
	

	

	

	
World Class SystemVerilog & UVM Training

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	
Practices	for	Simple	SVA	Usage	

	

	
Clifford E. Cummings

Sunburst Design, Inc.
cliffc@sunburst-design.com
www.sunburst-design.com

	

	

ABSTRACT	

	

SystemVerilog	Assertions	(SVA)	can	be	added	directly	to	the	RTL	code	or	be	added	indirectly	
through	bindfiles.	Best	known	practices	suggest	that	it	is	better	to	add	most	assertions	using	
bindfiles.	 This	 paper	 will	 explain	 why	 adding	 assertions	 directly	 to	 the	 RTL	 code	 can	 be	
problematic	and	why	bindfiles	solve	many	of	the	problems.	This	paper	also	explains	how	to	
use	bindfiles	efficiently	and	why	engineers	should	generally	use	concurrent	assertions	while	
avoiding	immediate	assertions.	This	paper	will	also	give	assertion	coding	guidelines	and	styles	
that	help	reduce	assertion	coding	effort,	assertion	coding	mistakes	and	encourage	designers	
to	be	more	proactive	in	adding	assertions	to	their	designs.	
	

SNUG-2016
Silicon Valley, CA
Voted Best Paper

1st Place

SNUG	2016	
	

Page	2	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

Table	of	Contents	
1. Introduction	...	5

1.1 Assertion	terminology	...	5

2. Design	Engineers	and	SVA	...	6

3. How	much	SVA	training?	..	6

4. Bindfiles	...	7

4.1 How	bindfiles	work	..	7

4.2 The	bind	command	...	7

4.3 Bindfile	usage	models	..	8

4.3.1 Bind	to	all	instances	of	a	module	..	9

4.3.2 Bind	to	specific	DUT	instance	with	or	without	using	the	module	name	10

4.4 Bindfiles	for	parameterized	models	..	11

4.5 Bindfiles	with	.*	port	connections	..	12

4.6 No	bindfile	nesting	..	12

5. Inline	assertion	code	...	13

5.1 Frontend	tool	SVA	support	..	13

5.2 Makefiles	...	14

5.3 Visibility	of	SVA	in	bindfiles	..	14

5.4 Bindfile	disadvantages	..	18

6. Assertion	labels	for	debugging	...	19

7. Concurrent	assertions	‐vs‐	immediate	assertions	..	21

8. Simple	assertion	macros	...	26

8.1 Sunburst	Design	SVA	macro	definitions	..	27

9. Implications	|‐>		|=>	..	28

10. Conclusions	..	29

11. Acknowledgements	...	29

12. Postlude	...	30

13. References	..	30

14. Author	&	Contact	Information	..	30

 Tools	and	OS	versions	...	32 Appendix	1

 Editor	key	definitions	to	ease	adding	assertion	labels..	32 Appendix	2

 Bind	to	specific	DUT	instance	..	34 Appendix	3

 Bind	to	an	instance	name	without	specifying	the	DUT	module	name	34 Appendix	4

	 	

SNUG	2016	
	

Page	3	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

Table	of	Figures	
Figure	1	‐	bind	‐	2‐box	/	2‐part	command	..	7

Figure	2	‐	Multiple	top‐level	modules	‐	tb1	and	bindfiles...	10

Figure	3	‐	fifo1	module	always_ff	code	...	15

Figure	4	‐	fifo1	module	with	assertions	embedded	above	the	always_ff	code	...	16

Figure	5	‐	fifo1	module	with	assertions	embedded	below	the	always_ff	code	..	17

Figure	6	‐	assertions	in	separate	file	‐	side‐by‐side	windows	to	help	debug	the	DUT	18

Figure	7	‐	Assertion	labels	displayed	in	the	waveform	display	(before	expanding	the	Name	pane)	.	19

Figure	8	‐	Assertion	labels	displayed	in	the	waveform	display	(after	expanding	the	Name	pane)	20

Figure	9	‐	Assertion	label	expanded	to	show	all	signals	tested	by	the	assertion	..	21

Figure	10	‐	Immediate	assertion	‐	assert	final	$onehot(...)	FSM	example	to	correct	race	condition	..	22

Figure	11	‐	Concurrent	assertion	‐	`assert_clk($onehot(...))	FSM	example	...	22

Figure	12	‐	Immediate	assertion	DVE	display	without	label	name	(Note:	unnamed$$_1)	24

Figure	13	‐	Immediate	assertion	DVE	display	with	label	name	(ERR_reset_went_unknown)	25

Figure	14	‐	If‐statement	"assertion"	testing	of	$cast	and	randomize()	functions	26

Figure	15	‐	The	SVA	"circle	of	life"..	26

Figure	16	‐	Reasons	engineers	abandon	SVA	...	26

Figure	17	‐	Viewing	implication	operators	with	large	fonts	..	28

Figure	18	‐	Viewing	implication	operators	with	small		fonts	..	28

Figure	19	‐	Viewing	implication	operators	with	small	fonts	from	a	distance	..	28

Figure	20	‐	Raw	label	entry	using	vim	..	32

Figure	21	‐	Label	properly	formatted	using	vim	key	definition	...	32

Figure	22	‐	Examples	of	raw	label‐text	entry	using	vim	..	32

Figure	23	‐	Example	labels	properly	formatted	using	vim	key	definition	...	32

	
	 	

SNUG	2016	
	

Page	4	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

Table	of	Examples	
Example	1	‐	DUT	module	header	and	corresponding	DUT_asserts	module	header	8

Example	2	‐	Recommended	bind	style	‐	binds	to	all	instances	of	a	DUT	..	9

Example	3	‐	Separate	bindfiles	module	‐	bindfiles.sv	...	9

Example	4	‐	run1.f	command	file	‐	no	assertions	...	9

Example	5	‐	run2.f	command	file	‐	bind	assertions	...	9

Example	6	‐	fifo1	module	with	assertion	module	directly	instantiated	..	11

Example	7	‐	Parameterized	register	module	...	11

Example	8	‐	DUT	module	with	three	uniquely	parameterized	register	instances	12

Example	9	‐	Parameterized	register_asserts	module	...	12

Example	10	‐	Immediate	assertion	‐	assert	$onehot(...)	FSM	example	with	potential	race	condition
	...	22

Example	11	‐	Flip‐flop	with	asynchronous	reset	and	inline	immediate	assertion	23

Example	12	‐	DUT_asserts	module	with	immediate	assertion	to	check	reset	and	$error	reporting	..	23

Example	13	‐	DUT_asserts	module	with	immediate	assertion	to	check	reset	and	default	ERR_label	
reporting	...	24

Example	14	‐	assert_macros.sv	file	...	27

Example	15	‐	Properly	coded	concurrent	assertion	‐	verbose	style	..	27

Example	16	‐	Properly	coded	concurrent	assertion	‐	macro	style	..	27

Example	17	‐	Non‐recommended	bind	style	‐	binds	to	just	one	instance	of	a	DUT	34

Example	18	‐	Non‐recommended	bind	style	‐	binds	to	an	instance	name	only	..	35

	
	 	

SNUG	2016	
	

Page	5	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

1. Introduction	
In	2009	I	wrote	a	paper	entitled,	"SystemVerilog Assertions	 ‐	Design Tricks and SVA Bindfiles,"[3]	so	
why	seemingly	write	another	paper	on	the	same	topic?	

In	2010,	along	with	SystemVerilog	and	Formal	Verification	expert,	Harry	Foster,	 I	co‐presented	a	
series	 of	 seminars	 in	 North	 America	 and	 Europe	 on	 "SystemVerilog	 Assertion	 (SVA)	 Based	
Verification,"	to	local	design	and	verification	engineering	audiences	as	well	as	a	few	onsite,	captive	
seminars	for	large	companies.	During	the	course	of	those	seminars	Harry	and	I	were	able	to	share	
our	 best	 SVA	 practices	with	 seminar	 attendees	 and	with	 each	 other.	We	 also	 were	 given	 direct	
feedback,	especially	from	large	companies	and	power	SVA	users	on	their	best	SVA	usage	practices.	
Traveling	 with	 Harry	 gave	 me	 the	 opportunity	 to	 ask	 Harry,	 co‐inventor	 of	 the	 OVL	 (Open	
Verification	 Library),	 co‐author	 of	 the	 first	 Assertion	 Based	 Design	 book	 [2],	 Chairman	 of	 the	
Accellera	 Formal	 Verification	 Committee,	 and	 Chairman	 of	 the	 IEEE‐1850	 PSL1	 Working	 Group	
questions	about	why	certain	tokens	and	capabilities	were	added	to	both	SVA	and	PSL.	

