uvm_test_top [x1] inputs:a=be b=00 c=44
UVM_INFO @ 0: reporter [MISCMP] Miscompare for x1.b: lhs = 'h0 : rhs = 'h93
UVM_INFO @ 0: reporter [MISCMP] 1 Miscompare(s) for object tr1@464 vs. x1@468
UVM_ERROR body_run.sv(9) @ 0: uvm_test_top [ERRORCMP] x1 fields do NOT match tr1
fields

Figure 47 - test2 simulation output - b-variable comparison fails as expected

Selecting multiple flag settings with the |-separated list is a better option since it will not disable
a desired action if a flag setting is accidentally used more than once as specified on the b-
variable in Figure 48.

class trans3 extends uvm_sequence_item;
 rand bit [7:0] a, b, c;

 `uvm_object_utils_begin(trans3)
 `uvm_field_int(a, UVM_ALL_ON)
 `uvm_field_int(b, UVM_NOCOPY | UVM_ALL_ON | UVM_NOCOPY)
 `uvm_field_int(c, UVM_ALL_ON)
 `uvm_object_utils_end

 function new (string name="trans3");
 super.new(name);
 endfunction

 `include "print_trans.sv"
endclass

Figure 48 - UVM_NOCOPY flag accidentally |-specified twice - nocopy remains active

Selecting multiple flag settings with the +-separated list is subject to hot-bit clearing if a desired
action flag setting is accidentally added more than once as specified on the b-variable in Figure
49.

class trans4 extends uvm_sequence_item;
 rand bit [7:0] a, b, c;

 `uvm_object_utils_begin(trans4)
 `uvm_field_int(a, UVM_ALL_ON)
 `uvm_field_int(b, UVM_NOCOPY + UVM_ALL_ON + UVM_NOCOPY) // Copies!!
 `uvm_field_int(c, UVM_ALL_ON)
 `uvm_object_utils_end

 function new (string name="trans4");
 super.new(name);
 endfunction

 `include "print_trans.sv"
endclass

Figure 49 - UVM_NOCOPY flag accidentally +-specified twice - removing the nocopy setting

Guideline: when using field macros, enable multiple flag settings using an |-separated list, not
the +-separated list. This approach is safer if a flag setting is accidentally applied more than once.

SNUG 2014 50 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

9.3. Combining Field Macros with do_methods()

Is it possible to code some of the standard transaction methods partially using field macros and
the other parts manually coded into do_methods()? The short answer is yes, but the correct
answer (to avoid confusion) is the two styles should not be mixed in the same transaction class
definition.

The mixing of field macros and do_methods() would most likely occur if a base transaction
class were defined using field macros and an extended transaction class were defined using
do_methods(). The trans8b base class uses field macros while the extended transaction class,
trans8, overrides do_copy() and do_compare() methods as shown in Figure 50.

class trans8b extends uvm_sequence_item;
 rand bit [7:0] a, b;

 `uvm_object_utils_begin(trans8b)
 `uvm_field_int(a, UVM_ALL_ON)
 `uvm_field_int(b, UVM_ALL_ON | UVM_NOCOPY)
 `uvm_object_utils_end

 function new (string name="trans8b");
 super.new(name);
 endfunction
endclass

class trans8 extends trans8b;
 `uvm_object_utils(trans8)
 rand bit [7:0] c;

 function new (string name="trans8");
 super.new(name);
 endfunction

 function void do_copy(uvm_object rhs);
 trans8 tr;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_copy() cast")
 super.do_copy(rhs);
 c = tr.c;
 endfunction

 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 trans8 tr;
 bit eq;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_compare() cast")
 eq = super.do_compare(rhs, comparer);
 eq &= (c == tr.c); // Compare outputs
 return(eq);
 endfunction

 `include "print_trans.sv"
endclass

Figure 50 - trans8b base with field macros extended in trans8 with do_methods()

SNUG 2014 51 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

The trans8 extended class inherits the a and b variables with field macros. Calling the copy()
method for an extended trans8 object first executes the copy operations for variables defined
with field macros, then completes the copy() operation by calling the do_copy() method. The
extended trans8 do_copy() method calls an empty inherited do_copy() method, which does
nothing in the example in Figure 50.

Guideline: do not define field macros and override the corresponding do_methods() for the
same standard transaction method in the same transaction class.

For instance, if a do_method() is defined for one of the standard transaction methods, then the
method should be explicitly excluded from the field macros by setting the corresponding
exclusion flag.

10. Benchmarks

Adam Erickson claimed that the do_methods() were more efficient both in code expansion and
in simulation efficiency. Is that true?

I concede from Adam's paper that code expansion efficiency significantly favors implementation
of the standard transaction methods using do_methods(), but I decided to try running some
benchmarks to prove or disprove Adam's claim about simulation efficiency.

Benchmarking can be tricky and needs to be specified in a way that can be repeated and give
reasonable information. I ran the benchmarks using the latest simulators from two different
vendors . Both simulators used built-in versions of UVM version 1.1d. The benchmark results
will not report relative speeds between the vendor's simulators, since those numbers are highly
dependent on the types of constructs used, but will report the relative percentage differences in
simulation efficiency for each simulator when using different coding styles. The goal is to show
users which coding styles will give the best results for all simulators.

10.1. Benchmarking methodology

The first benchmarks were run on a full UVM testbench environment with DUT but showed very
little efficiency differences. Due to all the UVM activity within the full testbench environment,
the efficiencies related to field macros versus do_methods() were largely masked. I then
determined that I needed to isolate the standard transaction methods as much as possible, so the
second set of benchmarks were done with just a test component with a tight loop that would
repeatedly randomize, copy and compare transactions. The full top.sv, test.sv, tb_pkg files and
transaction files are shown in the Appendix B.

