
	

	 	

	

	
World Class SystemVerilog & UVM Training

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

	

	
Clifford E. Cummings

Sunburst Design, Inc.
cliffc@sunburst-design.com
www.sunburst-design.com

	

	
ABSTRACT	

	
When	should	testbench	stimulus	vectors	be	applied	to	a	design?	When	should	design	outputs	be	
verified	by	the	testbench?	How	should	UVM	drive	and	sample	DUT	signals?	
The	details	of	driving	stimulus	and	sampling	outputs	is	one	of	the	most	ad	hoc	habits	of	many	
verification	 engineers,	 and	 little	 thought	 has	 been	 given	 to	 the	 best	 usage	 strategies	 and	
reasons	for	using	them.	
This	paper	will	detail	fundamental	techniques	that	have	been	proven	to	work	with	all	phases	of	
design	verification.	Discussed	 in	this	paper	are	the	tradeoffs	of	three	different	techniques	to	
apply	stimulus.	Also	discussed	in	this	paper	are	the	best	techniques	for	sampling	DUT	outputs.	
Finally,	 useful	 new	 SystemVerilog	 verification	 features	 such	 as	 clocking	 blocks	 and	#1step	
sampling	will	be	discussed.	This	paper	also	explains	why	 the	addition	of	 the	SystemVerilog	
program	keyword	was	a	bad	idea	and	why	it	should	not	be	used.	 	

SNUG	2016	
	

Page	2	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

Table	of	Contents	
1.	Introduction	...	4

1.1	Introduction	to	UVM	methodologies	...	4

1.2	Introduction	to	terminology	...	4

1.3	Assessing	knowledge	...	5

2.	Time‐0	race	conditions	..	5

2.1	Time‐0	potential	problem	..	5

2.2	Time‐0	initial	and	always	block	behavior	...	8

2.3	Time‐0	stimulus	assignments	...	8

3.	Verification	goal	...	8

4.	Stimulus	Timing	...	9

5.	Driving	stimulus	on	the	active	clock	edge	‐	Avoid	this	..	9

5.1	Testbench	blocking	assignments	...	10

5.2	I/O	pads	in	the	RTL	model	..	10

5.3	Gate‐level	simulations	with	setup	and	hold	delays	...	11

5.4	Waveform	display	debugging	..	11

6.	Driving	stimulus	on	the	inactive	clock	edge	‐	Avoid	this	...	12

6.1	Inactive‐clock	stimulus	problems	..	12

7.	Driving	stimulus	using	time	budgeting	‐	Use	this	...	14

8.	Verification	Timing	..	15

8.1	Sampling	outputs	on	the	active	clock	edge	..	15

8.2	Sampling	outputs	just	before	the	next	active	clock	edge	..	16

9.	Clocking	Blocks	..	16

9.1	Clocking	Block	Default	Timing	..	17

9.2	#1step	Sampling	..	17

9.3	#0	Drive	Times	...	17

9.4	Example	UVM	clocking	block	...	18

9.5	Stimulus	using	clocking	drives	..	19

9.6	Why	drive	signals	at	time‐0?	..	20

9.7	Asynchronous	control	inputs	..	21

9.8	Interface	modports	and	testbenches	..	25

10.	Death	to	the	SystemVerilog	program!	...	25

10.1	Cliff's	confession	...	27

11.	Conclusions	...	27

SNUG	2016	
	

Page	3	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

12.	References	...	27

13.	Author	&	Contact	Information	..	28

Table	of	Figures	
Figure	1	‐	VCS	simulation	race‐condition	output	of	Example	1	...	6

Figure	2	‐	Simulator‐B	simulation	race‐condition	output	of	Example	1	..	6

Figure	3	‐	VCS	simulation	NO‐race‐condition	output	of	Example	2	...	8

Figure	4	‐	Simulator‐B	simulation	NO‐race‐condition	output	of	Example	2	..	8

Figure	5	‐	Example	of	real	hardware	timing	...	9

Figure	6	‐	Example	of	applying	stimulus	on	the	active	clock	edge	‐	prone	to	testbench	race	
conditions	..	10

Figure	7	‐	Asymmetrical	stimulus	clock	‐	change	stimulus	on	the	negedge	of	(stim)	clk	12

Figure	8	‐	Stimulus	generation	for	dual‐clock	logic	‐	change	stimulus	on	the	negedge	of	vclk	13

Figure	9	‐	Synthesis	constraint	settings	using	time	budgeting	..	14

Figure	10	‐	Example	clockvars	driven	using	the	clocking	block	name	..	15

Figure	11	‐	Four	asynchronous	reset	signal	scenarios	..	21

Figure	12	‐	Asynchronous	mid‐cycle,	sub‐cycle	reset	pulse<insert	common	code	example	here>	23

Figure	13	‐	SystemVerilog	module	and	program	event	scheduling	..	26

Table	of	Examples	
Example	1	‐	Time‐0	blocking	assignment	‐	race	condition	..	6

Example	2	‐	Time‐0	nonblocking	assignment	‐	NO	race	condition	...	7

Example	3	‐	SystemVerilog	code	to	generate	asymmetrical	stimulus	clock	..	13

Example	4	‐	SystemVerilog	code	to	generate	dual‐clock	logic	stimulus	clock	..	14

Example	5	‐	Clocking	block	format	using	20%	time	budget	to	drive	stimulus	...	14

Example	6	‐	Program	counter	DUT	code	...	18

Example	7	‐	CYCLE.sv	file	...	18

Example	8	‐	DUT	interface	with	clocking	block	..	19

Example	9	‐	tb_driver	with	initialize()	task	(no	clocking	block	timing)	and	drive_tr()	ask	(uses	
clocking	block	timing)	...	20

Example	10	‐	sample_dut	task	checks	async	reset	at	beginning	and	end	of	the	cycle	22

Example	11	‐	tb_monitor	checks	async	reset	at	beginning	and	end	of	the	cycle	...	23

Example	12	‐	DUT	interface	with	sticky‐bit	code	to	save	reset	short‐pulse	reset	condition	24

Example	13	‐	tb_monitor	modified	to	test	the	sticky‐bit	reset_n	version	of	the	rst_n	asynchronous	
reset	...	25

	 	

SNUG	2016	
	

Page	4	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

1.	Introduction	
Although	much	is	known	about	design	verification,	little	has	been	written	about	the	strategies	that	
can	and	should	be	used	to	apply	stimulus	vectors	and	sample	DUT	outputs	for	design	validation.	

Troublesome	verification	issues	include:	Time‐0	simulation	race	conditions,	how	to	apply	stimulus	
to	reduce	simulation	race	conditions,	stimulus	techniques	that	do	not	require	changing	the	testbench	
when	timing	delays	and	timing	checks	are	added	to	the	simulation,	a	consistent	way	to	verify	the	
design	outputs,	and	how	to	handle	asynchronous	control	signals	in	verification.	

This	paper	will	show	common	stimulus	generation	techniques	and	present	guidelines	for	Best	Known	
Practices.	The	best	technique	will	also	be	shown	within	a	common	UVM	driver	in	Section	9.5		

This	paper	will	also	show	the	Best	Known	Practices	for	sampling	DUT	outputs	and	the	best	technique	
will	be	incorporated	into	a	common	UVM	monitor	as	shown	in	Section	9.7			

This	 paper	 will	 also	 detail	 problems	 related	 to	 time‐0	 simulation	 issues	 and	 how	 to	 avoid	 the	
problems.	

Although	 this	paper	describes	when	 to	sample	DUT	outputs	 for	verification	purposes,	 it	does	not	
describe	how	to	build	a	verification	scoreboard	for	the	sampled	outputs.	A	paper	describing	UVM	
scoreboard	architectures	can	be	seen	in	[2].	

1.1	Introduction	to	UVM	methodologies	

The	testbench	techniques	described	in	this	paper	cover	both	SystemVerilog	and	UVM	approaches.	
UVM	verification	environments	typically	connect	a	DUT	to	an	interface	that	includes	a	clocking	
block.	The	handle	of	this	interface	 is	 typically	stored	in	a	uvm_config_db	 that	 is	accessed	as	a	
virtual	interface	by	the	UVM	driver	and	monitor,	or	accessed	by	the	UVM	agent	and	the	agent	
copies	the	virtual	interface	handle	to	the	driver	and	monitor	that	are	built	by	the	agent.	The	
driver	then	uses	clocking	drives	that	accesses	the	clocking	block	in	the	real	interface	to	drive	
stimulus	and	the	monitor	uses	clocking	samples	that	again	accesses	the	clocking	block	in	the	real	
interface	to	sample	DUT	outputs.	

The	use	of	clocking	blocks	for	testbenches	is	described	in	Section	9	of	this	paper.		

Examples	of	interfaces	that	are	used	in	a	UVM	testbench	are	shown	in	Example	8	and	in	Example	
12.	These	interfaces	are	typically	instantiated	in	a	top‐level	module	and	the	interface	handles	
stored	in	a	uvm_config_db	for	retrieval	by	the	UVM	testbench	classes.	

1.2	Introduction	to	terminology	

There	are	some	terms	used	in	this	paper	that	might	not	be	familiar	to	some	verification	engineers	
and	cause	undue	confusion.	Below	are	descriptions	of	a	couple	of	terms	that	could	help	verification	
engineers	better	understand	the	concepts	discussed	in	this	paper.		

clockvar	is	the	term	used	to	describe	the	signals	declared	in	a	clocking	block	as	described	by	the	
SystemVerilog	Standard	[5]	and	by	Bromley	and	Johnston	[7].	

clocking	signal	is	the	name	of	the	signals	declared	in	the	clocking	block	and	generally,	a	clocking	
signal	and	the	clockvar	names	are	the	same	[5].	

clocking	drive	refers	to	stimulus	that	is	driven	using	clocking	block	timing	defined	for	a	clockvar.	
The	clocking	drive	operation	makes	assignments	to	clockvars	using	the	clocking	block	name	and	
the	assignments	are	made	using	the	clocking	drive	operator	(<=),	which	is	the	same	operator	that	is	
used	for	nonblocking	assignments	[5].	