Based	 on	 the	 information	 presented	 at	 the	 seminars,	 feedback	 shared	 with	 us	 from	 power‐SVA	
users	 and	 conversations	 that	 Harry	 and	 I	 held	 with	 each	 other,	 I	 developed	 a	 new	 set	 of	
recommended	SVA	usage	Best	Practices.		

In	 recent	 years	 other	 excellent	 papers	 on	 SVA	usage	 have	 been	 shared	 and	 have	 similarly	 given	
useful	recommendations	[5][9].	This	paper	will	detail	new	SVA	coding	practices	and	explain	why	I	
find	 these	 practices	 to	 be	 superior	 to	 other	 techniques	 that	 have	 been	 previously	 presented.	
Readers	are	invited	to	consider	these	guidelines,	compare	them	to	alternate	guidelines	offered	by	
other	respected	colleagues	and	choose	for	themselves.	

1.1 Assertion	terminology	

In	 this	 paper	 I	 will	 refer	 to	 the	 following	 abbreviations	 and	 the	 following	 different	 types	 of	
assertions:	

DUT	‐	Device	Under	Test.	

SVA	‐	SystemVerilog	Assertions.	

Immediate	 assertions	 ‐	 uses	 the	 keyword	 assert	 (not	 assert	 property),	 and	 is	 placed	 in	
procedural	code	and	executed	as	a	procedural	statement.	

Concurrent	assertions	 ‐	uses	the	keywords	assert	property,	 is	placed	outside	of	a	procedural	
block	and	is	executed	once	per	sample	cycle	at	the	end	of	the	cycle.	The	sample	cycle	is	typically	a	
posedge	clk	and	sampling	takes	place	at	the	end	of	the	clock	cycle,	just	before	everything	changes	
on	the	next	posedge	clk.	

Embedded	 concurrent	 assertions	 ‐	 another	 form	 of	 concurrent	 assertions	 added	 to	 IEEE	 Std	
1800‐2009[7]	 and	 also	 uses	 the	 keywords	 assert	 property	 but	 is	 placed	 inside	 of	 a	 clocked	
always	process.	Placing	the	assertion	in	a	clocked	always	process	allows	the	concurrent	assertion	
to	inherit	the	clocking‐sample	signal	from	the	always	process.	

See	0	for	tool	and	Operating	System	versions	used	to	test	the	examples	in	this	paper.	

																																																													

	
1	PSL	‐	Property	Specification	Language	and	precursor	to	SVA	

SNUG	2016	
	

Page	6	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

2. Design	Engineers	and	SVA		 	
One	question	that	authors	and	experts	have	tried	to	address	is,	what	types	of	assertions	should	be	
added	by	designers	and	what	types	of	assertions	should	be	added	by	verification	engineers?	

Some	respected	colleagues	have	suggested	that	immediate	assertions	should	be	added	by	designers	
and	concurrent	assertions	should	be	added	by	verification	engineers.	I	disagree.	

I	prefer	 the	 recommendation	made	by	Harry	Foster	 in	 the	Assertion	Based	Verification	seminars	
that	Harry	 and	 I	 did	 back	 in	 2010.	 Among	 other	 recommendations,	Harry	 suggested	 that	Design	
Engineers	 should	 create	 the	 low‐level	 and	 simple	 assertions	while	 Verification	 Engineers	 should	
create	higher‐level	and	perhaps	more	complex	assertions	(Harry	had	more	distinctions	regarding	
the	separation	of	concerns	between	Design	and	Verification	engineers	not	repeated	in	this	paper	‐	
see	[1]).	

I	 too	 recommend	 that	 designers	 should	 generally	 add	 the	 low‐level	 and	 simple	 assertions	 using	
concurrent	assertions	and	in	general	should	avoid	immediate	assertions.	

If	you	want	to	encourage	your	design	team	to	use	assertions	(and	designers	should	be	encouraged	
to	use	assertions)	I	have	found	that	the	following	assertion	coding	goals	should	be	followed:	

 Start	learning	and	using	SVA	after	2‐3	hours	of	lecture	and	1‐3	hours	of	labs.	
 Use	bindfiles	to	add	assertions	to	a	design	
 Use	long,	descriptive	labels	to:	

o document	the	assertions	
o accelerate	debugging	using	waveform	displays	

 Use	simple	macros	to:	
o efficiently	add	concise	assertions	
o reduce	assertion	coding	efforts	
o reduce	assertion	syntax	errors	

 Use	concurrent	assertions	but	avoid	immediate	assertions	
 Use	|->	##1	implications	instead	of	|=>	implications	

Each	of	these	recommendations,	and	more,	will	be	described	in	this	paper.	

3. How	much	SVA	training?	
In	 recent	 years	 I	 have	 been	 called	 on	 to	 conduct	 SystemVerilog	 Assertion	 (SVA)	 training	 for	
companies	 that	 had	 previously	 taken	multi‐day	 SVA	 training,	 not	 because	 the	 training	 they	 had	
received	was	bad,	but	because	the	training	they	had	received	was	too	much	and	their	engineering	
teams	had	a	hard	time	remembering	all	of	the	SVA	options	and	syntax	possibilities.	The	problem	I	
have	seen	is	that	designers	use	SVA	sporadically	for	a	few	months	on	one	project,	then	they	might	
go	many	months	before	they	need	to	use	it	again.	This	is	a	classic	case	of	unless	a	skill	is	practiced,	it	
is	forgotten.	

The	 SVA	 constructs	 in	 the	 SystemVerilog	 language	 are	 powerful	 and	provide	 extensive	 assertion	
capabilities,	which	unfortunately	for	many	design	engineers	is	perhaps	their	greatest	disadvantage.	
Unless	 an	 engineer	has	 a	 fulltime	 job	 adding	 assertions	 to	 all	 of	 the	projects	 at	 a	 company,	 then	
those	engineers	should	focus	on	a	subset	of	the	SVA	syntax	and	capabilities	and	add	additional	SVA	
capabilities	as	needed.		

My	experience	has	been	that	if	a	design	engineer	has	to	write	3	or	more	lines	of	assertion	code	to	
test	each	DUT	feature,	 they	will	quickly	abandon	the	use	of	SVA	and	will	designate	the	task	to	be	
done	by	verification	engineers.	Concise,	syntax	error‐avoidance	coding	styles	are	required	to	make	

SNUG	2016	
	

Page	7	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

a	design	engineer	productive	and	keep	them	enthusiastic	about	adding	SVA	to	their	RTL	designs.	

My	experience	has	shown	that	2‐3	hours	of	SVA	lecture	followed	by	1‐3	hours	of	SVA	lab	work	can	
make	design	engineers	both	productive	and	enthusiastic	about	using	SVA	in	their	design	work.	

If	an	engineer	DOES	have	the	full‐time	job	to	add	and	support	assertions	on	multiple	projects,	that	
engineer	should	take	multi‐day	SVA	training.	

Guideline	#1:	Start	learning	and	using	SVA	after	2‐3	hours	of	lecture	and	1‐3	hours	of	labs.	

4. Bindfiles	
Let	me	summarize	this	section	with	two	short	statements.	

Guideline	#2:	bindfiles	‐	use	them!	

Guideline	#3:	Inline	SVA	code	‐	avoid	it!	

This	 section	 will	 describe	 bindfile	 usage	 and	 also	 explain	 why	 I	 discourage	 placing	 assertions	
directly	in	the	RTL	code.	