The run_phase() test loop was run on one simulator using two different CNT values of 10-
million and 100-million (I wanted to make sure that the efficiencies of the loop would not be
overshadowed by startup and shutdown activities in the test). Then for comparison purposes, the

SNUG 2014 52 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

same code with CNT equal to 10-million was run on a second simulator. The run_phase() code
of the test1 component is shown in Figure 51.

 task run_phase(uvm_phase phase);
 trans1 tr1 = trans1::type_id::create("tr1");
 trans1 x1 = trans1::type_id::create("x1");
 //--
 phase.raise_objection(this);
 $display("--------------\n\n");
 repeat(`CNT) begin
 if (!tr1.randomize()) `uvm_fatal("FATALRAND", "tr1 Rand failed");
 x1.copy(tr1);
 if (x1.compare(tr1)) PASS (tr1);
 else ERROR(tr1, x1);
 end
 $display("\n\n--------------");
 phase.drop_objection(this);
 endtask

Figure 51 - Benchmark test1.sv run_phase() with randomize(), copy() and compare() loop

The transaction files were built using either do_methods() or field macros. Each transaction file
included a common block of code as shown in Figure 52.

class trans1 extends uvm_sequence_item;

 // uvm_object_utils macro, data declarations
 // field macros if used

 function new (string name="trans1");
 super.new(name);
 endfunction

 // do_copy() & do_compare() methods if required

 function string input2string();
 return ($sformatf("g=%2h h=%2h i=%2h j=%2h k=%2h",
 g, h, i, j, k));
 endfunction

 function string output2string();
 return ($sformatf("a=%2h b=%2h c=%2h d=%2h e=%2h",
 a, b, c, d, e));
 endfunction

 function string convert2string();
 return ({"Inputs: ", input2string(), " ",
 "Outputs: ", output2string()});
 endfunction
endclass

Figure 52 - Common benchmark trans1 code

SNUG 2014 53 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Each test was compiled once, and then run five times to gather data that could be averaged for
comparison purposes. The script to compile and run the first trans1 benchmark test is shown in
Figure 53. Similar scripts exist for each trans1-coding benchmark variation.

vcs -sverilog -ntb_opts uvm -timescale=1ns/1ns -f run1a.f
/usr/bin/time -f "trans1a: no rand output - uses do_methods() - no field
macros - simulation time %U" \
 -o log1a_1.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1a: no rand output - uses do_methods() - no field
macros - simulation time %U" \
 -o log1a_2.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1a: no rand output - uses do_methods() - no field
macros - simulation time %U" \
 -o log1a_3.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1a: no rand output - uses do_methods() - no field
macros - simulation time %U" \
 -o log1a_4.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1a: no rand output - uses do_methods() - no field
macros - simulation time %U" \
 -o log1a_5.vcs simv +UVM_TESTNAME=test1
cat log1a_*.vcs

Figure 53 - Benchmark script to run the first transactions five times

The script in Figure 53 shows string-text that wraps but in the actual script file the strings do not
wrap.

10.2. Benchmarking do_methods() with nonrand-outputs and rand-outputs

Reminder: when implementing a transaction with the do_methods() the `uvm_object_utils()
macro must be used.

The first transaction highlights, as shown in Figure 54, included:

(1) `uvm_object_utils() macro
(2) 5 non-rand, 8-bit, data outputs
(3) 5 rand, 8-bit, data inputs

do_copy()and do_compare() methods that called super.methods()

The second benchmark transaction was identical to the first but also randomized the outputs. As
mentioned earlier, there is no reason to randomize outputs since they will not be used. Will
randomized outputs significantly impact simulation performance?

 `uvm_object_utils(trans1)

 bit [7:0] a, b, c, d, e; // outputs
 rand bit [2:0] g, h, i, j, k; // inputs

 function void do_copy(uvm_object rhs);
 trans1 tr;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_copy() cast")

SNUG 2014 54 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

 super.do_copy(rhs);
 {a, b, c, d, e} = {tr.a, tr.b, tr.c, tr.d, tr.e};
 {g, h, i, j, k} = {tr.g, tr.h, tr.i, tr.j, tr.k};
 endfunction

 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 trans1 tr;
 bit eq;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_compare() cast")
 eq = super.do_compare(rhs, comparer);
 eq &= (a == tr.a);
 eq &= (b == tr.b);
 eq &= (c == tr.c);
 eq &= (d == tr.d);
 eq &= (e == tr.e);
 eq &= (g == tr.g);
 eq &= (h == tr.h);
 eq &= (i == tr.i);
 eq &= (j == tr.j);
 eq &= (k == tr.k);
 return(eq);
 endfunction

Figure 54 - First benchmark trans1 with non-rand outputs and do_methods()

Simulation results - needless randomization of the 5 output variables added simulation time as
follows:

 Simulator A with CNT=10,000000: required 10.5% more simulation time
 Simulator A with CNT=100,000000: required 15.2% more simulation time
 Simulator B with CNT=10,000000: required 24.8% more simulation time

Clearly, one should not needlessly randomize variables that will not be used.

10.3. Benchmarking field macros with nonrand-outputs and rand-outputs

Reminder: when implementing a transaction with field macros the
`uvm_object_utils_begin() / _end macros must be used.

The third transaction highlights, as shown in Figure 55, included:

(1) 5 non-rand, 8-bit, data outputs
(2) 5 rand, 8-bit, data inputs
(3) `uvm_object_utils_begin() macro
(4) `uvm_field_int macros with UVM_ALL_ON
(5) `uvm_object_utils_end

The fourth benchmark transaction was identical to the third but also randomized the outputs. As
mentioned earlier, there is no reason to randomize outputs since they will not be used. Again,
will randomized outputs significantly impact simulation performance?

SNUG 2014 55 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

 bit [7:0] a, b, c, d, e; // outputs
 rand bit [2:0] g, h, i, j, k; // inputs

 `uvm_object_utils_begin(trans1)
 `uvm_field_int(a, UVM_ALL_ON)
 `uvm_field_int(b, UVM_ALL_ON)
 `uvm_field_int(c, UVM_ALL_ON)
 `uvm_field_int(d, UVM_ALL_ON)
 `uvm_field_int(e, UVM_ALL_ON)
 `uvm_field_int(g, UVM_ALL_ON)
 `uvm_field_int(h, UVM_ALL_ON)
 `uvm_field_int(i, UVM_ALL_ON)
 `uvm_field_int(j, UVM_ALL_ON)
 `uvm_field_int(k, UVM_ALL_ON)
 `uvm_object_utils_end

Figure 55 - Third benchmark trans1 with non-rand outputs and field macros

Simulation results - needless randomization of the 5 output variables added simulation time as
follows:

 Simulator A with CNT=10,000000: required 10.0% more simulation time
 Simulator A with CNT=100,000000: required 10.2% more simulation time
 Simulator B with CNT=10,000000: required 14.2% more simulation time

Clearly, one should not needlessly randomize variables that will not be used.