SNUG	2016	
	

Page	5	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

1.3	Assessing	knowledge	

When	 assessing	 skills	 of	 new	 college	 graduates,	 job	 candidates	 or	 even	 your	 current	 verification	
engineers,	I	suggest	the	following	assessment	scale:	40%	credit	for	properly	starting	up	a	verification	
test.	40%	credit	for	properly	shutting	down	a	verification	test.	20%	credit	for	properly	testing	the	
DUT	 after	 the	 testbench	 has	 started.	 Almost	 anybody	 can	 get	 the	middle	 part	 of	 a	 test	 to	 work	
correctly	but	properly	starting	and	terminating	a	test	is	where	real	verification	skill	is	required.	My	
experience	has	shown	that	a	large	portion	of	the	test	debug	time	is	related	to	the	start‐up	and	shut‐
down	of	a	test.	Talented	engineers	can	avoid	these	prolonged	debug	issues	and	those	are	the	skills	
that	will	be	shown	in	this	paper.		

2.	Time‐0	race	conditions	
Before	starting	to	develop	a	SystemVerilog	or	UVM	testbench,	an	engineer	needs	to	consider	what	
happens	at	time‐0	during	a	simulation.		

Time‐0	is	a	tricky	place	in	Verilog	and	SystemVerilog	simulations.	It	 is	easy	to	experience	lengthy	
race‐condition	debugging	issues	at	time‐0.	If	you	follow	a	couple	of	simple	guidelines,	it	is	just	as	easy	
to	avoid	100%	of	the	time‐0	race	conditions.	

2.1	Time‐0	potential	problem	

One	 of	 the	 potential	 problems	 related	 to	 time‐0	 race	 conditions	 is	 that	 the	 IEEE	 Verilog	 and	
SystemVerilog	Standards	require	all	procedural	blocks	(initial	blocks	and	always	blocks)	to	start	
execution	at	the	beginning	of	the	simulation	at	time‐0	but	there	is	no	defined	order	of	execution	of	
these	blocks	at	time‐0.	The	SystemVerilog	code	of	Example	1	has	a	time‐0	race	condition:	

	 	
`define CYCLE 10
`timescale 1ns/1ns

module initial_always1;
 logic clk;

 initial $timeformat(-9,0,"ns",6);

 initial @(negedge clk) $display("%t: initial #1 negedge clk", $time);

 always begin
 @(negedge clk) $display("%t: always #1 negedge clk", $time);
 wait(0);
 end

 initial begin
 clk = '0;
 forever #(`CYCLE/2) clk = ~clk;
 end

 initial @(negedge clk) $display("%t: initial #2 negedge clk", $time);

 always begin
 @(negedge clk) $display("%t: always #2 negedge clk", $time);
 wait(0);
 end

SNUG	2016	
	

Page	6	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

 initial begin
 repeat(2) @(negedge clk);
 FINISH();
 end

 task FINISH();
 @(posedge clk);
 $display("%t: FINISH\n\n", $time);
 $finish;
 endtask
endmodule

Example	1	‐	Time‐0	blocking	assignment	‐	race	condition	

Note	that	the	clock	oscillator	in	Example	1	has	a	time‐0	negedge	clk	assignment	using	a	blocking	
assignment.	The	example	also	has	an	initial	block	(initial	#1)	and	always	block	(always	#1)	
that	 trigger	 on	 the	 negedge	 clk	 positioned	 in	 the	 code	 before	 the	 clock	 oscillator	 and	 another	
initial	 block	 (initial	 #2)	 and	 always	 block	 (always	 #2)	 that	 trigger	 on	 the	 negedge	 clk	
positioned	in	the	code	after	the	clock	oscillator.	If	the	clock	oscillator	starts	before	the	initial	and	
always	blocks	are	active,	those	blocks	will	not	trigger	until	one	cycle	after	the	simulation	starts.	If	
the	clock	oscillator	starts	after	the	initial	and	always	blocks	are	active,	those	blocks	will	trigger	
at	time‐0.	

When	VCS	runs	this	simulation,	the	output	is	shown	in	Figure	1.	Note	that	all	of	the	blocks	triggered	
at	time‐0	except	for	the	initial	block	that	was	placed	after	the	clock	oscillator.	This	 is	perfectly	
legal	behavior	for	Verilog	and	SystemVerilog	simulators.		

	
 0ns: initial #1 negedge clk
 0ns: always #1 negedge clk
 0ns: always #2 negedge clk
 10ns: initial #2 negedge clk
 25ns: FINISH

Figure	1	‐	VCS	simulation	race‐condition	output	of	Example	1	

When	another	simulator	("Simulator‐B")		runs	this	simulation,	the	output	is	shown	in	Figure	2.	Note	
that	 the	 blocks	 that	 preceded	 the	 clock	 oscillator	 triggered	 at	 time‐0	while	 the	 blocks	 that	were	
positioned	after	the	clock	oscillator	did	not	trigger	until	one	cycle	 later.	This	too	is	perfectly	 legal	
behavior	for	Verilog	and	SystemVerilog	simulators.		

	
 0ns: always #1 negedge clk
 0ns: initial #1 negedge clk
 10ns: always #2 negedge clk
 10ns: initial #2 negedge clk
 25ns: FINISH

Figure	2	‐	Simulator‐B	simulation	race‐condition	output	of	Example	1	

Using	blocking	assignments	at	time‐0	frequently	causes	a	race	condition.	This	race	condition	can	be	
avoided	by	using	nonblocking	assignments	at	time‐0.	

The	 modified	 SystemVerilog	 code	 of	 Example	 2	 uses	 a	 nonblocking	 assignment	 for	 the	 first	
assignment	in	the	clock	oscillator,	which	removes	the	time‐0	race	condition.	

	

SNUG	2016	
	

Page	7	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

`define CYCLE 10
`timescale 1ns/1ns

module initial_always2;
 logic clk;

 initial $timeformat(-9,0,"ns",6);

 initial @(negedge clk) $display("%t: initial #1 negedge clk", $time);

 always begin
 @(negedge clk) $display("%t: always #1 negedge clk", $time);
 wait(0);
 end

 initial begin
 clk <= '0;
 forever #(`CYCLE/2) clk = ~clk;
 end

 initial @(negedge clk) $display("%t: initial #2 negedge clk", $time);

 always begin
 @(negedge clk) $display("%t: always #2 negedge clk", $time);
 wait(0);
 end

 initial begin
 repeat(2) @(negedge clk);
 FINISH();
 end

 task FINISH();
 @(posedge clk);
 $display("%t: FINISH\n\n", $time);
 $finish;
 endtask
endmodule

Example	2	‐	Time‐0	nonblocking	assignment	‐	NO	race	condition	

Note	that	the	clock	oscillator	in	Example	2	has	a	time‐0	negedge	clk	assignment	that	now	uses	a	
nonblocking	assignment.	The	example	still	has	an	initial	block	(initial	#1)	and	always	block	
(always	#1)	that	trigger	on	the	negedge	clk	positioned	in	the	code	before	the	clock	oscillator	and	
another	initial	block	(initial	#2)	and	always	block	(always	#2)	that	trigger	on	the	negedge	
clk	 positioned	 in	 the	 code	 after	 the	 clock	oscillator.	 Even	 if	 the	 clock	oscillator	 starts	before	 the	
initial	and	always	blocks	are	active,	the	clock	assignment	will	not	complete	until	after	the	other	
blocks	have	become	active.	

When	VCS	runs	this	simulation,	the	output	is	shown	in	Figure	3.	Note	that	all	of	the	blocks	triggered	
at	time‐0.	The	time‐0	race	condition	has	been	removed.	

	

	

SNUG	2016	
	

Page	8	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

 0ns: initial #1 negedge clk
 0ns: always #1 negedge clk
 0ns: initial #2 negedge clk
 0ns: always #2 negedge clk
 15ns: FINISH

Figure	3	‐	VCS	simulation	NO‐race‐condition	output	of	Example	2	

When	another	simulator	("Simulator‐B")	runs	this	simulation,	the	output	is	shown	in	Figure	4.	Note	
that	even	though	the	code	has	executed	in	a	slightly	different	order,	again	all	of	the	blocks	triggered	
at	time‐0.	The	time‐0	race	condition	has	been	removed,	and	both	simulations	give	the	same	result.	

It	is	also	worth	noting	that	the	FINISH	command	executed	one	cycle	earlier	using	both	simulators	
because	the	initial	block	with	the	FINISH	command	was	also	now	active	at	time‐0.	

	
 0ns: always #2 negedge clk
 0ns: initial #2 negedge clk
 0ns: always #1 negedge clk
 0ns: initial #1 negedge clk
 15ns: FINISH

Figure	4	‐	Simulator‐B	simulation	NO‐race‐condition	output	of	Example	2	

2.2	Time‐0	initial	and	always	block	behavior	

Although	all	of	the	simulation	results	shown	in	Section	2.1	are	legal,	in	practice	the	major	simulation	
vendors	 frequently	start	up	always	blocks	before	initial	blocks	at	 time‐0.	This	behavior	 is	not	
guaranteed	 by	 the	 IEEE	 Verilog	 and	 SystemVerilog	 Standards,	 but	 this,	 and	 the	 fact	 that	 most	
testbenches	drive	stimulus	across	module	ports,	is	why	most	testbenches	work	correctly	at	time‐0.	
RTL	 designs	 are	 typically	 coded	 using	always	 blocks	 and	 testbenches	 are	 typically	 coded	 using	
initial	blocks,	so	the	RTL	designs	typically	become	active	at	time‐0	before	the	initial	blocks	send	
the	first	stimulus.		

This	 is	 a	point	of	 confusion	 for	most	new	Verilog	users	because	 it	 sounds	 like	an	initial	 block	
should	execute	first	at	time‐0,	but	this	is	not	what	happens.	A	more	accurate	name	for	the	initial	
block	would	have	been	a	run_once	block!	