There	 are	many	 sources	 that	 recommend	 embedding	 assertions	 directly	 into	 the	 RTL	 code,	 but	
again,	I	believe	there	is	a	better	approach.	Harry	Foster,	author	of	one	of	the	first	Assertion	Based	
Design	 books,	 used	 to	 recommend	 putting	 assertions	 directly	 into	 the	 RTL	 code,	 but	 he	 now	
recommends	NOT	putting	 the	assertions	 in	 the	RTL	code,	 and	Harry	and	 I	 are	 in	agreement	 that	
assertions	 should	 instead	 be	 put	 in	 a	 separate	 bindfile.	 Harry	 and	 I	 gave	 Assertion	 Based	
Verification	 seminars	 in	 North	 America	 and	 Europe	 in	 2010	where	 we	 shared	 SVA	 Best	 Coding	
Practice	techniques,	including	the	proper	use	of	bindfiles.	

4.1 How	bindfiles	work	

In	general,	using	bindfiles	is	actually	doing	indirect	instantiation.	The	engineer	will	bind	(indirectly	
instantiate)	 one	module	 inside	 of	 another	module	 using	 the	bind	 keyword.	 The	 IEEE	 Std	 1800‐
2012	Standard	frequently	refers	to	bindfiles	as	"bind_instantiation."[8]	

An	RTL	designer	might	not	even	know	that	the	bindfile	has	been	instantiated	into	the	RTL	design	
unless	the	engineer	opens	a	waveform	viewer,	like	DVE,	to	see	that	the	RTL	design	now	has	another	
sub‐level	 of	 hierarchy	 that	 can	 be	 displayed	 in	 the	 waveform	 display.	 A	 new	 and	 perhaps	
unexpected	level	of	hierarchy	is	the	indirectly	instantiated	bindfile.	

To	 create	 a	 bindfile,	 declare	 a	 module	 that	 will	 encapsulate	 the	 assertion	 code	 (and	 other	
verification	code	if	needed).	The	module	needs	access	to	all	of	the	important	signals	in	the	enclosing	
file	 so	 all	 of	 the	 ports	 and	 internal	 signals	 from	 the	 enclosing	 file	 are	 declared	 as	inputs	 to	 the	
bindfile.	

4.2 The	bind	command	

The	bind	command	can	be	viewed	as	a	2‐box	command.	

bind fifo1 fifo1_asserts p1 (.*);

Figure	1	‐	bind	‐	2‐box	/	2‐part	command	

As	 shown	 in	 Figure	 1,	 the	 first	 box	 of	 the	 bind	 command	 includes	 the	 bind	 keyword	
followed	by	the	DUT	module	name,	the	DUT	instance	name,	or	both.		

SNUG	2016	
	

Page	8	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

In	the	second	box	is	an	instantiation	command	that	describes	how	the	bound	module	would	
be	 instantiated	 if	 placed	 directly	 in	 the	 module	 being	 bound	 to.	 Simply	 put,	 if	 you	 had	
instantiated	the	bindfile	directly	into	a	module,	what	would	the	instantiation	code	be?	That	
instantiation	 code	 is	 the	 second	 box	 in	 the	 bind	 command.	 Binding	 is	 simply	 indirect	
instantiation.	

When	creating	bindfiles,	it	is	a	good	idea	to	copy	the	DUT	module	to	a	DUT_asserts	module,	keep	all	
existing	input	declarations, change	all	output	declarations	to	input	declarations,	and	declare	all	
internal	signals	as	input	declarations	to	the	bindfile.	The	bindfile	will	sample	the	port	and	internal	
signals	 from	the	DUT.	 In	Example	1	the	fifo1.sv	 file	was	copied	to	the	fifo1_asserts.sv	 file,	
the	dout	output	was	changed	 to	a	dout	input	 declaration,	all	input	 declarations	were	kept	as	
originally	declared,	and	all	 internal	logic	signals	were	modified	to	be	input	logic	declarations.	
There	 was	 no	 need	 to	 copy	 the	 internal	 array	 from	 the	 fifo1	 design	 so	 that	 was	 omitted.	 The	
`include	"assert_macros.sv"	 command	with	corresponding	macro	definitions	 is	explained	in	
Section	8.		

	
module fifo1 (
 output logic [7:0] dout,
 output logic full, empty,
 input logic write, read,
 clk, rst_n,
 input logic [7:0] din);

 logic [7:0] fifo1mem [0:15];
 logic [3:0] wptr, rptr;
 logic [3:0] cnt;

module fifo1_asserts (
 input logic [7:0] dout,
 input logic full, empty,
 input logic write, read,
 clk, rst_n,
 input logic [7:0] din,

 input logic [3:0] wptr, rptr,
 input logic [3:0] cnt);

 `include "assert_macros.sv"

Example	1	‐	DUT	module	header	and	corresponding	DUT_asserts	module	header	

It	is	not	required	to	list	all	of	the	DUT	signals	in	the	asserts	file,	only	those	signals	that	will	
be	checked	by	assertions;	however,	it	is	highly	recommend	to	add	ALL	of	the	DUT	signals	to	
the	 asserts	 file	 because	 it	 is	 common	 to	 add	 more	 assertions	 in	 the	 future	 that	 might	
require	previously	unused	DUT	signals.	

If	you	match	all	of	the	DUT	signal	names	(outputs,	inputs	and	internal	signals)	and	convert	
them	into	input	declarations	on	the	asserts	file,	it	is	very	simple	to	bind	the	asserts	file	to	
the	DUT	because	all	port	connections	can	be	made	using	.*	implicit	port	connections.	For	
those	 engineers	 who	 are	 uncomfortable	 using	 the	 .*	 port	 connections,	 all	 of	 the	
connections	 can	 also	 be	 made	 using	 the	 SystemVerilog	 .name	 or	 Verilog	 named	 port	
connections.	(see	Cummings	.*	paper[4])	

4.3 Bindfile	usage	models	

Bindfile	usage	is	explained	in	section	23.11	of	the	IEEE	Std	1800‐2012	[8].	

There	are	three	bindfile	usage	models:	(1)	bind	to	all	instances	of	a	module,	(2)	bind	to	a	specific	
instance	 of	 a	 DUT,	 and	 (3)	 bind	 to	 an	 instance	 name	without	 specifying	 the	 DUT	module	 name.	
Usage,	 advantages	 and	 disadvantages	 of	 these	 three	 use	 models	 are	 described	 below	 and	 in	
Appendix	3	and	Appendix	4.	

SNUG	2016	
	

Page	9	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

In	all	three	usage	models,	the	box	#2	instantiation	code	is	the	same.	The	only	visible	differentiation	
is	in	the	box	#1	code.	

4.3.1 Bind	to	all	instances	of	a	module	

Guideline	#4:	Use	the	bind	command	style	that	binds	to	all	DUT	modules,	not	the	bind	style	that	
only	binds	to	specified	instances.	

This	style	specifies	the	target	module	name	to	bind	to	but	does	not	specify	an	instance	name.	

	
bind fifo1 fifo1_asserts p1 (.*);

Example	2	‐	Recommended	bind	style	‐	binds	to	all	instances	of	a	DUT

Example	2	 shows	how	 to	bind	 the	fifo1_asserts	 file	 to	all	 instances	of	 the	fifo1	 design.	This	
style	does	not	require	that	the	bind	command	be	scoped	to	the	same	module	as	any	instance	of	the	
fifo1.	It	does	not	matter	where	the	fifo1	modules	are	instantiated	because	this	bind	command	
indirectly	 instantiates	 the	assertions	 to	 the	fifo1	designs	regardless	of	where	 they	are	placed	 in	
the	design	hierarchy.	

The	behavior	is	the	same	as	if	all	of	the	assertions	had	been	added	to	the	DUT	module	directly	and	
each	 instance	 of	 the	 DUT	 will	 have	 the	 same	 assertion	 checking	 during	 simulation.	 In	 general,	
engineers	 should	do	 assertion	 checking	on	 every	 instance	of	 a	DUT	module	because	an	 engineer	
never	knows	which	DUT	might	fail.		