Benchmarking do_methods() versus field macros

In addition to comparing rand versus non-rand outputs, simulation times were measured between
do_method() and field macro versions to the trans1 transactions (using the non-randomized
outputs versions).

Simulation results - do_method() versions of the trans1 transaction were more simulation
efficient than the equivalent field macro versions of the trans1 transaction. The added
simulation time penalty for using the field macro versions were as follows:

 Simulator A with CNT=10,000000: required 4.5% more simulation time
 Simulator A with CNT=100,000000: required 6.4% more simulation time
 Simulator B with CNT=10,000000: required 94.7% more simulation time

As can be seen from the results, the do_method() version of the standard transaction methods is
more simulation efficient than the equivalent field macro version. This is especially true using
Simulator B where the measured penalty for using the field macros was 94.7% of additional
simulation time.

Benchmarking do_methods() versus do_methods() without super.do_methods

As was previously mentioned, it is not necessary to call super.do_copy() and
super.do_compare() for transactions that are extended from the uvm_sequence_item base

SNUG 2014 56 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

class. The reason was that the do_copy() and do_compare() methods in the base class were
almost empty methods. So is there a penalty for calling the empty super.do_copy() and
super.do_compare() methods? The answer is yes.

Simulation results - do_method() versions of the trans1 transaction that did not call the
super.do_methods were more simulation efficient than the equivalent transactions that called
the super.do_methods. The added simulation time penalty for calling the empty
super.do_method() versions were as follows:

 Simulator A with CNT=10,000000: required 4.8% more simulation time
 Simulator A with CNT=100,000000: required 2.6% more simulation time
 Simulator B with CNT=10,000000: required 2.2% more simulation time

As can be seen from the results, calls to the empty super.do_method() versions is less
simulation efficient than omitting the super.do_method() calls. Minor simulation speedups can
be achieved by omitting the super.do_method() calls when they are unnecessary.

11. Summary & Conclusions

Classes are the preferred construct to represent transaction data because they are basically
dynamic, ultra-flexible structs that can be easily randomized, easily control the randomization,
and be created whenever they are needed.

The uvm_sequence_item and int class parameter types that are found in the UVM Base Class
Library (BCL) are just placeholders that you will never use. Most of your testbench classes will
be parameterized to the trans1 (or name of your choice) transaction type, which is derived
from the uvm_sequence_item type.

Using a standard class formatting style as shown in Figure 2, Figure 3 and Figure 4 makes it
easier for users (and yourself) to understand and use your testbench component and transaction
class implementations.

Rule: when using field macros, it is required to declare the transaction variables before they are
specified in field macros.

Rule: when using field macros, the variables are declared before the registration of the
transaction with the factory.

Rule: when using field macros, you must register the transaction with the factory using the
`uvm_object_utils_begin() / `uvm_object_utils_end macros.

Rule: when using do_methods(), you must register the transaction with the factory using the
`uvm_object_utils () macro.

Rule: when using field macros, each variable must be declared with a separate field macro.
Variables cannot be grouped into a common field macro definition.

SNUG 2014 57 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Guideline: do not directly override the copy(), compare() and other uvm_object base class
standard transaction methods.

Guideline: never manually implement the create() method. Call the `uvm_object_utils()
macro to automatically implement the create() method.

Guideline: Every user-defined transaction method should include a convert2string() method.

Guideline: Avoid using the print() method. Its output is verbose and cannot be suppressed by
using UVM verbosity settings.

Guideline: Avoid using the sprint() method. Its output is verbose.

Guideline: If you do use one of the built-in printing methods, choose sprint() over print()
and call it from a UVM message macro. Runtime verbosity settings can mask verbose sprint()
method printouts if desired.

Guideline: Define and use the convert2string() method discussed in earlier sections.
convert2string() is more simulation efficient, more print-space efficient and can be easily
suppressed by using different runtime UVM verbosity settings.

There are additional guidelines included throughout the paper, but following these rules and
guidelines are the current Best Known Methods for using UVM transactions.

12. Acknowledgements

I am grateful to my colleague Stuart Sutherland for his exhaustive review of this paper, for
identifying errors and suggesting improvements to the content and flow of this paper. I am also
grateful to my colleague Heath Chambers for identifying sections that could be merged to
improve the flow of this paper.

13. References:

[1] Adam Erickson, "Are OVM & UVM Macros Evil? A Cost-Benefit Analysis," DVCon 2011. Copy

can also be requested at: http://www.mentor.com/products/fv/verificationhorizons/horizons-jun-11

[2] Clifford E. Cummings, "OVM/UVM Scoreboards - Fundamental Architectures," SNUG-SV 2013 -
www.sunburst-design.com/papers/CummingsSNUG2013SV_UVM_Scoreboards.pdf

[3] Dave Rich, Tom Fitzpatrick - Mentor UVM Experts - personal communication

[4] Kathleen A. Meade, Sharon Rosenberg, A Practical Guide to Adopting the Universal Verification
Methodology (UVM), Second Edition, ISBN 978-1-300-53593-5. Published 2013

[5] Kathleen A. Meade, Sharon Rosenberg - Cadence UVM Experts - personal communication

[6] OVM User Guide, March 2010, Available for download from:
https://verificationacademy.com/forums/downloads/ovm/uvm-download-kits

SNUG 2014 58 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

[7] Universal Verification Methodology (UVM) 1.1 Class Reference, May 2011, Accellera, Napa, CA.
www.accellera.org/downloads/standards/uvm

[8] Universal Verification Methodology (UVM) 1.1 Users Guide, May 18, 2011, Accellera, Napa, CA.
www.accellera.org/downloads/standards/uvm

[9] UVM (Universal Verification Methodology) Forum - Accellera Systems Initiative Forums,
http://forums.accellera.org/topic/991-uvm-all-on-vs-uvm-default/?hl=uvm_default

[10] UVM_DEFAULT -vs- UVM_ALL_ON,
http://forums.accellera.org/topic/991-uvm-all-on-vs-uvm-default/?hl=uvm_default

[11] Vanessa R. Cooper, Getting Started with UVM: A Beginner's Guide, ISBN-10: 0615819974 |
ISBN-13: 978-0615819976, Published 2013

[12] Verification Academy, https://verificationacademy.com/

14. AUTHOR & CONTACT INFORMATION

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 32 years of ASIC, FPGA and system design experience and 23 years of
SystemVerilog, synthesis and methodology training experience.