2.3	Time‐0	stimulus	assignments	

The	 best	 guideline	 to	 follow	 to	 avoid	 time‐0	 race	 conditions	 is	 to	 make	 all	 time‐0	 stimulus	
assignments	 using	 nonblocking	 assignments.	 After	 time‐0,	 all	 other	 stimulus	 assignments	 can	 be	
made	using	blocking	assignments	if	stimulus	is	driven	using	the	time	budgeting	technique	described	
in	Section	7.		

This	is	the	race‐free	stimulus	driving	technique	that	I	have	used	successfully	for	more	than	a	10	years.	

3.	Verification	goal	
When	building	a	testbench,	engineers	need	to	ask	these	questions:	

1. When	should	test	vectors	be	driven?	
2. When	outputs	should	be	sampled.	

The	goal	is	to	construct	a	testbench	that	can	be	used	for	behavioral	models,	for	0‐delay	RTL	designs	
and	 for	gate‐level	simulations	 that	 include	backannotated	SDF	timing	with	no	modification	to	 the	

SNUG	2016	
	

Page	9	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

testbench.	Engineers	certainly	do	not	want	to	maintain	two	or	more	separate	testbenches	due	to	poor	
testbench	planning	and	timing	issues	related	to	different	DUT	implementations.	

4.	Stimulus	Timing	
When	should	stimulus	vectors	be	applied	to	a	design?	Is	the	stimulus	timing	realistic	when	compared	
to	real‐world	design	constraints?	

There	 are	 three	 primary	 stimulus	 generation	 techniques	 that	 have	 been	 used	 for	 decades	 by	
engineers	responsible	for	building	verification	environments:	(1)	apply	stimulus	on	the	active	clock	
edge,	 (2)	apply	stimulus	on	the	 inactive	clock	edge,	and	(3)	apply	stimulus	using	Time	Budgeting	
techniques.	

These	techniques,	along	with	new	SystemVerilog	clocking	drive	techniques,	are	described	with	their	
advantages	and	potential	pitfalls	in	the	following	sections.	

5.	Driving	stimulus	on	the	active	clock	edge	‐	Avoid	this	
In	theory,	driving	stimulus	vectors	on	the	active	clock	edge	should	work	with	0‐delay	RTL	models	
and	many	engineers	commonly	use	this	technique.	I	highly	discourage	this	practice	for	reasons	that	
are	 described	 later	 in	 this	 section,	 but	 if	 this	 technique	 is	 used,	 verification	 engineers	 need	 to	
understand	the	limitations	and	potential	pitfalls	of	this	technique.	

It	is	frequently	claimed	that	applying	stimulus	on	an	active	clock	edge	more	closely	replicates	actual	
hardware	behavior,	but	this	is	not	true.	In	real	hardware,	input	data	frequently	changes	nanoseconds	
after	an	active	clock	edge	is	observed,	as	shown	in	Figure	5.		

	
Figure	5	‐	Example	of	real	hardware	timing	

The	non‐recommended	practice	of	applying	testbench	stimulus	on	the	active	clock	edge	would	be	a	
setup	or	hold	time	violation	in	real	hardware,	and	prone	to	simulation	race	conditions	as	shown	in	
Figure	6.	

SNUG	2016	
	

Page	10	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

	
Figure	6	‐	Example	of	applying	stimulus	on	the	active	clock	edge	‐	prone	to	testbench	race	conditions	

For	Verilog	verification,	a	key	to	using	the	active	clock‐edge	stimulus	technique	is	to	drive	all	stimulus	
from	 the	 testbench	 using	 nonblocking	 assignments,	 which	 should	 guarantee	 that	 design	 inputs	
change	after	 the	exact	same	active	clock	edge	has	been	used	 to	sample	signals	 from	the	previous	
cycle.	You	do	not	want	to	change	inputs	on	a	clock	edge	and	have	the	same	clock	edge	capture	the	
signals	that	just	changed.	Real	hardware	does	not	behave	that	way.	

For	SystemVerilog	verification,	a	key	to	using	the	active	clock‐edge	stimulus	technique	is	to	drive	the	
stimulus	using	one	of	the	following:	nonblocking	assignments	from	modules,	any	type	of	assignment	
from	a	program,	or	driving	assignments	from	a	clocking	block	originating	from	either	a	module,	a	
class	or	a	program.	

In	practice,	there	are	many	situations	where	applying	stimulus	on	the	active	clock	edge	can	cause	
unnecessary,	 time‐consuming	debug	difficulties	related	 to	stimulus‐design	race	conditions.	Below	
are	some	of	the	potential	race	conditions	that	can	occur.	

So	what	are	 the	potential	problems	and	mistakes	associated	with	applying	stimulus	on	the	active	
clock	edge?	

5.1	Testbench	blocking	assignments	

The	first	potential	problem	is	a	rather	obvious	mistake	that	happens	frequently	but	can	be	detected	
and	corrected	quickly.	The	simple	mistake	is	that	the	testbench‐writer	used	a	blocking	assignment	
from	a	module‐based	testbench	to	apply	stimulus,	and	some	of	the	stimulus	inputs	changed	before	
the	active	clock	edge	had	a	chance	to	sample	the	previous	DUT	inputs.	Although	simple	and	obvious,	
this	mistake	still	happens	frequently,	especially	with	new	users	of	Verilog	and	SystemVerilog.	

5.2	I/O	pads	in	the	RTL	model	

Even	when	doing	0‐delay	RTL	modeling,	it	is	not	uncommon	for	engineers	to	instantiate	I/O	pads	in	
the	top‐level	module	to	communicate	with	the	rest	of	the	design.	If	the	data	path	I/O	pads	have	short	
delays	and	the	clock‐tree	I/O	pads	have	slightly	longer	delays,	the	previous	input	data	values	will	be	
changed	by	the	testbench	before	they	are	sampled	at	the	DUT	inputs	on	the	active	clock	edge.	This	is	
not	how	the	real	hardware	will	work.		

SNUG	2016	
	

Page	11	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

This	problem	can	be	avoided	by	adding	right‐hand‐side	(RHS)	delays	to	the	stimulus	nonblocking	
assignments,	effectively	delaying	the	change	of	the	data	inputs	until	after	the	active	clock	edge,	which	
closely	replicates	the	actual	behavior	of	real	hardware.	Adding	RHS	delays	to	stimulus	assignments	
is	somewhat	of	a	coding	nuisance,	and	could	cause	simulations	to	run	a	little	slower,	but	it	does	solve	
the	problem	and	is	described	in	[3].	

Using	 SystemVerilog	 clocking	 blocks	 and	 stimulus	 clocking	 drives	 can	 also	 place	 delays	 on	 the	
stimulus	data,	thus	localizing	the	delays	into	a	common	clocking	block,	but	be	aware	that	the	default	
clocking	block	delay	is	0,	so	a	non‐zero	default	clocking	block	output	will	be	necessary	to	add	the	
equivalent	delays.		

5.3	Gate‐level	simulations	with	setup	and	hold	delays	

One	of	the	major	problems	related	to	applying	stimulus	on	the	active	clock	edge	manifests	itself	in	
gate‐level	simulations	with	backannotated	delays,	including	setup	and	hold	time	checking.	A	gate‐
level	design	with	actual	clock	tree	logic	typically	introduces	more	delay	into	the	clock	path	than	is	
introduced	into	the	data	path.	In	an	actual	hardware	design	this	typically	is	not	a	problem,	because	
there	are	actual	 clock‐to‐q	delays	on	 the	driven	signals	 to	a	design,	but	when	an	actual	design	 is	
driven	by	a	testbench	that	changes	both	the	clock	and	data	stimulus	signals	at	the	same	time,	it	can	
cause	the	data	signals	to	change	on	the	inputs	of	registered	devices	hundreds	of	picoseconds	to	even	
a	couple	of	nanoseconds	before	the	active	clock	edge	traverses	the	clock	tree	to	the	clock	input	of	the	
registers.	The	differential	in	actual	data	path	versus	clock	path	delays	is	frequent	enough	to	cause	a	
setup	or	hold	time	violation	for	the	gate‐level	design	interacting	with	the	0‐delay	testbench.	These	
violations	typically	cause	simulation	X's	to	be	propagated	throughout	the	gate‐level	design,	causing	
verification	to	fail.	

Again,	 to	 avoid	 this	 problem	 when	 applying	 stimulus	 on	 the	 active	 clock	 edge,	 the	 verification	
engineer	either	needs	to	add	RHS	delays	to	the	stimulus	nonblocking	assignments,	or	add	clocking	
drive	delays	to	a	SystemVerilog	testbench.	

An	 important	 goal	 of	 testbench	 development	 is	 to	 use	 the	 same	 testbench	 for	 both	 0‐delay	 RTL	
designs	and	gate‐level	designs	 that	 include	delays	and	 timing	 checks.	Using	active	 clock	 stimulus	
(typically	on	the	posedge	clock)	violates	this	goal.	

Guideline:	do	not	apply	testbench	stimulus	on	the	active	clock	edge.	

5.4	Waveform	display	debugging	

When	stimulus	inputs	change	on	the	active	clock	edge,	debugging	a	0‐delay	RTL	design	in	a	waveform	
display	can	be	confusing	to	design	engineers.	The	confusion	arises	because	in	a	waveform	display,	
the	input	changes	coincident	with	the	rising	clock	edge	and	the	registered	output,	as	was	shown	in	
Figure	6.	Although	the	results	are	correct	for	a	0‐delay	RTL	simulation,	any	hardware	engineer	with	
real‐world	experience	will	 find	it	strange	that	the	 inputs	changed	coincident	with	the	rising	clock	
edge	and	it	will	appear	that	the	inputs	have	potentially	violated	real	setup	and	hold	times.	This	is	one	
reason	that	engineers	frequently	add	#1	delays	to	the	RHS	of	nonblocking	assignments,	so	they	can	
see	a	clk‐to‐q	delay	in	the	waveform	display.	A	technique	describing	the	use	of	#1	clk‐to‐q	delays	is	
described	in	[3].	