Another	undocumented	advantage	of	binding	to	any	DUT	module	is	that	it	does	not	matter	where	
this	bind	command	is	placed.	 It	 is	common	practice	 to	place	 this	bind	command	in	 the	 top‐level	
testbench	but	I	prefer	to	place	this	bind	command	in	a	standalone	module	called	bindfiles	in	a	
file	called	bindfiles.sv	

	
module bindfiles;
 bind fifo1 fifo1_assert p1 (.*);
endmodule

Example	3	‐	Separate	bindfiles	module	‐	bindfiles.sv	

	
I	also	keep	two	copies	of	my	simulation	run1.f	command	file,	one	that	does	not	call	the	
bindfiles.sv	file	and	one	that	does.	

tb1.sv
fifo1.sv

Example	4	‐	run1.f	command	file	‐	no	assertions	

tb1.sv
fifo1.sv
bindfiles.sv
fifo1_assert.sv

Example	5	‐	run2.f	command	file	‐	bind	assertions	

	

Verilog‐2001[6]	made	it	 legal	 to	define	and	simulate	 two	top‐level	designs.	When	I	simulate	with	
the	run2.f	command	file,	I	am	simulating	both	the	design	and	the	separate	bindfiles	module.	The	
VCS	 simulation	 log	 in	 Figure	 2	 shows	 that	 there	 were	 two	 "Top Level Modules: tb1
bindfiles,"	 and	 indeed	 the	 when	 this	 simulation	 was	 run,	 it	 reported	 failing	 assertions	 (not	
shown).	

SNUG	2016	
	

Page	10	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

	

	
Command: vcs -R -sverilog -f run1.f -l logfile -full64
 Chronologic VCS (TM)
 Version K-2015.09-SP1_Full64 -- Wed Dec 16 11:33:13 2015
 Copyright (c) 1991-2015 by Synopsys Inc.
 ALL RIGHTS RESERVED

This program is proprietary and confidential information of Synopsys Inc.
and may be used and disclosed only as authorized in a license agreement
controlling such use and disclosure.

Parsing design file '../SIMUTIL.v'
Parsing design file 'tb1.sv'
Parsing design file 'fifo1.sv'
Parsing design file 'bindfiles.sv'
Parsing design file 'fifo1_assert.sv'
Parsing included file 'assert_macros.sv'.
Back to file 'fifo1_assert.sv'.
Top Level Modules:
 tb1
 bindfiles
TimeScale is 1 ns / 1 ns
Starting vcs inline pass...

Figure	2	‐	Multiple	top‐level	modules	‐	tb1	and	bindfiles	

If	I	want	to	run	without	assertions,	I	can	simply	call	the	run1.f	command	file	to	run	the	simulation.	

Having	a	separate	bindfiles	module	allows	different	design	and	verification	teams	to	put	multiple	
bind	 commands	 in	 this	bindfiles	 module	 without	 touching	 the	 RTL	 design	 or	 testbench.	 Any	
Makefile	 that	 is	 controlling	 simulation	 and	 synthesis	 will	 completely	 ignore	 the	 bindfiles	
module.	

It	should	also	be	noted	that	the	bindfiles	module	requires	no	additional	signal	declarations.	This	
makes	using	the	bindfiles	approach	very	easy	to	do.	The	signal	declarations	must	exist	 in	the	file	
that	is	being	bound	to	because	the	bind	is	an	indirect	instantiation	into	that	file,	but	since	the	bind	
is	to	another	file	and	not	the	bindfiles	module,	the	signal	declarations	do	not	and	should	not	be	
declared	in	the	bindfiles	module.	

4.3.2 Bind	to	specific	DUT	instance	with	or	without	using	the	module	name	

Recommendation:	Do	not	use	these	styles.	

It	 is	 possible	 to	bind	 to	 a	 specific	 instance	 of	 a	 DUT	 using	 both	 the	module	 name	 and	 instance	
name,	or	to	bind	to	a	specific	locally‐scoped	instance	name	without	referencing	the	module	name	
corresponding	to	the	instance	name.		

It	 is	 generally	 not	wise	 to	 limit	 assertion	 checking	 to	 just	 one	 copy	 of	 a	module	 or	 to	 a	 generic	
instance	name	 in	a	 local	scope	because	a	designer	might	bind	 to	a	working	version	of	a	module	
while	another	instance	of	the	same	module	could	be	failing	elsewhere	in	the	design.	Binding	to	the	
module	name	without	 limiting	to	 just	one	instance	allows	checking	to	proceed	on	all	 instances	of	
the	module.	

Reference	Appendix	3	and	Appendix	4	to	see	how	other	non‐recommended	bind‐styles	work.	

SNUG	2016	
	

Page	11	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

4.4 Bindfiles	for	parameterized	models	

If	 an	 engineer	 is	 unsure	how	 to	use	bindfiles	 especially	when	 the	 engineer	 is	 uncertain	how	 the	
instantiation	will	appear	in	a	bind	command,	I	recommend	following	these	three	steps:	

(1)	Put	the	assertions	directly	into	the	RTL	design	and	figure	out	how	they	would	work	there.	

(2)	Then	move	 the	assertions	 to	a	bindfile	and	instantiate	 the	bindfile	directly	 into	 the	DUT	and	
make	that	work,	as	shown	in	Example	6.	

	
module fifo1 (
 output logic [7:0] dout,
 output logic full, empty,
 input logic write, read,
 clk, rst_n,
 input logic [7:0] din);

 logic [7:0] fifo1mem [0:15];
 logic [3:0] wptr, rptr;
 logic [3:0] cnt;

 ...
 fifo1_assert p1 (.*); // The assertion module could be
 // instantiated here
endmodule

Example	6	‐	fifo1	module	with	assertion	module	directly	instantiated	

	

(3)	Then	remove	the	instantiated	module	and	place	the	instance‐code	into	the	bindfiles.sv	file	
with	the	bind	command.	

These	 steps	 are	 also	 sound	 advice	 when	 considering	 how	 to	 make	 bindfiles	 work	 with	
parameterized	modules	that	might	be	instantiated	multiple	times	with	different	parameters.	

Consider	 the	 overly	 simple	 (but	 easy	 to	 understand)	 definition	 of	 a	 register	 module	 with	 SIZE	
parameter	as	shown	in	Example	7.	

	

	
module register #(SIZE=8) (
 output logic [SIZE-1:0] dout,
 input logic [SIZE-1:0] din,
 input logic clk, rst_n);

 always_ff @(posedge clk or negedge rst_n)
 if (!rst_n) dout = '0;
 else dout = din;
endmodule

Example	7	‐	Parameterized	register	module	

	

If	three	instances	of	this	register	are	placed	into	a	larger	DUT	with	three	different	parameter	values	
as	shown	in	Example	8,	this	might	seem	to	pose	a	problem	for	an	assertion	bindfile.	

SNUG	2016	
	

Page	12	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

	
module DUT (
 output logic [11:0] q,
 input logic [11:0] d,
 input logic clk, rst_n);

 logic [3:0] n1;
 logic [7:0] n0;

 register r1 (.dout(n0), .din(d[11:4]), .*);
 register #(.SIZE(4)) r2 (.dout(n1), .din(d[3:0]), .*);
 register #(.SIZE(12)) r3 (.dout(q), .din({n0,n1}), .*);

endmodule

Example	8	‐	DUT	module	with	three	uniquely	parameterized	register	instances	

In	 reality,	 different	parameter	 values	do	not	pose	 a	problem.	For	 the	DUT	module	of	Example	8,	
what	is	required	is	a	bindfile	that	is	also	parameterized	as	shown	in	Example	9.	

	
`include "assert_macros.sv"

module register_asserts #(SIZE=8) (
 input logic [SIZE-1:0] dout,
 input logic [SIZE-1:0] din,
 input logic clk, rst_n);

 ERR_dout_value_does_not_follow_din:
 `assert_clk_xrst ($changed(din) |-> ##1 (dout == $past(din)));

 ERR_dout_did_not_reset:
 `assert_clk (!rst_n |-> (dout == '0));
endmodule

Example	9	‐	Parameterized	register_asserts	module	

This	assertion	module	is	rather	contrived	because	it	typically	is	not	worthwhile	to	check	a	register	
to	 ensure	 that	 inputs	were	 transferred	 to	 the	 outputs	 on	 a	 clock	 edge,	 but	 this	 overall	 example	
demonstrates	the	point	that	assertion	files	can	be	parameterized	the	same	as	any	other	module.	