Mr Cummings has presented more than 100 SystemVerilog seminars and training classes in the
past nine years and was the featured speaker at the world-wide SystemVerilog NOW! seminars.

Mr Cummings has participated on every IEEE & Accellera SystemVerilog, SystemVerilog
Synthesis, SystemVerilog committee, and has presented more than 40 papers on SystemVerilog
& SystemVerilog related design, synthesis and verification techniques.

Mr Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Sunburst Design, Inc. offers World Class Verilog & SystemVerilog training courses. For more
information, visit the www.sunburst-design.com web site.
Email address: cliffc@sunburst-design.com

Last Updated: March 31, 2014

SNUG 2014 59 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

15. Appendix A

15.1. UVM classes parameterized to uvm_sequence_item

Many of the UVM base classes are parameterized classes, also known as specializations of
classes. UVM version 1.1d includes eight base classes that are parameterized to the
uvm_sequence_item type as shown in Figure 56. Seven of the base classes are component
classes and the eighth is the sequence base class.

File: comps/uvm_driver.svh
 uvm_driver #(type REQ = uvm_sequence_item, ...)

File: comps/uvm_push_driver.svh
 uvm_push_driver #(type REQ = uvm_sequence_item, ...)

File: seq/uvm_push_sequencer.svh
 uvm_push_sequencer #(type REQ = uvm_sequence_item, ...)

File: seq/uvm_sequence.svh
 uvm_sequence #(type REQ = uvm_sequence_item, ...)

File: seq/uvm_sequence_library.svh
 uvm_sequence_library #(type REQ = uvm_sequence_item, ...)

File: seq/uvm_sequencer.svh
 uvm_sequencer #(type REQ = uvm_sequence_item, ...)

File: seq/uvm_sequencer_analysis_fifo.svh
 uvm_sequencer_analysis_fifo #(type RSP = uvm_sequence_item)

File: seq/uvm_sequencer_param_base.svh
 uvm_sequencer_param_base #(type REQ = uvm_sequence_item, ...)

Figure 56 - UVM classes parameterized to the uvm_sequence_item type

15.2. UVM classes parameterized to int

Many of the UVM base classes are parameterized classes, also known as specializations of
classes. UVM version 1.1d includes 69 base classes that are parameterized to the int type as
shown in Figure 57.

File: base/uvm_config_db.svh
 uvm_config_db #(type T=int)

File: base/uvm_queue.svh
 uvm_queue #(type T=int)

File: base/uvm_resource.svh
 uvm_resource #(type T=int)

File: base/uvm_spell_chkr.svh
 uvm_spell_chkr #(type T=int)

SNUG 2014 60 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

File: comps/uvm_in_order_comparator.svh
 uvm_in_order_built_in_comparator #(type T=int)
 uvm_in_order_class_comparator #(type T=int)

File: comps/uvm_policies.svh
 uvm_built_in_comp #(type T=int)
 uvm_built_in_converter #(type T=int)
 uvm_built_in_clone #(type T=int)
 uvm_class_comp #(type T=int)
 uvm_class_converter #(type T=int)
 uvm_class_clone #(type T=int)

File: comps/uvm_subscriber.svh
 uvm_subscriber #(type T=int)

File: macros/uvm_tlm_defines.svh
 uvm_blocking_put_imp``SFX #(type T=int, type IMP=int)
 uvm_nonblocking_put_imp``SFX #(type T=int, type IMP=int)
 uvm_put_imp``SFX #(type T=int, type IMP=int)
 uvm_blocking_get_imp``SFX #(type T=int, type IMP=int)
 uvm_nonblocking_get_imp``SFX #(type T=int, type IMP=int)
 uvm_get_imp``SFX #(type T=int, type IMP=int)
 uvm_blocking_peek_imp``SFX #(type T=int, type IMP=int)
 uvm_nonblocking_peek_imp``SFX #(type T=int, type IMP=int)
 uvm_peek_imp``SFX #(type T=int, type IMP=int)
 uvm_blocking_get_peek_imp``SFX #(type T=int, type IMP=int)
 uvm_nonblocking_get_peek_imp``SFX #(type T=int, type IMP=int)
 uvm_get_peek_imp``SFX #(type T=int, type IMP=int)
 uvm_analysis_imp``SFX #(type T=int, type IMP=int)

File: tlm1/uvm_analysis_port.svh
 uvm_analysis_imp #(type T=int, type IMP=int)
 uvm_analysis_export #(type T=int)
 uvm_analysis_port #(type T=int)

File: tlm1/uvm_exports.svh
 uvm_blocking_put_export #(type T=int)
 uvm_nonblocking_put_export #(type T=int)
 uvm_put_export #(type T=int)
 uvm_blocking_get_export #(type T=int)
 uvm_nonblocking_get_export #(type T=int)
 uvm_get_export #(type T=int)
 uvm_blocking_peek_export #(type T=int)
 uvm_nonblocking_peek_export #(type T=int)
 uvm_peek_export #(type T=int)
 uvm_blocking_get_peek_export #(type T=int)
 uvm_nonblocking_get_peek_export #(type T=int)
 uvm_get_peek_export #(type T=int)

File: tlm1/uvm_imps.svh
 uvm_blocking_put_imp #(type T=int, type IMP=int)
 uvm_nonblocking_put_imp #(type T=int, type IMP=int)
 uvm_put_imp #(type T=int, type IMP=int)
 uvm_blocking_get_imp #(type T=int, type IMP=int)
 uvm_nonblocking_get_imp #(type T=int, type IMP=int)
 uvm_get_imp #(type T=int, type IMP=int)

SNUG 2014 61 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

 uvm_blocking_peek_imp #(type T=int, type IMP=int)
 uvm_nonblocking_peek_imp #(type T=int, type IMP=int)
 uvm_peek_imp #(type T=int, type IMP=int)
 uvm_blocking_get_peek_imp #(type T=int, type IMP=int)
 uvm_nonblocking_get_peek_imp #(type T=int, type IMP=int)
 uvm_get_peek_imp #(type T=int, type IMP=int)