If	careful,	a	verification	engineer	can	make	the	active‐clock	stimulus	technique	work,	but	there	are	
fewer	chances	for	errors	if	stimulus	is	applied	some	time	after	the	active	clock	edge.	I	have	found	that	
engineers	make	fewer	mistakes	and	spend	less	time	debugging	stimulus‐simulation	race	conditions	
by	applying	the	stimulus	away	from	the	active	clock	edge.		

SNUG	2016	
	

Page	12	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

6.	Driving	stimulus	on	the	inactive	clock	edge	‐	Avoid	this	
To	avoid	all	of	the	problems	related	to	changing	inputs	on	the	active	clock	edge	and	to	ensure	that	
the	same	stimulus	vectors	can	be	used	for	0‐delay	RTL	simulations	and	gate‐level	simulations	with	
backannotated	timing,	for	more	than	10	years	I	used	the	technique	of	applying	input	stimulus	vectors	
on	the	inactive	clock	edge	(typically	the	negedge	clk).		

Applying	vectors	on	the	inactive	clock	edge	accomplishes	the	following	goals:	

1. Stimulus	can	be	applied	using	either	blocking	or	nonblocking	assignments	from	either	a	
module	or	a	program.	The	active	clock	captures	the	inputs	and	since	the	next	inputs	are	not	
placed	on	the	DUT	inputs	until	the	next	inactive	clock	edge,	there	is	never	a	simulation	race	
condition	related	to	the	proper	or	improper	use	of	modules,	programs,	blocking	or	
nonblocking	assignments.	

2. 0‐delay	RTL	models	with	top‐level	I/O	pads	and	accompanying	delays	never	cause	
problems.	DUT	inputs	change	far	away	from	propagated	clocks.		

3. Gate‐level	simulations	with	delays	(including	setup	and	hold	time	checks)	are	never	a	
problem,	except	when	the	input	combinational	data	paths	are	longer	than	half	of	the	clock	
period.	This	is	addressed	in	Section	7.		

4. Waveform	displays	of	input	stimulus	are	easy	to	understand.	When	the	stimulus	changes	on	
the	inactive	clock	edge,	any	input	combinational	logic	will	react	immediately	and	setup	on	
the	register	inputs	of	the	design.	The	next	active	clock	edge	will	then	capture	the	stimulus	
and	settle	immediately	(0‐delay	RTL	models)	or	shortly	thereafter	(gate‐level	models	with	
delays),	which	is	highly	intuitive	to	most	hardware	design	engineers.		

6.1	Inactive‐clock	stimulus	problems	

So	what	are	the	potential	problems	associated	with	applying	stimulus	on	the	inactive	clock	edge?	

The	most	frequent	problem	associated	with	applying	stimulus	on	the	inactive	clock	edge	is	that	there	
is	now	only	half	of	a	clock	cycle	for	the	primary	DUT	data	inputs	to	propagate	to	the	input	registers	
of	 the	 design	 and	 meet	 the	 register	 setup	 time	 when	 running	 gate‐level	 simulations	 with	
backannotated	delays.	

There	 are	 two	Verilog	 approaches	 to	 address	 this	 potential	 problem.	 Both	 approaches	 use	 time‐
budgeting	techniques	to	address	the	issues.	

The	first	is	to	build	a	clock	oscillator	with	a	short	high	pulse	width	and	a	long	low	pulse	width.	The	
short	high	pulse	width	is	the	time	budgeted	from	the	beginning	of	the	cycle	until	when	the	stimulus	
inputs	will	change.	The	low	pulse	width	is	the	time	budgeted	for	the	stimulus	inputs	to	propagate	
through	the	DUT	 input	combinatorial	 logic.	 In	 the	 following	example,	 it	 is	assumed	that	 the	clock	
period	is	10ns	and	that	the	stimulus	can	change	2ns	after	the	active	clock	edge.		

As	shown	in	Figure	7,	the	stimulus	vectors	should	be	applied	at	time‐0	and	on	each	negedge	of	the	
(stim)	clk.	

	
Figure	7	‐	Asymmetrical	stimulus	clock	‐	change	stimulus	on	the	negedge	of	(stim)	clk	

SNUG	2016	
	

Page	13	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

The	corresponding	SystemVerilog	code	to	generate	this	asymmetrical	clock	is	shown	in	Example	3.	

	 	
 `define CYCLE 10
 `timescale 1ns/100ps // Use appropriate timescale resolution

 ...
 parameter HIGH_PULSE_WIDTH = 2; // Choose an appropriate clk-to-q delay
 parameter LOW_PUSLE_WIDTH = `CYCLE - HIGH_PULSE_WIDTH;
 ...
 initial begin // virtual stimulus clock
 clk <= '0;
 forever begin
 #(LOW_PULSE_WIDTH); clk = '1;
 #(HIGH_PULSE_WIDTH); clk = '0;
 end
 end
 ...

Example	3	‐	SystemVerilog	code	to	generate	asymmetrical	stimulus	clock	

This	technique	works	fine	as	long	as	only	the	active	system	clock	edge	is	used	by	the	DUT	and	that	
there	are	no	transparent	latches	enabled	by	the	system	clock	or	flip‐flops	that	trigger	on	the	negative	
edge	clock.	

If	both	clock	edges	are	separately	used	to	trigger	flip‐flops	or	if	the	clock	level	is	used	in	some	type	of	
latching	logic	configuration,	then	I	recommend	using	a	2X	virtual	clock	with	skewed	duty	cycle	to	
accomplish	the	same	goal.	

As	shown	in	Figure	7,	the	stimulus	vectors	should	be	applied	at	time‐0	and	on	each	negedge	of	the	
vclk	

	

	
Figure	8	‐	Stimulus	generation	for	dual‐clock	logic	‐	change	stimulus	on	the	negedge	of	vclk	

The	corresponding	SystemVerilog	code	to	generate	this	dual‐clock	logic	stimulus	clock	is	shown	in	
Example	4.	The	rising	virtual	clock	edge	is	used	to	toggle	the	DUT	clk.	

	
 `define VCYCLE 5 // Actual clock cycle is 10ns
 `timescale 1ns/100ps // Use appropriate timescale resolution

 ...
 parameter HIGH_PUSLE_WIDTH = 1;
 parameter LOW_PUSLE_WIDTH = `VCYCLE - HIGH_PULSE_WIDTH;
 ...
 initial begin // virtual stimulus clock
 vclk <= '0;
 forever begin
 #(LOW_PULSE_WIDTH); vclk = '1; // This example: 4ns
 #(HIGH_PULSE_WIDTH); vclk = '0; // This example: 1ns

SNUG	2016	
	

Page	14	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

 end
 end

 initial begin // actual design clock
 clk <= '0;
 forever @(posedge vclk) clk = ~clk;
 end
 ...

Example	4	‐	SystemVerilog	code	to	generate	dual‐clock	logic	stimulus	clock	

7.	Driving	stimulus	using	time	budgeting	‐	Use	this	
The	concept	of	time	budgeting	is	a	technique	that	has	long	been	used	in	synthesis	and	was	described	
in	a	1997	SNUG	paper	by	Anna	Ekstrandh	and	Wayne	Bell	[1].	A	recommended	synthesis	technique	
is	to	register	all	module	outputs	and	only	allow	combinatorial	logic	on	the	module	inputs	so	that	the	
synthesis	compiler	would	use	most	of	the	clock	cycle	to	meet	combinational	input	constraints	and	
very	 little	of	 the	clock	cycle	would	be	required	 to	constrain	 the	clk‐to‐q	output	of	 the	module,	 as	
shown	in	Figure	9.	

	
Figure	9	‐	Synthesis	constraint	settings	using	time	budgeting	

In	the	example	of	Figure	9,	a	synthesis	tool	would	be	instructed	to	allocate	a	small	percentage	of	the	
clock	cycle	to	meet	register‐to‐module‐outputs	timing	(20%	of	the	cycle	in	this	example)	and	allocate	
the	majority	of	 the	clock	cycle	 to	meet	 inputs‐to‐registered‐logic	 timing	 (80%	of	 the	cycle	 in	 this	
example).	

The	same	concept	can	be	used	to	drive	stimulus	into	a	Verilog	or	SystemVerilog	design.		

SystemVerilog	provides	a	clocking	block	 to	help	define	 the	 time	budgets	of	stimulus	drives	and	
output	samples.	Note	that	the	clocking	block	can	be	placed	in	a	module,	program	or	interface.	

	
clocking cb1 @(posedge clk)
 default input #1step output (`CYCLE * 0.2);
 input <list of all inputs> ;
 output <list of all outputs>;
endclocking

Example	5	‐	Clocking	block	format	using	20%	time	budget	to	drive	stimulus	

SNUG	2016	
	

Page	15	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

Remember	that	testbench	outputs	are	the	stimulus	that	is	driven	into	the	DUT	and	testbench	inputs	
are	the	DUT	signals	that	were	sampled	and	passed	to	the	testbench.	

To	drive	signals	using	the	specified	clocking	block	delays,	the	clocking	block	name	must	be	used	
with	clocking	drives	to	use	the	specified	timing	as	shown	in	Figure	10.	

	
task drive_tr (trans1 tr);
 @vif.cb1;
 vif.cb1.din <= tr.din;
 vif.cb1.ld <= tr.ld;
 vif.cb1.inc <= tr.inc;
 vif.cb1.rst_n <= tr.rst_n;
endtask

Figure	10	‐	Example	clockvars	driven	using	the	clocking	block	name	

The	assignments	in	Figure	10	contain	three	parts	on	the	left‐side	of	the	clocking	drive	operator.	The	
first	part	is	the	handle	to	the	virtual	interface	(vif	in	this	example).	The	second	part	is	the	name	
of	the	clocking	block	in	the	interface	 (cb1	 in	this	example).	The	third	part	 is	the	name	of	the	
signals	in	the	interface	that	are	to	be	driven	using	the	clocking	block	timing	(din,	ld,	inc,	and	
rst_n	in	this	example).	These	3‐part‐reference	signals	are	referred	to	as	clockvars	as	described	in	
the	SystemVerilog	Standard	and	in	a	paper	by	Bromley	and	Johnston	[7].	