4.5 Bindfiles	with	.*	port	connections	

As	mentioned	earlier,	a	properly	coded	asserts	file	can	be	very	easily	connected	to	the	DUT	using	
SystemVerilog's	.*	connections.		

Unfortunately,	 SystemVerilog	does	not	 allow	.*	 parameter	matching	 so	parameters	must	 still	 be	
passed	 by	 name.	 Allowing	 .*	 parameter	 matching	 would	 be	 a	 welcome	 enhancement	 to	
SystemVerilog.	

4.6 No	bindfile	nesting	

From	the	IEEE	Std	1800‐2012:	

"It	 shall	 be	 an	 error	 for	 a	 bind	 statement	 to	 bind	 a	 bind_instantiation	 underneath	 the	 scope	 of	
another	bind_instantiation."	

What	 this	means	 is	 that	 if	 you	 bind	 a	 file	 to	 one	module	 and	 then	 bind	 that	module	 to	 another	

SNUG	2016	
	

Page	13	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

module,	 you	 have	 created	 a	 nested	 bindfile,	 which	 is	 illegal	 per	 the	 IEEE	 Std	 1800‐2012.	 That	
having	been	said,	I	have	successfully	nested	bindfiles	using	multiple	tools,	including	VCS,	without	
any	 reported	 errors.	As	 I	 have	discussed	 this	 inconsistency	with	EDA	vendors,	 the	 vendors	have	
emphasized	that	nested	binding	is	technically	illegal	and	may	not	be	supported	in	future	versions	of	
their	EDA	tools.		

In	 short,	 because	 nested	 binding	 is	 illegal	 per	 the	 IEEE	 Std	 1800‐2012,	 vendors	 can	 remove	 the	
nested	bindfile	 capability	 at	 any	 time,	 so	 it	 is	 advised	 to	 avoid	 using	 nested	bindfiles	 even	 if	 it	
appears	to	work.	

5. Inline	assertion	code	
SystemVerilog	 allows	 SVA	 to	 be	 added	 directly	 to	 the	 RTL	 code	 and	 one	 of	 the	 first	 books	 on	
Assertion	Based	Design	by	Harry	Foster,	Adam	Krolnik	and	David	Lacey	[2],	did	indeed	recommend	
that	assertions	be	added	directly	to	the	RTL	code	and	to	place	the	assertions	near	to	the	RTL	that	
the	assertions	were	intended	to	check.			

Other	authors	 in	 recent	years	have	similarly	 recommended	adding	assertions	directly	 to	 the	RTL	
code.		

While	 doing	 the	 ABV	 seminars	 in	 2010,	 I	 noticed	 that	 Harry	 Foster	 was	 telling	 the	 seminar	
attendees	to	NOT	put	the	assertions	 into	their	RTL	designs.	At	one	of	the	seminars	I	asked	Harry	
why	 he	 was	 contradicting	 recommendations	 from	 his	 own	 book.	 Harry	 mentioned	 two	
developments	 in	 recent	 years	 that	 had	 caused	 him	 to	 change	 the	 book	 recommendation:	 (1)	
engineers	 fighting	 with	 tools	 that	 did	 not	 support	 SVA,	 and	 (2)	 engineering	 teams	 that	 use	
Makefiles	to	control	large	simulations	and	large	synthesis	runs.	Both	are	explained	below.	

I	will	also	detail	a	third	problem	that	an	engineer	experiences	when	adding	assertions	close	to	the	
RTL	code.	In	practice,	adding	assertions	close	to	the	RTL	code	that	they	are	intended	to	test	is	easier	
said	than	done.	

5.1 Frontend	tool	SVA	support	

In	theory,	simulators	and	formal	checking	tools	should	read	and	support	SVA,	and	on	whole	most	of	
these	tools	do	support	SVA.	Most	other	tools	should	quietly	ignore	any	SVA	constructs	in	the	RTL	
code,	but	that	is	not	universally	true.	

At	 DVCon	 2015,	 my	 colleague,	 Stuart	 Sutherland,	 accurately	 showed	 a	 table	 that	 listed	 three	
different	 vendors	 (anonymously	 listed	 to	 protect	 the	 guilty!)	 and	 which	 vendor	 tools	 properly	
supported	 SVA	 capabilities.	 Although	 there	 was	 broad	 support	 for	 SVA	 capabilities,	 most	 of	 the	
tools	had	troubles	with	the	checker	statement	and	some	had	troubles	with	the	let	statement,	two	
capabilities	added	to	SystemVerilog	2009.		

At	 SNUG‐SV	 2015[9],	 Stu	 Sutherland,	 also	 showed	 a	 table	 that	 listed	 SVA	 support	 by	 VCS	 (v.	
2014.12),	Design	Compiler	(v.2014.09‐SP5)	and	Synplify‐Pro	(v.2014.09‐SP2),	again	showing	there	
was	 broad	 support	 for	 SVA	 capabilities,	 but	 that	 the	 tools	 still	 had	 support	 deficiencies	 in	 a	 few	
areas.	

If	engineers	add	SVA	checking	through	a	bindfile,	all	of	 these	support	 issues	generally	disappear.	
The	RTL,	without	SVA,	is	pristine	SystemVerilog	code	and	there	are	no	stray	SVA	keywords	to	cause	
a	 synthesis	 tool,	 or	 any	 other	 front‐end	 tool	 to	 abort	with	 errors.	 There	 could	 still	 be	 simulator	
support	issues	that	are	not	covered	by	using	a	bindfile.	

The	point	is	bindfiles	remove	all	of	the	non‐simulation	support	issues	related	to	the	RTL	design.	

SNUG	2016	
	

Page	14	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

5.2 Makefiles	

Perhaps	the	biggest	reason	to	avoid	adding	SVA	directly	to	the	RTL	code	is	Makefiles.	

Harry	 Foster	 and	 I	 heard	 from	 large	 companies	 that	 large	 projects	 often	 control	 simulation	 and	
synthesis	runs	through	the	use	of	Makefiles.	Engineering	teams	put	the	RTL	code	under	revision	
control	 and	 an	 engineer	might	 checkout	 the	 design	 and	 execute	 the	Makefile	 for	 simulation	 or	
synthesis.	 If	 there	have	been	no	design	changes,	no	simulation	will	be	run	and	no	synthesis	 tools	
will	be	called	to	re‐synthesize	the	design.	The	Makefile	ensures	that	the	most	current	design	has	
been	simulated	and	synthesized	without	tying	up	expensive	simulation	or	synthesis	licenses	when	
unnecessary.	

The	 problem	 that	 exists	with	 projects	 that	 allow	engineers	 to	 add	 assertions	 directly	 to	 the	RTL	
code	is	that	any	time	an	engineer	adds	a	new	assertion	to	one	of	the	RTL	files,	the	timestamp	on	the	
file	 is	 updated	 and	 calling	 the	 Makefile	 for	 either	 simulation	 or	 synthesis	 can	 cause	 a	 lengthy	
simulation	or	synthesis	run	to	start	even	though	there	were	no	changes	to	the	actual	design.	This	
could	unnecessarily	tie	up	tool	licenses	for	hours.	

There	are	some	companies	that	allow	their	engineers	to	add	inline	assertions	to	the	RTL	until	the	
design	is	put	under	Makefile	control.	After	that,	engineers	are	then	encouraged	to	put	remaining	
assertions	into	a	bindfile.	Yet	other	companies	allow	the	bindfile	assertions	to	be	transferred	into	
the	RTL	design	when	there	is	an	actual	design	change,	but	managing	that	scenario	can	prove	tricky.		

The	 bindfile	 eliminates	 this	 potential	 problem.	 The	 bindfile	 is	 not	 tested	 by	 the	 Makefile	 to	
initiate	long	regression	simulations,	nor	is	it	tested	by	Makefiles	for	synthesis	execution.	This	is	a	
simple	solution	to	the	Makefile	problem	and	the	reason	that	many	large	companies	have	moved	
all	assertion	code	to	a	separate	bindfile.	