File: tlm1/uvm_ports.svh
 uvm_blocking_put_port #(type T=int)
 uvm_nonblocking_put_port #(type T=int)
 uvm_put_port #(type T=int)
 uvm_blocking_get_port #(type T=int)
 uvm_nonblocking_get_port #(type T=int)
 uvm_get_port #(type T=int)
 uvm_blocking_peek_port #(type T=int)
 uvm_nonblocking_peek_port #(type T=int)
 uvm_peek_port #(type T=int)
 uvm_blocking_get_peek_port #(type T=int)
 uvm_nonblocking_get_peek_port #(type T=int)
 uvm_get_peek_port #(type T=int)

File: tlm1/uvm_tlm_fifo_base.svh
 uvm_tlm_fifo_base #(type T=int)

File: tlm1/uvm_tlm_fifos.svh
 uvm_tlm_analysis_fifo #(type T=int)
 uvm_tlm_fifo #(type T=int)

File: tlm2/uvm_tlm2_generic_payload.svh
 uvm_tlm_extension #(type T=int)

Figure 57 - UVM classes parameterized to the int type

SNUG 2014 62 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

16. Appendix B

16.1. Benchmark files to test simulation efficiency

This section contains the files that were used to run the simulations referenced in the Benchmarks
section. There were six different trans1 transaction coding styles tested. Example 1- Example 12 are
the tb_pkg1[a-f].sv files and run1[a-f].f files used by the benchmark simulations.

`include "uvm_macros.svh"
package tb_pkg;
 import uvm_pkg::*;
 `include "trans1a.sv"
 `include "test1.sv"
endpackage

Example 1 - File: tb_pkg1a.sv

tb_pkg1a.sv
top.sv

Example 2 - File: run1a.f

`include "uvm_macros.svh"
package tb_pkg;
 import uvm_pkg::*;
 `include "trans1b.sv"
 `include "test1.sv"
endpackage

Example 3 - File: tb_pkg1b.sv

tb_pkg1b.sv
top.sv

Example 4 - File: run1b.f

`include "uvm_macros.svh"
package tb_pkg;
 import uvm_pkg::*;
 `include "trans1c.sv"
 `include "test1.sv"
endpackage

Example 5 - File: tb_pkg1c.sv

tb_pkg1c.sv
top.sv

Example 6 - File: run1c.f

`include "uvm_macros.svh"
package tb_pkg;
 import uvm_pkg::*;
 `include "trans1d.sv"
 `include "test1.sv"
endpackage

Example 7 - File: tb_pkg1d.sv

tb_pkg1d.sv
top.sv

Example 8 - File: run1d.f

`include "uvm_macros.svh"
package tb_pkg;
 import uvm_pkg::*;
 `include "trans1e.sv"
 `include "test1.sv"
endpackage

Example 9 - File: tb_pkg1e.sv

tb_pkg1e.sv
top.sv

Example 10 - File: run1e.f

`include "uvm_macros.svh"
package tb_pkg;
 import uvm_pkg::*;
 `include "trans1f.sv"
 `include "test1.sv"
endpackage

Example 11 - File: tb_pkg1f.sv

tb_pkg1f.sv
top.sv

Example 12 - File: run1f.f

SNUG 2014 63 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Each benchmarked transaction was first compiled and then simulated five times. The average of the
five simulation runs were compared to other transaction simulations.

vcs -sverilog -ntb_opts uvm -timescale=1ns/1ns -f run1a.f
/usr/bin/time -f "trans1a: no rand output - uses do_methods() - no field macros - simulation time %U" \
 -o log1a_1.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1a: no rand output - uses do_methods() - no field macros - simulation time %U" \
 -o log1a_2.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1a: no rand output - uses do_methods() - no field macros - simulation time %U" \
 -o log1a_3.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1a: no rand output - uses do_methods() - no field macros - simulation time %U" \
 -o log1a_4.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1a: no rand output - uses do_methods() - no field macros - simulation time %U" \
 -o log1a_5.vcs simv +UVM_TESTNAME=test1
cat log1a*.vcs

Example 13 - File: doit1a.vcs

vcs -sverilog -ntb_opts uvm -timescale=1ns/1ns -f run1b.f
/usr/bin/time -f "trans1b: rand output - uses do_methods() - no field macros - simulation time %U" \
 -o log1b_1.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1b: rand output - uses do_methods() - no field macros - simulation time %U" \
 -o log1b_2.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1b: rand output - uses do_methods() - no field macros - simulation time %U" \
 -o log1b_3.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1b: rand output - uses do_methods() - no field macros - simulation time %U" \
 -o log1b_4.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1b: rand output - uses do_methods() - no field macros - simulation time %U" \
 -o log1b_5.vcs simv +UVM_TESTNAME=test1
cat log1b*.vcs

Example 14- File: doit1b.vcs

vcs -sverilog -ntb_opts uvm -timescale=1ns/1ns -f run1c.f
/usr/bin/time -f "trans1c: no rand output - uses field macros - no do_methods() - simulation time %U" \
 -o log1c_1.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1c: no rand output - uses field macros - no do_methods() - simulation time %U" \
 -o log1c_2.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1c: no rand output - uses field macros - no do_methods() - simulation time %U" \
 -o log1c_3.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1c: no rand output - uses field macros - no do_methods() - simulation time %U" \
 -o log1c_4.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1c: no rand output - uses field macros - no do_methods() - simulation time %U" \
 -o log1c_5.vcs simv +UVM_TESTNAME=test1
cat log1c*.vcs

Example 15- File: doit1c.vcs

vcs -sverilog -ntb_opts uvm -timescale=1ns/1ns -f run1d.f
/usr/bin/time -f "trans1d: rand output - uses filed macros - no do_methods() - simulation time %U" \
 -o log1d_1.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1d: rand output - uses filed macros - no do_methods() - simulation time %U" \
 -o log1d_2.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1d: rand output - uses filed macros - no do_methods() - simulation time %U" \
 -o log1d_3.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1d: rand output - uses filed macros - no do_methods() - simulation time %U" \
 -o log1d_4.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1d: rand output - uses filed macros - no do_methods() - simulation time %U" \
 -o log1d_5.vcs simv +UVM_TESTNAME=test1
cat log1d*.vcs