8.	Verification	Timing	
When	 should	 design	 outputs	 be	 verified	 by	 the	 testbench?	 How	 can	 a	 verification	 strategy	 be	
formulated	to	work	with	both	0‐delay	RTL	models	and	gate‐level	models	with	delays?	

There	are	two	primary	verification	timing	techniques	that	have	been	used	for	decades	by	engineers	
responsible	 for	building	verification	environments:	 (1)	sample	design	outputs	on	 the	active	clock	
edge,	(2)	sample	design	outputs	just	before	the	next	active	clock	edge.	

These	 techniques,	 along	 with	 new	 SystemVerilog	 clocking	 block	 sampling	 techniques,	 are	
described	with	their	advantages	and	potential	pitfalls	in	this	section.	

8.1	Sampling	outputs	on	the	active	clock	edge	

In	theory,	sampling	design	outputs	on	the	active	clock	edge	should	work	with	0‐delay	RTL	models	
and	some	engineers	do	use	this	technique.	I	generally	discourage	this	practice	for	reasons	that	will	
be	 described	 later,	 but	 if	 this	 technique	 is	 used,	 verification	 engineers	 need	 to	 understand	 the	
limitations	and	potential	pitfalls	of	sampling	on	the	active	clock	edge.	

For	Verilog	verification,	a	key	to	sampling	outputs	on	the	active	clock‐edge	is	that	the	input	stimulus	
has	to	be	driven	using	nonblocking	assignments.	The	theory	behind	this	technique	is	that	stimulus	
driven	with	nonblocking	assignments	will	not	cause	design	outputs	to	be	updated	until	the	Verilog	
nonblocking	assignment	event	region,	which	in	theory	means	that	the	old	design	outputs	should	still	
be	valid	and	available	to	be	sampled	for	verification	testing	until	the	new	stimulus	has	been	clocked	
into	the	design.	The	design	outputs	that	are	being	sampled	were	clocked	on	the	previous	rising	clock	
edge	and	should	have	settled	to	their	final	value	almost	a	full	clock	cycle	earlier.		

For SystemVerilog verification, a key to using the active clock-edge stimulus technique is to drive the
stimulus using one of the following: nonblocking assignments from modules, any type of assignment from
a program block, or driving assignments from a clocking block originating from either a module, a
class or a program.

SNUG	2016	
	

Page	16	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

8.2	Sampling	outputs	just	before	the	next	active	clock	edge	

The	best	place	to	sample	DUT	outputs	is	at	the	end	of	the	cycle	just	before	the	next	active	clock	edge	
and	SystemVerilog	introduced	a	new	type	of	sampling	delay	called	the	#1step	to	help	accomplish	
this	goal.	The	use	of	the	#1step	sampling	delay	is	describe	in	Section	9.2		

9.	Clocking	Blocks	
Clocking	blocks	play	an	important	role	in	controlling	stimulus	driving	and	output	sampling	timing	in	
a	testbench,	especially	in	a	UVM	testbench	environment.	

An	excellent	paper	by	Jonathan	Bromley	and	Kevin	Johnston	[7]	goes	into	great	detail	on	how	the	
SystemVerilog	clocking	 block	works	 and	 some	 of	 its	 lesser	 known	 capabilities	 and	 quirks.	 The	
reader	is	encouraged	to	read	that	entire	paper	for	a	greater	understanding	of	clocking	blocks.	

Bromley	and	Johnston	also	shared	11	guidelines	in	their	paper,	most	of	which	I	strongly	agree	with	
but	there	are	a	couple	of	exceptions	or	further	clarifications	that	I	will	make	in	this	section.		

The	Bromley	and	Johnston	guidelines	are:	

1. When using a clocking block, the testbench must access only its clockvars and should never access
the clocking signals directly.

** I mostly agree but an important exception is described in Section 9.5

2. Testbench code should synchronize itself to a clocking block’s clock event by waiting for the
clocking block’s own named event, NOT by waiting for the raw clock event.

** I agree - follow this guideline.

3. Write to output clockvars using the clocking drive operator <=. Never try to write an output
clockvar using simple assignment =.

** I agree - further clarification is described at the end of Section 9.5

4. Use input #1step unless you have a special reason to do otherwise. It guarantees that your
testbench sees sampled values that are consistent with the values observed by your SystemVerilog
assertions, properties and sequences.
** I agree - an additional important reason is described in Section 9.2 .

5. Use non-zero output skew values in your clocking blocks to make waveform displays clearer, and
to avoid problems caused by clock network delays in gate level simulation.

** I agree - an addition to this guideline is described in Section 9.3

6. Never use input #0 in your clocking blocks.

** I agree - follow this guideline.

7. Avoid the use of edge specifiers to determine clocking block skew.

** I agree - follow this guideline

8. When a signal is driven by more than one clocking block output to model DDR or similar multi-
clock behavior, that signal should be a variable.

** I agree - follow this guideline.

SNUG	2016	
	

Page	17	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

9. Declare your clocking block in an interface. Expose the clocking block, and any asynchronous
signals that are directly related to it, through a modport of the interface. In your verification code,
declare a virtual interface data type that can reference that modport.

** I mostly agree - I will comment on the modport portion of this guideline in Section 9.8

10. Use your clocking block to establish signal directions with respect to the testbench. Do not add
the raw signals to a testbench-facing interface's modport.

** I agree - follow this guideline.

11. Clocking blocks should usually be accessed through a virtual interface variable pointing to a
modport of the clocking block’s enclosing interface. In that situation, each clockvar must be accessed
using the three-part dotted name virtual_interface.clocking_block.clockvar
** I mostly agree - I will comment on the modport portion of this guideline in Section 9.8

In	addition	to	guideline	#3,	I	also	discuss	at	the	end	of	Section	9.7	the	proper	coding	style	for	sampling	
DUT	outputs	using	a	clocking	block.		

9.1	Clocking	Block	Default	Timing	

Clocking	block	default	timing	values	are	#1step	 for	sampling	DUT	signals	and	#0	for	driving	DUT	
stimulus.	The	#1step	sample	time	should	almost	always	be	used.	The	#0	drive	time	should	NEVER	
be	used.	

9.2	#1step	Sampling	

The	best	time	to	sample	DUT	outputs	is	at	the	end	of	the	cycle,	just	before	the	next	active	clock	edge	
changes	the	outputs	of	registered	logic.	The	#1step	input	sample	time	specified	in	a	clocking	block	
elegantly	accomplishes	this	goal.		

In	Verilog	testbenches	that	did	not	have	the	#1step	sample	time,	I	used	to	wait	for	almost	a	full	cycle	
and	then	sample	the	signal	one	time	unit	before	the	next	active	clock	edge,	using	#(`CYCLE-1).	This	
worked	fine	unless	the	CYCLE	delay	was	relatively	short,	such	as	a	2ns	CYCLE	delay,	in	which	case	
CYCLE-1	would	be	half	of	 the	CYCLE.	For	 faster	clock	cycles,	 I	would	have	to	sample	using	either	
#(`CYCLE-0.1)	or	perhaps	even	#(`CYCLE-0.01).	The	#1step	gives	the	smallest	resolution	delay	
before	the	next	active	clock	edge	so	engineers	don't	have	to	worry	about	relative	clock	speeds.	With	
this	added	observation,	this	agrees	with	Bromley	&	Johnston	Guideline	#4.	

It	has	been	argued	by	some	engineers	that	the	best	place	to	sample	the	DUT	outputs	is	one	setup‐
time	delay	before	the	active	clock	edge,	assuming	that	the	propagation	of	signals	need	to	settle	and	
be	ready	before	the	setup	time	requirement	of	the	clocked	logic.	Although	it	is	true	that	actual	signals	
must	be	stable	for	the	duration	of	the	setup	time	before	the	active	clock	edge,	functional	simulation	
is	 not	 the	 place	 to	 prove	 that	 this	 requirement	 is	 being	 met.	 Functional	 and	 gate‐sims	 with	
backannotated	timing	delays	should	be	used	to	prove	that	the	design	is	functionally	correct	and	Static	
Timing	Analysis	Tools	(STA)	should	be	used	to	prove	that	all	timing,	including	setup	and	hold	times,	
are	being	met.	Verification	engineers	should	not	be	required	to	periodically	ensure	that	maximum	
setup	times	are	specified	in	the	testbench.	

9.3	#0	Drive	Times	

Driving	stimulus	 to	 the	DUT	at	#0	 after	 the	active	clock	edge	 is	possibly	 the	worst	place	 to	drive	
stimulus.	Unfortunately	this	is	the	default	stimulus	drive	time	of	a	clocking	block.	In	real	hardware,	
nobody	tries	to	change	the	inputs	of	clocked	logic	exactly	on	the	active	clock	edge	and	yet	that	is	the	
precise	behavior	of	the	default	#0	drive	time.		

SNUG	2016	
	

Page	18	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

With	 few	 exceptions,	 in	 real	 hardware,	 changing	 the	 inputs	 exactly	 on	 the	 active	 clock	 edge	will	
violate	setup	times	and/or	hold	times	and	could	frequently	cause	metastable	values	to	be	generated	
at	the	output	of	the	clocked	logic.		

Engineers	should	set	the	drive	time	of	a	clocking	block	to	be	20%	of	the	clock	cycle,	allowing	80%	
of	the	clock	cycle	for	input	combinational	delays	to	the	DUT.	If	more	input	combinational	settling	is	
required,	the	clocking	block	could	be	set	to	10%	of	the	clock	cycle	to	allow	90%	of	the	cycle	of	input	
settling.	 Figure	 9	 shows	 that	 DUT	 combinational	 inputs	 could	 require	most	 of	 the	 clock	 cycle	 to	
process	testbench	stimulus.	

This	agrees	with	Bromley	&	Johnston	Guideline	#5,	noting	that	the	delay	should	generally	be	10%‐
20%	of	the	clock	cycle	to	allow	DUT	input	combinational	settling	time.	