5.3 Visibility	of	SVA	in	bindfiles	

One	justification	sometimes	mentioned	for	not	using	bindfiles	is	that	it	distances	the	SVA	code	from	
the	 RTL	 code	 and	 that	 separation	 makes	 it	 hard	 to	 do	 cross‐reference	 debugging	 between	 the	
design	and	assertion	code.	My	experience	has	been	just	the	opposite	of	this	situation.		

It	has	been	assumed	that	placing	an	assertion	next	to	the	RTL	that	it	is	intended	to	check	makes	it	
easier	to	see	and	debug.	It	has	also	been	claimed	that	adding	immediate	assertions	to	the	RTL	also	
makes	the	assertion	easier	to	use	for	debugging.	In	practice	I	have	not	found	either	of	these	claims	
to	be	true.		

Consider	the	buggy	fifo1	code	show	below.	This	is	a	screen	shot	from	my	laptop	of	a	large	portion	
of	the	fifo1	code	that	I	use	in	a	training	lab.	

	 	 	 	 	 	

SNUG	2016	
	

Page	15	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

	
Figure	3	‐	fifo1	module	always_ff	code	

As	 is	 true	with	many	RTL	designs,	 it	 is	 common	 to	 find	 large	always	 processes	 in	 the	DUT	with	
multiple	lines	of	code.	

Trying	 to	 place	 multiple	 concurrent	 assertions	 related	 to	 this	 fifo1	 close	 to	 the	 code	 that	 the	
assertions	should	check	 is	not	an	easy	 task.	Concurrent	assertions	cannot	be	placed	inside	of	 the	
process	so	some	of	the	assertions	would	be	placed	before	the	process,	as	shown	in	Figure	4.	

	 	

SNUG	2016	
	

Page	16	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

	
Figure	4	‐	fifo1	module	with	assertions	embedded	above	the	always_ff	code	

Yet	other	assertions	would	be	placed	after	the	always	process	as	shown	in	Figure	5.	

SNUG	2016	
	

Page	17	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

	
Figure	5	‐	fifo1	module	with	assertions	embedded	below	the	always_ff	code	

Although	an	engineer	can	add	 inline	embedded	concurrent	assertions	(an	enhancement	added	to	
SystemVerilog	2009[7])	and	 immediate	 assertions,	 both	would	 further	 expand	 the	 large	block	of	
code	to	spread	the	code	over	multiple	screens.		

It	 should	also	be	noted	 that	my	experience	has	shown	 that	assertions	often	are	not	easily	placed	
next	to	all	of	the	pertinent	procedural	code	in	the	design.	Assertions	frequently	test	the	interaction	
of	code	from	different	blocks	in	the	RTL	design,	and	often	the	designer	has	to	page	up	and	down	
between	different	pages	of	code	to	examine	part	of	the	RTL	design	and	the	assertion	that	interacts	
with	that	part	of	the	design.	

On	the	other	hand,	my	experience	has	shown	that	engineers	typically	now	work	with	wide‐screen	
laptops	or	a	laptop	and	second	screen,	or	both.	Below	is	a	screen	shot	from	my	laptop	where	I	am	
working	with	the	bindfile	assertions	in	one	screen	and	the	DUT	code	in	the	second	screen.	

SNUG	2016	
	

Page	18	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

	
Figure	6	‐	assertions	in	separate	file	‐	side‐by‐side	windows	to	help	debug	the	DUT	

With	 this	 very	 common	wide‐screen	 setup,	 I	 can	 easily	 place	 one	 or	more	 assertions	 in	my	 left‐
screen	and	scroll	through	my	RTL	code	on	the	right	screen,	which	is	now	more	concise	and	fits	on	
fewer	pages.	If	an	assertion	relies	on	interactions	between	multiple	procedural	blocks	in	different	
sections	of	my	RTL	code,	I	can	keep	the	applicable	assertion	visible	in	the	left	screen	while	tracing	
through	 different	 blocks	 of	 RTL	 code	 in	 the	 right	 screen.	 I	 find	 this	 type	 of	 RTL	debugging	with	
assertions	to	be	much	easier	to	handle	than	placing	an	assertion	next	to	part	of	the	RTL	design	and	
paging	 to	 the	 next	 part	 of	 my	 RTL	 design	 where	 the	 assertion	 is	 no	 longer	 visible.	 From	 my	
experience,	I	have	found	that	debugging	is	much	easier	to	do	when	I	can	keep	my	assertions	visible	
in	an	adjoining	terminal.	

While	conducting	SVA	training,	I	have	similarly	found	that	my	students	can	debug	the	fifo1	design	
quicker	if	they	keep	the	assertions	visible	in	one	of	the	terminal	windows.	

5.4 Bindfile	disadvantages	

There	are	a	couple	of	disadvantages	to	using	bindfiles:	

(1)	 The	 bindfile	 code	 is	 not	 visible	 when	 the	 dutfile	 is	 viewed.	 Since	 assertions	 document	 the	
correct	 behavior	 of	 the	 DUT,	 placing	 assertions	 in	 a	 separate	 bindfile	 moves	 useful	 DUT	
documentation	to	a	separate	file.	This	is	why	many	engineers	prefer	to	add	the	assertions	directly	
to	the	DUT	code.	

(2)	 bindfiles	 can	 slow	 simulation	 performance.	 A	 separate	 bindfile	 can	 require	 the	 simulation	
compiler	to	keep	bound	signals	visible,	by	contrast	removing	the	bindfile	might	allow	a	simulation	
compiler	to	remove	some	internal	signal	details	that	are	unnecessary	for	optimized	simulation.	 If	
improving	simulation	performance	during	a	 regression	 run	 is	desired,	 engineers	 can	use	 the	 two	
different	 run.f	 files	 shown	 in	 Example	 4	 and	 Example	 5	 to	 run	 with	 or	 without	 the	 bound	
assertions.	The	tradeoff	is	that	a	long	regression	simulation	executed	without	the	assertions	could	
fail	and	 the	absence	of	 the	assertions	would	either	make	bug	identification	harder	or	require	 the	
long	simulation	to	be	repeated	with	the	bindfile.	

SNUG	2016	
	

Page	19	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

6. Assertion	labels	for	debugging	
Guideline	#5:	Add	descriptive	labels	to	your	assertion	code.		

Guideline	 #6:	 In	 general,	 do	 not	 use	 $error(...)	 or	 $display(...)	 messages	 in	 assertion	
action	blocks.		

Use	long,	descriptive	labels	to:	

 Document	the	assertions	
 Accelerate	debugging	using	waveform	displays	

Adding	 labels	 to	 assertions	 is	 optional	 but	highly	 recommended	 to	 accelerate	 assertion	 and	DUT	
debugging.	The	 labels	help	debug	much	better	than	using	assertion	action‐block	$error(...)	or	
$display(...)	commands.	How	is	this	possible?	

First	note	that	there	is	nothing	in	the	IEEE	Std	1800‐2012	that	describes	how	a	vendor	must	display	
useful	assertion	details	when	assertion	error	messages	are	displayed,	but	most	vendors	will	include	
the	 assertion	 label	 in	 displayed	 assertion	 failure	 messages.	 Now	 let's	 look	 at	 how	 VCS	 handles	
assertion	error	messages	(most	EDA	tools	show	similar	assertion	error	information).	

Using	 assertion	 action‐block	 $error(...)	 or	 $display(...)	 commands	 will	 cause	 the	 error	
messages	to	be	displayed	in	the	simulation	transcript	window,	but	those	errors	do	not	show	up	in	
waveform	displays.	Engineers	will	need	to	read	the	transcript	error	and	timing	messages	to	figure	
out	where	to	look	in	the	waveform	display.	

Conversely,	adding	descriptive	 labels	 to	 the	assertions	causes	 those	 labels	 to	be	displayed	by	 the	
default	assertion	error	messages	in	the	simulation	transcript	window	AND	they	also	show	up	in	the	
waveform	display	with	the	assertion	label	visible	as	shown	in	Figure	7.	