Example 16- File: doit1d.vcs

vcs -sverilog -ntb_opts uvm -timescale=1ns/1ns -f run1e.f
/usr/bin/time -f "trans1e: no rand output - do_methods() - no super.do_methods() - simulation time %U" \
 -o log1e_1.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1e: no rand output - do_methods() - no super.do_methods() - simulation time %U" \
 -o log1e_2.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1e: no rand output - do_methods() - no super.do_methods() - simulation time %U" \
 -o log1e_3.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1e: no rand output - do_methods() - no super.do_methods() - simulation time %U" \
 -o log1e_4.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1e: no rand output - do_methods() - no super.do_methods() - simulation time %U" \
 -o log1e_5.vcs simv +UVM_TESTNAME=test1
cat log1e*.vcs

Example 17- File: doit1e.vcs

vcs -sverilog -ntb_opts uvm -timescale=1ns/1ns -f run1f.f
/usr/bin/time -f "trans1f: no rand output - UVM_NOPACK, UVM_NOCOMPARE removed UVM_ALL_ON field macros - simtime %U" \
 -o log1f_1.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1f: no rand output - UVM_NOPACK, UVM_NOCOMPARE removed UVM_ALL_ON field macros - simtime %U" \
 -o log1f_2.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1f: no rand output - UVM_NOPACK, UVM_NOCOMPARE removed UVM_ALL_ON field macros - simtime %U" \
 -o log1f_3.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1f: no rand output - UVM_NOPACK, UVM_NOCOMPARE removed UVM_ALL_ON field macros - simtime %U" \
 -o log1f_4.vcs simv +UVM_TESTNAME=test1
/usr/bin/time -f "trans1f: no rand output - UVM_NOPACK, UVM_NOCOMPARE removed UVM_ALL_ON field macros - simtime %U" \
 -o log1f_5.vcs simv +UVM_TESTNAME=test1
cat log1f*.vcs

Example 18 - File: doit1f.vcs

SNUG 2014 64 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

The report.vcs file concatenates all of the benchmark simulation results into a single file called
vcs_benchmark_times, and then moves all of the separate benchmark report files into a VCSLOG
directory, along with a copy of the vcs_benchmark_times file.

rm -rf vcs_benchmark_times
cat log1*.vcs > vcs_benchmark_times
mv log1*.vcs VCSLOG
cp -rp vcs_benchmark_times VCSLOG

Example 19 - File: report.vcs - gathers benchmark simulation times

The script to start the benchmark simulations is the doitall.vcs script. This script should be executed
after setting the repeat-loop count value (CNT) in the file: CNT_file

doit1a.vcs
doit1b.vcs
doit1c.vcs
doit1d.vcs
doit1e.vcs
doit1f.vcs
report.vcs

Example 20 - File: doitall.vcs - execute after setting loop CNT value in the CNT_file file

Each of the trans1 class examples `includes a common set of printing methods. Including the
print-methods reduces the code volume for each of the trans1 class examples.

 function string input2string();
 return ($sformatf("g=%2h h=%2h i=%2h j=%2h k=%2h",
 g, h, i, j, k));
 endfunction

 function string output2string();
 return ($sformatf("a=%2h b=%2h c=%2h d=%2h e=%2h",
 a, b, c, d, e));
 endfunction

 function string convert2string();
 return ({"Inputs: ", input2string(), " ",
 "Outputs: ", output2string()});
 endfunction

Example 21 - trans_printing.sv - common printing methods included in each trans1 class

SNUG 2014 65 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

The top.sv file is top-module used to run the simulations.

`include "uvm_macros.svh"
module top;
 import uvm_pkg::*; // import uvm base classes
 import tb_pkg::*; // import testbench classes

 initial run_test();
endmodule

Example 22 - File: top.sv - wrapper top-module to permit testing

The test1 loop CNT value used by the test1 class shown in Example 24 is controlled by changing the
CNT (repeat-loop limit) value in the CNT_file, which is `included into the test1.sv file.

`define CNT 10_000_000
Example 23 - File: CNT_file - holds loop-CNT value

16.2. Benchmark vcs_benchmark_times file

The actual benchmark output file for running the VCS benchmarks with a loop `CNT = 10 million is
shown below. There are five results for each trans1 transaction type. This file was generated by
executing the doitall.vcs script.

trans1a: no rand output - uses do_methods() - no field macros - simulation time 126.07
trans1a: no rand output - uses do_methods() - no field macros - simulation time 128.66
trans1a: no rand output - uses do_methods() - no field macros - simulation time 125.69
trans1a: no rand output - uses do_methods() - no field macros - simulation time 129.05
trans1a: no rand output - uses do_methods() - no field macros - simulation time 124.73
trans1b: rand output - uses do_methods() - no field macros - simulation time 138.95
trans1b: rand output - uses do_methods() - no field macros - simulation time 139.17
trans1b: rand output - uses do_methods() - no field macros - simulation time 141.62
trans1b: rand output - uses do_methods() - no field macros - simulation time 139.50
trans1b: rand output - uses do_methods() - no field macros - simulation time 141.79
trans1c: no rand output - uses field macros - no do_methods() - simulation time 132.95
trans1c: no rand output - uses field macros - no do_methods() - simulation time 127.93
trans1c: no rand output - uses field macros - no do_methods() - simulation time 134.30
trans1c: no rand output - uses field macros - no do_methods() - simulation time 131.59
trans1c: no rand output - uses field macros - no do_methods() - simulation time 135.68
trans1d: rand output - uses filed macros - no do_methods() - simulation time 144.47
trans1d: rand output - uses filed macros - no do_methods() - simulation time 151.20
trans1d: rand output - uses filed macros - no do_methods() - simulation time 145.12
trans1d: rand output - uses filed macros - no do_methods() - simulation time 144.39
trans1d: rand output - uses filed macros - no do_methods() - simulation time 143.90
trans1e: no rand output - do_methods() - no super.do_methods() - simulation time 122.51
trans1e: no rand output - do_methods() - no super.do_methods() - simulation time 121.24
trans1e: no rand output - do_methods() - no super.do_methods() - simulation time 119.36
trans1e: no rand output - do_methods() - no super.do_methods() - simulation time 120.73
trans1e: no rand output - do_methods() - no super.do_methods() - simulation time 120.12
trans1f: no rand output - UVM_NOPACK, UVM_NOCOMPARE removed UVM_ALL_ON field macros - simtime 134.00
trans1f: no rand output - UVM_NOPACK, UVM_NOCOMPARE removed UVM_ALL_ON field macros - simtime 128.78
trans1f: no rand output - UVM_NOPACK, UVM_NOCOMPARE removed UVM_ALL_ON field macros - simtime 130.62
trans1f: no rand output - UVM_NOPACK, UVM_NOCOMPARE removed UVM_ALL_ON field macros - simtime 133.32
trans1f: no rand output - UVM_NOPACK, UVM_NOCOMPARE removed UVM_ALL_ON field macros - simtime 133.64