9.4	Example	UVM	clocking	block	

To	better	understand	some	of	the	concepts	of	using	clocking	blocks,	consider	a	simple	program	
counter	 with	 asynchronous	 low‐true	 reset,	 along	 with	 synchronous	 load	 and	 increment	 control	
signals	as	shown	Example	6.	

	
module pcnt (
 output logic [15:0] dout,
 input [15:0] din,
 input ld, inc, clk, rst_n);

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) dout <= '0;
 else if (ld) dout <= din;
 else if (inc) dout <= dout + 1;
endmodule

Example	6	‐	Program	counter	DUT	code	

The	CYCLE	definition	and	clocking	block	drive	time	(Tdrive)	definitions	are	kept	in	the	file	CYCLE.sv	

	
`ifndef CYCLE
 `define CYCLE 10
`endif
`ifndef Tdrive
 `define Tdrive #(0.2*`CYCLE)
`endif
`timescale 1ns/1ns

Example	7	‐	CYCLE.sv	file	

The	interface	with	clocking	block	used	in	the	corresponding	UVM	testbench	is	shown	in	Example	
8.	

`include "CYCLE.sv"

interface dut_if (input clk);
 logic [15:0] dout;
 logic [15:0] din;
 logic ld, inc, rst_n;

SNUG	2016	
	

Page	19	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

 clocking cb1 @(posedge clk);
 default input #1step output `Tdrive;
 input dout;
 output din;
 output ld, inc, rst_n;
 endclocking
endinterface

Example	8	‐	DUT	interface	with	clocking	block	

The	next	section	shows	how	the	UVM	testbench	driver	is	setup	to	drive	stimulus	to	this	design.	

9.5	Stimulus	using	clocking	drives	

Bromley	&	Johnston	Guideline	#1	states:	

When	using	a	 clocking	block,	 the	 testbench	must	access	only	 its	 clockvars	and	 should	never	
access	the	clocking	signals	directly.	

Although	this	is	generally	a	good	guideline,	there	is	one	very	important	exception	to	this	guideline	
that	I	do	in	all	of	my	testbenches,	and	that	exception	occurs	at	time‐0.	In	my	UVM	driver	components,	
I	always	include	an	initialize()	task	that	makes	direct,	non‐clocking	block	signal	assignments	at	
time‐0,	 and	 that	 initialize()	 task	 is	 called	 at	 the	 beginning	 of	 the	 run_phase()	 and	 then	 a	
forever	loop	executes	a	drive_tr()	method	or	methods,	all	of	which	exclusively	make	assignments	
to	the	clockvars	(signals	with	clocking	block	timing)	after	time‐0.	This	allows	my	testbenches	to	
initialize	all	signals	with	fixed	or	random	values	at	time	zero	and	then	take	advantage	of	clocking	
block	controlled	assignments	to	the	same	signals	throughout	the	rest	of	the	simulation.	

The	tb_driver	 in	Example	9	 includes	 the	initialize()	 task	and	shows	 that	initialize()	 is	
called	just	before	entering	the	forever	loop.	For	informational	purposes,	the	virtual	dut_if	is	set	
by	the	tb_agent	(not	shown)	for	this	example.	

	
class tb_driver extends uvm_driver #(trans1);
 `uvm_component_utils(tb_driver)

 virtual dut_if vif;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 trans1 tr;
 initialize();
 forever begin
 seq_item_port.get_next_item(tr);
 drive_tr(tr);
 seq_item_port.item_done();
 end
 endtask

 task initialize(); // @0 - Does not use clocking block
 vif.rst_n <= '0;
 vif.ld <= '1;
 vif.inc <= '1;
 vif.din <= '1;

SNUG	2016	
	

Page	20	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

 endtask

 task drive_tr (trans1 tr);
 @vif.cb1;
 vif.cb1.din <= tr.din;
 vif.cb1.ld <= tr.ld;
 vif.cb1.inc <= tr.inc;
 vif.cb1.rst_n <= tr.rst_n;
 endtask
endclass

Example	9	‐	tb_driver	with	initialize()	task	(no	clocking	block	timing)	and	drive_tr()	ask	(uses	clocking	block	timing)	

In	his	testbench	book	[6],	Janick	Bergeron	similarly	states	that	stimulus	should	not	be	assigned	at	
time‐0,	 but	 again,	 I	 have	 found	 it	 useful	 to	make	 time‐0	 stimulus	 assignments	using	nonblocking	
assignments.	 In	 a	 personal	 conversation	 with	 Janick	 regarding	 this	 exception,	 Janick	 somewhat‐
accurately	 stated	 that	using	nonblocking	 assignments	 at	 time‐0	did	not	 violate	his	 guideline	 as	 a	
nonblocking	assignment	executes	at	a	later	stage	of	the	time‐0	event	regions.		

Note	that	the	drive_tr()	task	of	Example	9	uses	notations	similar	to:	vif.cb1.din <= tr.din	 	

Bromley	&	Johnston	Guideline	#3	states:	
Write to output clockvars using the clocking drive operator <=. Never try to write an output
clockvar using simple assignment =.

The	 added	 clarification	 is	 that	 the	 clocking	 drive	 operator	 (<=)	 is	 required	whenever	 driving	 a	
clockvar	(a	signal	that	includes	the	clocking	block	name)	and	using	the	simple	blocking	assignment	
operator		(=)	is	illegal.	The	SystemVerilog	compiler	will	enforce	Bromley	&	Johnston	Guideline	#3.	

9.6	Why	drive	signals	at	time‐0?	

One	frequently	asked	question	is,	why	even	drive	DUT	input	signals	at	time‐0?	Why	not	allow	DUT	
inputs	to	remain	uninitialized	at	X	at	time‐0	and	then	use	clocking	drives	after	the	first	testbench	
active	clock	edge?	

It	should	be	noted	 that	many	successful	 testbenches	never	drive	DUT	 input	signals	at	 time‐0	and	
these	testbenches	work	just	fine.		

As	noted	in	Section	2,	time‐0	is	a	tricky	place	in	Verilog	and	SystemVerilog	simulations.	Input	signals	
that	are	allowed	to	be	X	at	time‐0	have	the	potential	to	cause	a	pre‐	and	post‐synthesis	simulation	
mismatches	[4].	Any	uninitialized	input	signal	tested	by	a	procedural	if‐statement	will	fail	the	if‐
test	and	always	take	the	else	branch.	Any	uninitialized	input	signal	tested	by	a	casex	statement	will	
always	 execute	 the	 first	casex‐item‐statement.	These	 are	well	 known	X‐optimism	examples,	 and	
have	caused	companies	to	have	costly	re‐spins	in	their	ASIC	designs.	

At	 time‐0,	my	initialize()	 task	 is	 frequently	written	 to	reset	 the	device,	while	simultaneously	
setting	inputs	to	either	all	1's		or	random	values,	and	to	set	load‐control	input	signals	to	attempt	to	
load	values	into	my	DUT.	I	do	this	to	ensure	that	reset	properly	clears	the	required	register	values	
and	has	priority	over	other	loading	control	signals	at	time‐0.		

Another	 advantage	 to	 doing	 the	 time‐0	 assignments	 becomes	 visible	 in	 the	 waveform	 display.	 I	
generally	do	not	like	to	see	"red"	signals	at	time‐0,	except	for	uninitialized	and	non‐reset	outputs.	
When	I	see	"red"	at	time‐0,	I	quickly	analyze	the	red	signals	to	make	sure	that	their	values	are	indeed	
unknown	at	time‐0.	I	do	not	want	to	waste	time	analyzing	uninitialized	DUT	inputs.	

SNUG	2016	
	

Page	21	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

9.7	Asynchronous	control	inputs	

Unclocked	reference	models	and	prediction	functions	typically	take	inputs	sampled	on	clock	edges	
to	predict	what	the	actual	DUT	output	values	should	be.	Typically	inputs	sampled	on	the	active	clock	
edge,	 such	 as	 the	posedge	clk	 are	 the	 only	 values	 required	 to	 predict	 the	 correct	 outputs.	 The	
exception	to	this	rule	is	asynchronous	control	signals.		

Consider	the	example	of	 the	asynchronous	reset	signal.	Figure	11	shows	four	asynchronous	reset	
scenarios	that	might	have	to	be	considered	when	predicting	the	DUT	output.	

	

	
Figure	11	‐	Four	asynchronous	reset	signal	scenarios	

	

 In	the	first	asynchronous	reset	scenario,	the	predicted	DUT	outputs	would	need	to	be	reset	
in	cycles	1‐3.	

 In	the	second	asynchronous	reset	scenario,	the	predicted	DUT	outputs	would	need	to	be	reset	
in	cycles	1‐2.	

 In	the	third	asynchronous	reset	scenario,	the	predicted	DUT	outputs	would	need	to	be	reset	
in	cycles	2‐3.	

 And	in	the	fourth	asynchronous	reset	scenario,	the	predicted	DUT	outputs	would	only	need	
to	be	reset	in	cycle	2.	

In	the	first	three	asynchronous	reset	scenarios,	it	is	clear	that	the	reset	signal	needs	to	be	sampled	
both	at	the	beginning	and	at	the	end	of	the	cycle	since	a	reset	at	any	time	during	the	cycle	should	
cause	the	DUT	outputs	to	be	reset.	

If	 the	 reset	 signal	 is	 active	when	 the	 inputs	 are	 sampled	 on	 the	 active	 clock	 edge,	 the	 predicted	
outputs	can	be	reliably	calculated.	If	reset	is	not	active	on	the	active	clock	edge,	the	predicted	outputs	
cannot	be	guaranteed	to	not	be	reset	later	in	the	same	cycle,	which	is	why	a	reset	signal	that	was	not	
active	when	the	inputs	were	sampled,	needs	to	be	re‐sampled	on	the	next	active	clock	edge	to	see	if	
it	has	been	asserted	during	the	cycle.		