	

	
Figure	7	‐	Assertion	labels	displayed	in	the	waveform	display	(before	expanding	the	Name	pane)	

	

SNUG	2016	
	

Page	20	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

Note	that	in	Figure	7,	the	label	names	are	truncated	by	the	size	of	the	Name	window	pane.	This	is	
typical	when	the	assertions	are	first	added	to	the	waveform	window.	The	next	step	is	to	grow	the	
Name	pane	so	that	we	can	see	the	full	assertion	label	names.	

There	are	two	ways	to	grow	the	Name	pane	‐	the	annoying‐beginner	way	or	the	easy‐expert	way.	

The	annoying‐beginner	way	is	to	grab	the	edge	of	the	Name	pane	and	to	drag	it	just	a	little	to	the	
right,	and	drag	 it	a	bit	more,	and	a	bit	more,	and	a	bit	more	 ...	etc	 ...	until	all	 the	 label	names	are	
finally	visible.	Very	annoying!!	

The	easy‐expert	way	 is	 to	grab	the	edge	of	the	Name	pane	and	to	drag	it	almost	over	to	the	right	
side	of	the	waveform	window,	exposing	the	full	label	names,	then	drag	it	back	to	the	trailing	edge	of	
the	label	names.	Two	moves	and	you	are	ready	to	debug!!	Please	don't	be	annoying!	

In	 Figure	 8	 the	 label	 names	 have	 now	 been	 exposed	 and	 we	 are	 ready	 to	 view	 the	 simulation	
waveforms	and	assertions	to	help	debug	the	RTL	design.	

Guideline	#7:	Use	label	names	that	start	with	"ERR"	or	"ERROR"	and	then	include	a	short	sentence	
to	describe	what	is	wrong	if	that	assertion	is	failing.	

This	 label	technique	helps	describe	a	potential	problem,	making	 it	easier	to	debug	in	a	waveform	
display,	 plus	 this	 same	 label	 will	 be	 reported	 in	 the	 simulation	 transcript	 window	 when	 the	
assertion	 fails.	 This	 label	 is	 basically	 an	 active	 design	 comment	 and	 removes	 the	 need	 to	 add	 so	
many	comments	to	the	RTL	code.	

	
Figure	8	‐	Assertion	labels	displayed	in	the	waveform	display	(after	expanding	the	Name	pane)	

The	first	label	name	visible	in	Figure	8	is:	
ERR_FIFO_RESET_SHOULD_CAUSE_EMPTY1_FULL0_RPTR0_WPTR0_CNT0:

And	notice	that	there	is	an	assertion	failure	at	time	50	(red	down‐pointing	arrow).		

The	next	step	in	the	waveform	display	is	to	expand	the	failing	assertion	by	selecting	the	[+]!	to	the	
left	of	the	failing	assertion.	In	DVE,	selecting	the	[+]!	symbol	will	expand	the	assertion	so	that	all	of	
the	 signals	 that	 were	 used	 in	 that	 assertion	 will	 be	 visible	 under	 the	 assertion	 name.	 This	 is	

SNUG	2016	
	

Page	21	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

extremely	 useful.	 This	 means	 the	 engineer	 does	 not	 have	 to	 hunt	 for	 the	 signals	 used	 in	 this	
assertion	 and	drag	 them	down	 to	 the	assertion	 label	name	before	debugging.	A	descriptive	 label	
name	and	access	to	all	of	the	assertion	signals	means	that	debugging	will	be	much	easier	to	do	with	
these	assertions.	

In	Figure	9	the	failing	assertion	has	been	expanded.	Based	on	the	assertion	label	name,	we	would	
expect	reset	to	cause	the	listed	signals	to	be	assigned	the	following	values:	

	
rst_n = asserted
empty = 1
full = 0
rptr = 0
wptr = 0
cnt = 0

But	 from	 the	 waveform	 display	 in	 Figure	 9,	 we	 see	 that	 the	 rptr	 is	 unknown	 (X).	 	 A	 quick	
examination	of	the	fifo1	code	will	show	that	rptr	was	not	included	in	the	reset	operation	and	is	
therefore	uninitialized.	

	
Figure	9	‐	Assertion	label	expanded	to	show	all	signals	tested	by	the	assertion	

Long	 descriptive	 labels	 in	 the	 waveform	 display	 will	 certainly	 accelerate	 design	 debug	 using	
assertions.	See	Appendix	2	for	editor	macros	that	automatically	change	sentences	to	labels.	

7. Concurrent	assertions	‐vs‐	immediate	assertions	
Guideline	#8:	Use	concurrent	assertions	and	avoid	using	immediate	assertions.		

All	of	the	examples	in	the	paper	up	to	this	point	use	concurrent	assertions.	

Concurrent	assertions	sample	all	of	the	important	signals	only	once	per	cycle	at	the	end	of	the	cycle,	
just	before	the	signals	change	on	the	next	clock	edge,	much	like	actual	hardware	registers	sample	
the	signals	after	they	have	settled	at	the	end	of	the	previous	cycle.	As	with	real	hardware	registers,	

SNUG	2016	
	

Page	22	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

we	 typically	 do	 not	 care	 about	 combinational	 settling	 or	 glitching	 during	 the	 cycle,	we	 just	 care	
what	the	final	values	are	at	the	end	of	the	cycle.	

Immediate	 assertions	 sample	 signals	 on	demand	when	called.	 Immediate	assertions	 can	be	quite	
useful	 to	 test	 asynchronous	 control	 signals	 such	 as	 reset,	 preset	 and	 latch	 enables.	 If	 any	
asynchronous	control	 signals	glitch	 they	can	 indeed	cause	 immediate	changes	 that	might	 require	
immediate	evaluation.	

This	is	 the	reason	for	the	Guideline	#8	at	 the	beginning	of	this	section.	~95%+	of	signals	can	be	
sampled	at	the	end	of	a	cycle	and	properly	evaluated	while	perhaps	only	~5%	of	the	asynchronous	
control	signals	need	to	be	sampled	and	evaluated	immediately.	This	best	describes	my	own	usage	
ratio	of	concurrent	and	immediate	assertions.	

Remember	that	immediate	assertions	use	the	keyword	assert	and	are	placed	in	procedural	code	
and	 executed	 as	 a	 procedural	 statement.	 They	 do	 not	 wait	 until	 the	 end	 of	 a	 sample	 cycle	 like	
concurrent	assertions.	

Consider	 the	 assertion	 example	 shown	with	 potential	 combinational	 logic‐settling	 race	 condition	
shown	in	Example	10.	

	
logic S1, S2, S3, S4; // 1-bit variables to represent different states

always_comb begin // triggers on changes to each state bit
 assert ($onehot({S1,S2,S3,S4}) else $error("state bits not one-hot");
 case (1’b1)
 S1: ... // do stuff for state 1
 S2: ... // do stuff for state 2
 S3: ... // do stuff for state 3
 S4: ... // do stuff for state 4
 endcase
end

Example	10	‐	Immediate	assertion	‐	assert	$onehot(...)	FSM	example	with	potential	race	condition	

In	Example	10,	there	is	a	potential	race	condition	if	the	RTL	code	triggers	multiple	times	allowing	
multiple	onehot	bits	to	be	set	momentarily	before	settling	to	the	correct	onehot	next	state	value.		

A	potential	solution	to	the	problem	is	to	use	the	final	keyword	added	to	the	assert	statement	as	
shown	in	Figure	10.	

	
assert final ($onehot({S1,S2,S3,S4}) else $error("state bits not one-hot");

Figure	10	‐	Immediate	assertion	‐	assert	final	$onehot(...)	FSM	example	to	correct	race	condition	

Although	this	approach	is	valid	and	reasonable,	the	use	of	the	final	keyword	still	might	report	a	
false‐error	 if	unit	delays	are	added	 to	 the	RTL	code	during	simulation.	Running	simulations	with	
unit	delays	on	a	design	with	immediate	assertions	should	not	be	done.		