Figure 58 - vcs_benchmark_times report file for a loop CNT=10,000,000

SNUG 2014 66 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

16.3. Benchmark test1 file with repeat-loop

`include "CNT_file"

class test1 extends uvm_test;
 `uvm_component_utils(test1)
 int VECT_CNT, PASS_CNT, ERROR_CNT;
 string pstr = "\n\n\n*** TEST PASSED - ";
 string estr = "\n\n\n*** TEST FAILED - ";

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 trans1 tr1 = trans1::type_id::create("tr1");
 trans1 x1 = trans1::type_id::create("x1");
 //--
 phase.raise_objection(this);
 $display("--------------\n\n");
 repeat(`CNT) begin
 if (!tr1.randomize()) `uvm_fatal("FATALRAND", "tr1 rand failed");
 x1.copy(tr1);
 `uvm_info("tr1", tr1.convert2string(),UVM_DEBUG);
 `uvm_info(" x1", x1.convert2string(), UVM_DEBUG);
 if (x1.compare(tr1)) PASS (tr1);
 else ERROR(tr1, x1);
 end
 $display("\n\n--------------");
 phase.drop_objection(this);
 endtask

 function void report_phase(uvm_phase phase);
 if (VECT_CNT && !ERROR_CNT) `uvm_info ("TEST PASSED",
 $sformatf({pstr, "vectors: %0d ran, %0d passed ***\n"},
 VECT_CNT, PASS_CNT), UVM_LOW)
 else `uvm_error("TEST FAILED",
 $sformatf({estr, "vectors: %0d ran, %0d passed , %0d failed ***\n"},
 VECT_CNT, PASS_CNT, ERROR_CNT))
 endfunction

 function void PASS(trans1 exp_tr);
 `uvm_info("PASSMSG",
 $sformatf("Vec#%0d:\n\tPassed: %s",
 VECT_CNT, exp_tr.convert2string()), UVM_HIGH)
 VECT_CNT++;
 PASS_CNT++;
 endfunction

 function void ERROR(trans1 exp_tr, out_tr);
 `uvm_error("ERRORMSG",
 $sformatf("Vec#%0d:\n\tActual: %s\n\tExpect: %s",
 VECT_CNT, out_tr.convert2string(),
 exp_tr.convert2string()))
 VECT_CNT++;
 ERROR_CNT++;
 endfunction
endclass

Example 24 - File: test1.sv - randomizes, copies and compares in a repeat(`CNT) loop

SNUG 2014 67 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

The test1 class, shown in Example 24, has a run_phase() that factory-creates two class objects, tr1
and x1, and goes into a repeat loop that randomizes the tr1 variables, copies the tr1 variables to the
x1 variables, and then compares the values of the tr1 variables to the x1 variables. This is a tight loop
that is repeated millions of times to benchmark performance differences related to how the copy() and
compare() methods were created in different trans1 classes.

trans1a - non-randomized outputs - do_methods() - no field macros

The trans1 class defined in the trans1a.sv file has five non-randomized outputs and five
randomized inputs. The trans1a.sv example has user-defined do_copy() and do_compare()
methods but no field macro definitions.

class trans1 extends uvm_sequence_item;
 `uvm_object_utils(trans1)

 bit [7:0] a, b, c, d, e; // outputs
 rand bit [2:0] g, h, i, j, k; // inputs

 function new (string name="trans1");
 super.new(name);
 endfunction

 function void do_copy(uvm_object rhs);
 trans1 tr;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_copy() cast")
 super.do_copy(rhs);
 {a, b, c, d, e} = {tr.a, tr.b, tr.c, tr.d, tr.e};
 {g, h, i, j, k} = {tr.g, tr.h, tr.i, tr.j, tr.k};
 endfunction

 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 trans1 tr;
 bit eq;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_compare() cast")
 eq = super.do_compare(rhs, comparer);
 eq &= (a == tr.a); // Compare outputs
 eq &= (b == tr.b);
 eq &= (c == tr.c);
 eq &= (d == tr.d);
 eq &= (e == tr.e);
 eq &= (g == tr.g);
 eq &= (h == tr.h);
 eq &= (i == tr.i);
 eq &= (j == tr.j);
 eq &= (k == tr.k);
 return(eq);
 endfunction

 `include "trans_printing.sv"
endclass

Example 25 - File: trans1a.sv - no rand outputs - uses do_methods() - no field macros

SNUG 2014 68 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

trans1b - randomized outputs - do_methods() - no field macros

The trans1 class defined in the trans1b.sv file has five randomized outputs and five randomized
inputs. The trans1b.sv example has user-defined do_copy() and do_compare() methods but no
field macro definitions.

class trans1 extends uvm_sequence_item;
 `uvm_object_utils(trans1)

 rand bit [7:0] a, b, c, d, e; // outputs
 rand bit [2:0] g, h, i, j, k; // inputs

 function new (string name="trans1");
 super.new(name);
 endfunction

 function void do_copy(uvm_object rhs);
 trans1 tr;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_copy() cast")
 super.do_copy(rhs);
 {a, b, c, d, e} = {tr.a, tr.b, tr.c, tr.d, tr.e};
 {g, h, i, j, k} = {tr.g, tr.h, tr.i, tr.j, tr.k};
 endfunction

 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 trans1 tr;
 bit eq;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_compare() cast")
 eq = super.do_compare(rhs, comparer);
 eq &= (a == tr.a); // Compare outputs
 eq &= (b == tr.b);
 eq &= (c == tr.c);
 eq &= (d == tr.d);
 eq &= (e == tr.e);
 eq &= (g == tr.g);
 eq &= (h == tr.h);
 eq &= (i == tr.i);
 eq &= (j == tr.j);
 eq &= (k == tr.k);
 return(eq);
 endfunction