Example	 10	 shows	 part	 of	 the	 sample_dut	 task	 that	 is	 called	 by	 the	 tb_monitor	 (the	 full	
tb_monitor	code	is	shown	in	Example	11).	This	UVM	testbench	is	setup	so	that	the	sample_dut	task	
is	always	synchronized	to	the	posedge	clk,	so	when	called	it	first	samples	all	of	the	inputs,	including	
the	asynchronous	rst_n	input,	then	re‐synchronizes	to	the	next	clocking	block	sample	signal	from	
the	virtual	 interface,	@vif.cb1,	which	 in	 this	example	 re‐synchronizes	 to	 the	posedge	clk,	 then	
samples	 the	 outputs	 #1step	 before	 that	 clocking	 block	 sample	 signal	 and	 then	 re‐samples	 the	
asynchronous	rst_n	to	see	if	it	is	low‐true	asserted	on	this	posedge	clk	edge,	and	if	asserted,	the	
rst_n	signal	that	will	eventually	be	passed	to	the	testbench	predictor	is	set	to	0,	otherwise	it	keeps	

SNUG	2016	
	

Page	22	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

its	previous	value,	which	might	have	been	low‐true	asserted	at	the	beginning	of	the	cycle.		

	
 task sample_dut (output trans1 tr);
 trans1 t = trans1::type_id::create("t");
 //---
 // Sample DUT synchronous inputs on posedge clk.

 ...

 @vif.cb1;
 if (!vif.rst_n) t.rst_n = '0; // async reset
 t.dout = vif.cb1.dout;
 //---
 tr = t;
 endtask

Example	10	‐	sample_dut	task	checks	async	reset	at	beginning	and	end	of	the	cycle	

Note	that	the	sample_dut	task	uses:	
 @vif.cb1 … t.dout = vif.cb1.dout

instead	of:	
@(posedge clk) … t.dout = vif.cb1.dout

which	agrees	with	Bromley	&	Johnston	Guideline	#2.	@cb1.vif	allows	outputs	to	be	sampled	#1step	
before	 the	posedge	clk,	while	 the	@(posedge	clk)	 gives	 race‐condition	 results	 and	 appears	 to	
cause	 at	 least	 two	 simulators	 to	 sample	 the	 output	 one	 clock	 cycle	 earlier	 (the	 vif.cb1.dout	
sampling	does	not	appear	to	recognize	the	current	clock	edge	and	appears	to	sample	one	clock	edge	
earlier	 ‐	 this	 is	 just	 an	 observation	 and	 may	 not	 be	 consistent	 between	 current	 simulators	 or	
consistent	with	the	future	behavior	of	simulators).	

The	 tb_monitor	 code	 of	 Example	 11	 shows	 the	 full	 UVM	 monitor	 example	 including	 the	 full	
sample_dut()	code.	

	
class tb_monitor extends uvm_monitor;
 `uvm_component_utils(tb_monitor)

 virtual dut_if vif;

 uvm_analysis_port #(trans1) aport;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 aport = new("aport", this); // build the analysis port
 endfunction

 task run_phase(uvm_phase phase);
 trans1 tr;
 tr = trans1::type_id::create("tr");
 //---------------------------------------
 forever begin

SNUG	2016	
	

Page	23	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

 sample_dut(tr);
 aport.write(tr);
 end
 endtask

 //---
 // sample_dut assumed to be synced to posedge clk
 // except for first sample at time-0
 //---
 task sample_dut (output trans1 tr);
 trans1 t = trans1::type_id::create("t");
 //---
 // Sample DUT synchronous inputs on posedge clk.
 // DUT inputs should have been valid for most
 // of the previous clock cycle
 //---
 t.din = vif.din;
 t.ld = vif.ld;
 t.inc = vif.inc;
 t.rst_n = vif.rst_n;
 //---
 // Wait for posdege clk and sample outputs #1step before.
 // Also re-sample and check async control input signals
 //---
 @vif.cb1;
 if (!vif.rst_n) t.rst_n = '0; // async reset
 t.dout = vif.cb1.dout;
 //---
 tr = t;
 endtask
endclass

Example	11	‐	tb_monitor	checks	async	reset	at	beginning	and	end	of	the	cycle	

This	 technique	 is	 generally	 good	 enough	 for	 testing	 purposes	 because	 the	 verification	 engineer	
typically	does	not	generate	sub‐cycle	asynchronous	control	pulses	when	generating	stimulus.	

If	 there	 is	 the	 possibility	 of	 generating	 sub‐cycle	 asynchronous	 control	 pulses	 either	 from	 the	
stimulus	source	or	from	another	sub‐block	connected	to	this	DUT	block,	then	a	sticky‐bit	technique	
will	 be	 required	 to	 capture	 the	 asynchronous	 control	 signal	 activity	 to	 pass	 to	 the	 testbench	
predictor.	An	example	of	this	scenario	is	rst_n	scenario	#4	as	shown	in	Figure	11,	and	again,	isolated	
as	shown	in	Figure	12.	

	

	
Figure	12	‐	Asynchronous	mid‐cycle,	sub‐cycle	reset	pulse<insert	common	code	example	here>	

As	shown	in	Figure	12,	the	reset	pulse	cannot	be	detected	on	either	the	rising	edge	of	cycle	#2	or	on	
the	rising	edge	of	cycle	#3.	It	will	be	necessary	to	capture	and	hold	the	reset	condition	of	cycle	#2	and	
sample	that	condition	#1step	before	cycle	#3.	

SNUG	2016	
	

Page	24	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

The	sticky‐bit	 code	can	be	easily	added	 to	 the	dut_if.sv	 file	as	shown	 in	Example	12.	A	simple	
always	 block	 captures	any	active	 (negedge)	 transition	on	 the	rst_n	 signal	 and	assigns	0	 to	 the	
sticky	reset_n	signal	that	is	used	in	the	tb_monitor	component	shown	in	Example	13.	At	the	next	
posedge	clk,	either	the	reset_n	signal	is	still	assigned	to	0	(if	rst_n	is	still	active	low)	or	is	set	to	1	
to	clear	the	active	reset_n	condition	(if	rst_n	was	deasserted	before	the	end	of	the	cycle).	The	only	
other	 DUT	 interface	 requirements	 to	make	 this	 technique	work	 are	 to	 declare	 the	 sticky	logic	
reset_n	signal	in	the	declarations	portion	of	the	interface,	and	to	add	the	reset_n	signal	as	an	input	
in	 the	 clocking	 block,	 to	 allow	 the	 tb_monitor	 to	 sample	 the	 signal	 #1step	 before	 the	 next	
posedge	clk,	which	is	used	to	deactivate	the	sticky‐bit	by	setting	it	to	a	1.	

	 	
`include "CYCLE.sv"

interface dut_if (input clk);
 logic [15:0] dout;
 logic [15:0] din;
 logic ld, inc, rst_n;
 logic reset_n;

 //--
 // Sticky reset_n signal to capture short rst_n pulses
 //--
 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) reset_n <= '0;
 else reset_n <= '1;

 clocking cb1 @(posedge clk);
 default input #1step output `Tdrive;
 input dout;
 output din;
 output ld, inc, rst_n;
 input reset_n;
 endclocking
endinterface

Example	12	‐	DUT	interface	with	sticky‐bit	code	to	save	reset	short‐pulse	reset	condition	

The	tb_monitor	 also	 needs	 to	 be	 slightly	modified	 to	 sample	 the	vif.cb1.reset_n	 signal	 and	
assign	 those	 values	 as	 appropriate	 to	 the	 t.rst_n	 signal	 in	 the	 transaction	 before	 writing	 the	
transaction	to	the	analysis	port.	The	modified	tb_monitor	code	is	shown	in	Example	13.	

	
class tb_monitor extends uvm_monitor;
 `uvm_component_utils(tb_monitor)

 ...

 task run_phase(uvm_phase phase);
 trans1 tr;
 tr = trans1::type_id::create("tr");
 //---------------------------------------
 forever begin
 sample_dut(tr);
 aport.write(tr);
 end
 endtask

SNUG	2016	
	

Page	25	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

 task sample_dut (output trans1 tr);
 trans1 t = trans1::type_id::create("t");
 t.din = vif.din;
 t.ld = vif.ld;
 t.inc = vif.inc;
 t.rst_n = vif.rst_n;
 //---
 // ...
 // Sample the sticky-bit reset_n to update rst_n if needed
 //---
 @vif.cb1;
 if (!vif.cb1.reset_n) t.rst_n = '0; // async reset
 t.dout = vif.cb1.dout;
 //---
 tr = t;
 endtask
endclass

Example	13	‐	tb_monitor	modified	to	test	the	sticky‐bit	reset_n	version	of	the	rst_n	asynchronous	reset	

Note	 that	 the	 sample_dut()	 task	 of	 Example	 13	 uses	 notations	 similar	 to:		
t.dout = vif.cb1.dout;
The	proper	coding	for	sampling	DUT	outputs	using	a	clocking	block	requires	the	use	of	the	
clocking	sample	operator	(=)	and	using	a	nonblocking	assignment	operator (<=) for	clocking	
sample	operations	is	illegal.	The	SystemVerilog	compiler	will	catch	this	mistake.	

9.8	Interface	modports	and	testbenches	

Bromley	&	 Johnston	Guidelines	 #9	 and	#11	 recommend	 using	modport	 versions	 of	 the	 clocking	
signals.	These	guidelines	are	fine	and	even	add	a	small	amount	of	additional	checking	to	the	signals	
being	driven	and	sampled,	but	I	generally	find	the	use	of	modports	in	testbench	interfaces	to	be	a	
level	of	complexity	that	is	generally	not	needed.	Verification	engineers	are	encouraged	to	use	or	not	
use	modports	at	their	discretion.	

10.	Death	to	the	SystemVerilog	program!	
SystemVerilog‐2005	 added	 a	 new	 testbench	 construct	 called	 a	program.	 The	 primary	 reason	 for	
adding	 the	program	 construct	 to	 SystemVerilog	was	 to	 help	 avoid	 stimulus‐DUT	 race	 conditions	
when	stimulus	was	driven	on	the	active	clock	edge,	which	should	never	be	done!	

The	 idea	was	 that	 the	RTL	code	would	be	captured	within	modules	while	 the	 testbench	stimulus	
generation	would	be	captured	within	programs.		