 `include "trans_printing.sv"
endclass

Example 26- File: trans1b.sv - rand outputs - uses do_methods() - no field macros

SNUG 2014 69 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

trans1c - no randomized outputs - uses field macros - no do_methods()

The trans1 class defined in the trans1c.sv file has five non-randomized outputs and five
randomized inputs. The trans1c.sv example has user-defined field macro definitions but no
do_methods().

class trans1 extends uvm_sequence_item;
 bit [7:0] a, b, c, d, e; // outputs
 rand bit [2:0] g, h, i, j, k; // inputs

 `uvm_object_utils_begin(trans1)
 `uvm_field_int(a, UVM_ALL_ON)
 `uvm_field_int(b, UVM_ALL_ON)
 `uvm_field_int(c, UVM_ALL_ON)
 `uvm_field_int(d, UVM_ALL_ON)
 `uvm_field_int(e, UVM_ALL_ON)
 `uvm_field_int(g, UVM_ALL_ON)
 `uvm_field_int(h, UVM_ALL_ON)
 `uvm_field_int(i, UVM_ALL_ON)
 `uvm_field_int(j, UVM_ALL_ON)
 `uvm_field_int(k, UVM_ALL_ON)
 `uvm_object_utils_end

 function new (string name="trans1");
 super.new(name);
 endfunction

 `include "trans_printing.sv"
endclass

Example 27 - File: trans1c.sv - no rand outputs - uses field macros - no do_methods()

SNUG 2014 70 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

trans1d - randomized outputs - uses field macros - no do_methods()

The trans1 class defined in the trans1d.sv file has five randomized outputs and five randomized
inputs. The trans1d.sv example has user-defined field macro definitions but no do_methods().

class trans1 extends uvm_sequence_item;
 rand bit [7:0] a, b, c, d, e; // outputs
 rand bit [2:0] g, h, i, j, k; // inputs

 `uvm_object_utils_begin(trans1)
 `uvm_field_int(a, UVM_ALL_ON)
 `uvm_field_int(b, UVM_ALL_ON)
 `uvm_field_int(c, UVM_ALL_ON)
 `uvm_field_int(d, UVM_ALL_ON)
 `uvm_field_int(e, UVM_ALL_ON)
 `uvm_field_int(g, UVM_ALL_ON)
 `uvm_field_int(h, UVM_ALL_ON)
 `uvm_field_int(i, UVM_ALL_ON)
 `uvm_field_int(j, UVM_ALL_ON)
 `uvm_field_int(k, UVM_ALL_ON)
 `uvm_object_utils_end

 function new (string name="trans1");
 super.new(name);
 endfunction

 `include "trans_printing.sv"
endclass

Example 28- File: trans1d.sv - rand outputs - uses field macros - no do_methods()

SNUG 2014 71 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

trans1e - no randomized outputs - do_methods() but no calls to super.do_methods()

The trans1 class defined in the trans1e.sv file has five non-randomized outputs and five
randomized inputs. The trans1e.sv example has user-defined do_copy() and do_compare()
methods but they do not call super.do_copy() or super.do_compare() respectively. There are no
field macro definitions used in this example.

class trans1 extends uvm_sequence_item;
 `uvm_object_utils(trans1)

 bit [7:0] a, b, c, d, e; // outputs
 rand bit [2:0] g, h, i, j, k; // inputs

 function new (string name="trans1");
 super.new(name);
 endfunction

 function void do_copy(uvm_object rhs);
 trans1 tr;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_copy() cast")
 {a, b, c, d, e} = {tr.a, tr.b, tr.c, tr.d, tr.e};
 {g, h, i, j, k} = {tr.g, tr.h, tr.i, tr.j, tr.k};
 endfunction

 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 trans1 tr;
 bit eq;
 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_compare() cast")
 eq = (a == tr.a); // Compare outputs
 eq &= (b == tr.b);
 eq &= (c == tr.c);
 eq &= (d == tr.d);
 eq &= (e == tr.e);
 eq &= (g == tr.g);
 eq &= (h == tr.h);
 eq &= (i == tr.i);
 eq &= (j == tr.j);
 eq &= (k == tr.k);
 return(eq);
 endfunction

 `include "trans_printing.sv"
endclass

Example 29 - File: trans1e.sv - no rand outputs - uses do_methods() - no super.do_methods()

SNUG 2014 72 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

16.4. trans1f - randomized outputs - uses field macros - no UVM_ALL_ON flags

The trans1 class defined in the trans1f.sv file has five non-randomized outputs and five
randomized inputs. The trans1f.sv example has user-defined field macro definitions but omits the
UVM_ALL_ON flags and replaces them with UVM_NOPACK or UVM_NOCOMPARE, which automatically turn
on the UVM_ALL_ON settings. There are no do_methods() in this example.

class trans1 extends uvm_sequence_item;
 bit [7:0] a, b, c, d, e; // outputs
 rand bit [2:0] g, h, i, j, k; // inputs

 `uvm_object_utils_begin(trans1)
 `uvm_field_int(a, UVM_NOPACK) // Same as UMV_ALL_ON | UVM_NOPACK
 `uvm_field_int(b, UVM_NOPACK) // Turns on UVM_COPY & UVM_COMPARE
 `uvm_field_int(c, UVM_NOPACK)
 `uvm_field_int(d, UVM_NOPACK)
 `uvm_field_int(e, UVM_NOPACK)
 `uvm_field_int(g, UVM_NOCOMPARE) // Same as UVM_ALL_ON | UVM_NOCOMPARE
 `uvm_field_int(h, UVM_NOCOMPARE) // UVM_COPY does not work
 `uvm_field_int(i, UVM_NOCOMPARE)
 `uvm_field_int(j, UVM_NOCOMPARE)
 `uvm_field_int(k, UVM_NOCOMPARE)
 `uvm_object_utils_end

 function new (string name="trans1");
 super.new(name);
 endfunction

 `include "trans_printing.sv"
endclass

Example 30 - File: trans1f.sv - no rand outputs - uses field macros - no UVM_ALL_ON flags