The	perceived	benefit	of	this	approach	was	that	if	stimulus	was	driven	on	the	active	clock	edge,	an	
active	clock	edge	would	first	execute	the	RTL	code	in	the	active	region	of	the	event	schedule	(shown	
in	the	upper	half	of	Figure	13)	and	allow	the	RTL	to	settle	to	a	semi‐final	value	before	new	stimulus	
was	sent	to	the	DUT.	This	means	that	the	RTL	would	sample	all	inputs	that	had	setup	on	the	registers	
before	the	testbench	changed	those	inputs	for	the	next	cycle.	

After	the	RTL	had	settled	to	a	semi‐final	state	in	the	active	region,	testbench	program	code	would	
then	drive	new	stimulus	to	the	DUT	during	the	reactive	region	of	the	same	time	slot	(shown	in	the	
lower	half	of	Figure	13).	After	the	program	code	had	calculated	the	appropriate	stimulus	to	send	to	
the	 DUT,	 those	 stimulus	 values	 would	 then	 be	 sent	 back	 into	 the	 DUT	 and	 any	 DUT	 input	

SNUG	2016	
	

Page	26	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

combinational	logic	would	recalculate	the	inputs	to	the	DUT	registers	and	these	values	would	remain	
on	the	DUT	inputs	until	the	next	active	clock	edge.		

	

	
Figure	13	‐	SystemVerilog	module	and	program	event	scheduling	

If	a	verification	engineer	drives	stimulus	on	the	active	clock	edge,	the	program	testbench	scheduling	
could	prove	useful	to	avoid	race	conditions	where	the	RTL	might	partially	calculate	a	final	value,	the	
stimulus	arrives	before	 the	RTL	 is	done	calculating	values,	and	 the	stimulus	changes	some	of	 the	
inputs	 that	 have	 not	 yet	 been	 registered.	 So	 the	 program	 essentially	 made	 it	 possible	 to	 drive	
stimulus	on	the	active	clock	edge	and	avoid	RTL‐stimulus	race	conditions,	but	as	has	been	previously	
discussed,	stimulus	should	NOT	be	driven	on	the	active	clock	edge,	and	hence	there	is	no	need	for	the	
use	of	the	program	block.	

As	long	as	the	verification	engineer	does	not	drive	stimulus	on	the	active	clock	edge,	there	is	no	RTL‐
stimulus	race	condition	and	a	program	is	not	needed.		

The	SystemVerilog	Standard	also	introduced	a	number	of	confusing	coding	restrictions	associated	
with	program	usage,	such	as:	

A	program	can	only	use	initial	procedures	but	not	always	procedures.	

A	program	can	hierarchically	reference	module	signals	but	a	module	cannot	hierarchically	reference	
program	signals.	

A	 program	 can	 call	 module	 tasks	 and	 functions	 while	 a	 module	 cannot	 call	 program	 tasks	 and	
functions.	

Simulators	have	not	always	(and	still	may	not)	consistently	check	and	execute	program	code.	

The	SystemVerilog	program	statement	should	just	die	and	never	be	used	in	your	code!	

SNUG	2016	
	

Page	27	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

10.1	Cliff's	confession	

Despite	personal	reservations,	I	voted	to	include	programs	into	the	SV2015	standard.	In	a	separate	
conference	 call	 with	 committee	 members	 who	 were	 advocating	 the	 inclusion	 of	 programs	 to	
SystemVerilog,	I	described	my	technique	of	avoiding	RTL‐stimulus	race	conditions	by	explaining	how	
I	 never	 drive	 stimulus	 on	 the	 active	 clock	 edge.	 Those	 advocating	 inclusion	 of	 the	 program	
acknowledged	 that	 I	 had	 a	 good	 technique	 but	 that	 if	 I	 allowed	 programs	 to	 be	 added	 to	
SystemVerilog,	it	would	be	easier	for	engineers	to	drive	race‐free	stimulus	without	being	required	to	
understand	my	technique.	Based	on	that	argument,	I	voted	in	favor	of	adding	programs,	a	vote	that	I	
now	regret.	

If	 I	 could	 remove	 programs	 from	 the	 SystemVerilog	 language	 I	 would,	 but	 due	 to	 backward	
compatible	coding	reasons,	I	cannot	remove	them.		

All	I	can	do	is	give	my	strongest	recommendation	to	verification	engineers:	

Guideline:	Never	use	or	quit	using	SystemVerilog	programs!	

11.	Conclusions	
Time‐0	is	a	tricky	place	in	Verilog	and	SystemVerilog	simulations.	To	avoid	time‐0	race	conditions,	
create	an	initialize()	 task	and	assign	all	 inputs	at	 time‐0	using	nonblocking	assignments	(see	
Section	2.)	

There	 are	 three	 timing	 values	 that	 need	 to	 be	 properly	 considered	 to	 generate	 robust,	 race‐free	
testbenches:	(1)	When	to	drive	stimulus,	(2)	When	to	sample	DUT	inputs,	(3)	When	to	sample	DUT	
outputs.	

This	paper	has	shown	a	robust	technique	of	driving	stimulus	using	time	budgeting	to	ensure	that	
stimulus	is	driven	safely	after	the	active	clock	edge.	A	time	budget	of	waiting	20%	of	the	clock	cycle	
after	the	active	clock	edge	was	recommended,	and	that	value	was	used	in	a	clocking	block.	Other	
values	could	be	used	based	on	the	combinational	logic	input	delay	of	the	DUT.	

DUT	inputs	should	be	sampled	on	the	active	clock	edge	because	that	is	where	the	DUT	will	sample	
those	same	inputs.	The	exception	is	asynchronous	control	signals	that	must	frequently	be	re‐sampled	
at	the	end	of	the	cycle,	and	if	asynchronous	control	signals	could	be	sub‐cycle	pulses,	a	sticky‐bit	
technique	may	be	employed	to	capture	those	glitching	asynchronous	control	signals.	

Outputs	should	be	sampled	at	 the	 last	possible	moment	before	 the	next	active	clock	edge.	This	 is	
accomplished	by	using	the	#1step	sample	time	within	a	clocking	block.	This	was	shown	in	Section	
9.2			

Finally,	the	well‐intentioned	SystemVerilog	program	enhancement	only	offers	value	if	you	are	trying	
to	apply	stimulus	on	the	active	clock	edge,	which	you	should	never	do!	The	program	has	a	number	of	
annoying	restrictions	when	interacting	with	a	module	and	just	adds	confusion	to	how	SystemVerilog	
events	 are	 scheduled.	 The	 SystemVerilog	 program	 should	 never	 be	 used!	 The	 SystemVerilog	
program	should	just	die!	

12.	References	
[1] Anna	Ekstrandh,	Wayne	Bell,	"Evolvable	Makefiles	and	Scripts	for	Synthesis,"	SNUG	(Synopsys	Users	

Group)	1997	Proceedings,	February	1997.	

[2] Clifford	E.	Cummings,	"OVM/UVM	Scoreboards	‐	Fundamental	Architectures,"	SNUG	(Synopsys	Users	
Group)	2013	(Silicon	Valley,	CA).	Also	available	at	www.sunburst‐design.com/papers	

SNUG	2016	
	

Page	28	

Rev	1.0	

Applying	Stimulus	&	Sampling	Outputs	‐		
UVM	Verification	Testing	Techniques	

[3] Clifford	E.	Cummings,	"Verilog	Nonblocking	Assignments	With	Delays,	Myths	&	Mysteries,"	SNUG	
(Synopsys	Users	Group)	2002	(Boston,	MA).	Also	available	at	www.sunburst‐design.com/papers	

[4] Don	Mills	and	Clifford	E.	Cummings,	“RTL	Coding	Styles	That	Yield	Simulation	and	Synthesis	Mismatches,”	
SNUG	(Synopsys	Users	Group)	1999	(San	Jose,	CA).	
Also	available	at	www.lcdm‐eng.com/papers.htm	and	www.sunburst‐design.com/papers	

[5] "IEEE	Standard	For	SystemVerilog	‐	Unified	Hardware	Design,	Specification	and	Verification	Language,"	
IEEE	Computer	Society	and	the	IEEE	Standards	Association	Corporate	Advisory	Group,	IEEE,	New	York,	
NY,	IEEE	Std	1800™‐2012	

[6] Janick	Bergeron,	Writing	Testbenches:	Functional	Verification	of	HDL	Models,	2nd	Edition,	Springer	
Science+Business	Media,	Inc.,	2003.	ISBN:	1‐4020‐7401‐8	

[7] Jonathan	Bromley	and	Keven	Johnston,	"Taming	Testbench	Timing:	Time's	Up	for	Clocking	Block	
Confusions,"	SNUG	(Synopsys	Users	Group)	2012	(Austin,	TX).	Also	available	at	
www.verilab.com/resources/papers‐and‐presentations/#snug2012clock	

	

13.	Author	&	Contact	Information	
Cliff	Cummings,	President	of	Sunburst	Design,	Inc.,	is	an	independent	EDA	consultant	and	trainer	
with	36	years	of	ASIC,	FPGA	and	system	design	experience	and	26	years	of	SystemVerilog,	synthesis	
and	methodology	training	experience.	

Mr.	Cummings	has	presented	more	than	100	SystemVerilog	seminars	and	training	classes	in	the	past	
15	years	and	was	the	featured	speaker	at	the	world‐wide	SystemVerilog	NOW!	seminars.		

Mr.	 Cummings	 participated	 on	 every	 IEEE	 &	 Accellera	 SystemVerilog,	 SystemVerilog	 Synthesis,	
SystemVerilog	 committee	 from	 1994‐2012,	 and	 has	 presented	 more	 than	 40	 papers	 on	
SystemVerilog	&	SystemVerilog	related	design,	synthesis	and	verification	techniques.	

Mr.	 Cummings	 holds	 a	 BSEE	 from	 Brigham	 Young	 University	 and	 an	 MSEE	 from	 Oregon	 State	
University.	

Sunburst	 Design,	 Inc.	 offers	 World	 Class	 Verilog	 &	 SystemVerilog	 training	 courses.	 For	 more	
information,	visit	the	www.sunburst‐design.com	web	site.	

Email	address:	cliffc@sunburst‐design.com	

	

Last	Updated:	June	2018	