For	 designs	 like	 the	 one	 shown	 in	 Example	 10,	 it	 is	 generally	 best	 to	 avoid	 any	 combinational	
settling	 issues	 and	 any	 potential	 race	 hazards	 by	 testing	 the	 same	 condition	 using	 a	 concurrent	
assertion	from	a	bindfile	as	shown	in	Figure	11.	

	
ERR_state_is_not_onehot: `assert_clk($onehot({S1, S2, S3, S4}));

Figure	11	‐	Concurrent	assertion	‐	`assert_clk($onehot(...))	FSM	example	

SNUG	2016	
	

Page	23	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

Another	common	and	useful	example	is	an	immediate	assertion	used	to	trap	illegal	reset	conditions	
as	shown	in	Example	11.		

	 	
// Assume the rst_n control line is never an X or Z
always_ff @(posedge clock or negedge rst_n) begin
 assert (!$isunknown(rst_n)) else $error("unknown value on rst_n");
 if (!rst_n) q <= 0;
 else q <= d;
end

Example	11	‐	Flip‐flop	with	asynchronous	reset	and	inline	immediate	assertion	

This	style	does	indeed	work	under	most	conditions,	but	if	there	are	hundreds	of	these	registers	in	a	
design,	any	reset	signal	that	goes	unknown	will	execute	hundreds	of	these	error	messages.	Sending	
hundreds	 of	 error	 messages	 to	 the	 terminal	 can	 both	 slow	 down	 simulation	 performance	 and	
introduce	 a	 huge	 annoyance	when	hundreds	 of	 error	messages	 are	 basically	 reporting	 the	 same	
problem.		

One	 other	 problem	 with	 this	 immediate	 assertion	 example	 is	 that	 although	 it	 catches	 rst_n	
transitions	from	1-to-X/Z,	it	will	not	catch	reset	transitions	from	0-to-X/Z-to-1	(rising	edge	on	
rst_n)	that	occur	all	within	the	same	cycle.	

A	bindfile	cannot	insert	immediate	assertions	into	the	middle	of	a	procedural	block,	but	a	bindfile	
can	include	immediate	assertions	to	check	asynchronous	control	signals	when	necessary.		

Instead	 of	 adding	 the	 immediate	 assert	 to	 do	 reset	 checking	 in	 every	 RTL	 register,	 put	 an	
immediate	assert	into	an	always	process	in	a	bindfile	as	shown	in	Example	12.	

module DUT_asserts (
 // input declarations, including reset
);

 always @* begin
 assert(!$isunknown(rst_n))
 else begin
 $error("ERR_reset_went_unknown");
 repeat(2) @(posedge clk);
 $finish;
 end
 end
...
endmodule

Example	12	‐	DUT_asserts	module	with	immediate	assertion	to	check	reset	and	$error	reporting	

	
Adding	the	immediate	assert	command	to	the	bindfile	offers	three	visible	advantages	over	putting	
the	immediate	assert	command	into	the	DUT	model	itself:	

 The	assert	can	be	checked	once	and	issue	just	one	error	message.	
 The	 always	 @*	 trigger	 will	 also	 catch	 the	 0-to-X/Z-to-1	 transitions	 missed	 by	 the	

immediate	assert	of	Example	11.	
 The	always	process	can	be	setup	to	trigger	an	immediate	assert	error	message	and	then	

wait	for	2	more	clock	cycles	before	aborting	the	simulation	with	the	$finish	command,	as	
shown	in	Example	12.	

SNUG	2016	
	

Page	24	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

Figure	12	‐	Immediate	assertion	DVE	display	without	label	name	(Note:	unnamed$$_1)

Allowing	 the	 assert	 to	 issue	 a	message	 and	 then	wait	 for	 two	 clock	 cycles	 typically	makes	 the	
waveform	display	 easier	 to	 read.	Many	waveform	viewers	might	have	 a	display‐update	 race	 that	
would	terminate	the	simulation	before	capturing	the	final	signals	that	caused	the	assertion	to	fail.	
The	waveform	display	in	Figure	12	shows	the	failing	assertion	just	before	the	end	of	the	simulation.	

One	problem	with	the	immediate	assert	command	in	Example	12	is	that	it	has	a	$error	message	
but	 no	 assertion	 label.	 In	 the	 absence	 of	 a	 label,	 DVE	 has	 assigned	 a	 default	 identifier	 of	
unnamed$$_1	 to	the	immediate	assertion	in	the	waveform	window.	If	there	were	dozens	of	these	
immediate	assert	commands	in	use,	the	waveform	window	would	be	difficult	to	use.	

Just	as	we	did	with	concurrent	assertions,	the	immediate	assert	command	can	remove	the	$error	
message	and	prepend	the	assert	keyword	with	an	assertion	label	as	shown	in	Example	13.	

module DUT_asserts (
 // input declarations, including reset
);

 always @* begin
 ERR_reset_went_unknown:
 assert(!$isunknown(rst_n))
 else begin
 repeat(2) @(posedge clk);
 $finish;
 end
 end
...
endmodule

Example	13	‐	DUT_asserts	module	with	immediate	assertion	to	check	reset	and	default	ERR_label	reporting	

SNUG	2016	
	

Page	25	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

	
Figure	13	‐	Immediate	assertion	DVE	display	with	label	name	(ERR_reset_went_unknown)	

Adding	 the	 descriptive	 label	 to	 the	 immediate	 assert	 command	 in	 Example	 13	 causes	 DVE	 to	
display	 the	 label	 name	 in	 the	 waveform	 window	 as	 shown	 in	 Figure	 13,	 just	 like	 it	 does	 with	
concurrent	 assertions.	 The	 immediate	 assert	 with	 descriptive	 label	 in	 the	 waveform	 window	
again	simplifies	the	debugging	task.	The	fact	that	the	code	of	Example	13	was	added	to	a	bindfile	
and	waited	two	clock	cycles	after	the	immediate	assert	failed,	also	allowed	the	waveform	display	
to	 shown	 some	 useful	 information	 before	 aborting	 the	 simulation.	 This	 could	 simplify	 the	
debugging	task.		

To	 summarize	 this	 section,	 immediate	 assertions	 are	 very	 useful	 to	 test	 asynchronous	 control	
signals	 such	as	asynchronous	 reset,	 asynchronous	set,	and	 latch	enables.	 If	 asynchronous	control	
signals	 glitch	 in	 the	 middle	 of	 a	 clock	 cycle,	 they	 can	 cause	 unexpected	 behavior	 in	 the	 RTL	
simulation	and	detecting	those	glitches	is	most	easily	accomplished	using	immediate	assertions.		

When	 should	 engineers	use	 concurrent	 assertions?	Concurrent	 assertions	 should	 be	 used	 to	 test	
cycle	 based	 synchronous	 activity	 including	 combinational	 logic	 that	may	 be	 harmlessly	 glitching	
and	settling	between	clock	cycles.	In	general	engineers	do	not	care	if	combinational	logic	is	glitching	
as	 long	as	 it	settles	to	a	valid	and	stable	value	 in	time	to	meet	the	setup	time	of	the	next	register	
inputs.	

Immediate	 assertions	 are	 sometimes	 used	 to	 test	 the	 success	 of	 $cast	 and	 the	 class‐based	
randomize()	 method.	 Very	 large	 companies	 have	 shared	 with	 Harry	 Foster	 and	 I	 that	 they	 no	
longer	use	immediate	assertions	for	these	activities.	I	believe	that	Harry	and	I	generally	agree	with	
these	large	companies;	hence,	the	following	additional	immediate	assertion	guideline:	

Guideline:	 Do	 not	 use	 immediate	 assertions	 to	 do	 assert($cast	 ...)	 or	
assert(class_variable1.randomize())	 success	 checking.	 These	 assertions	 are	 too	 easily	
disabled	 from	 the	 command	 line	 or	 from	 unseen	 code	 that	 disables	 all	 assertions	 with	
$assert_off.	To	test	$cast	and	$randomize	statements,	 it	is	better	to	use	if‐tests	as	shown	in	
Figure	14.	 	

SNUG	2016	
	

Page	26	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

if (!$cast ...) $error("Cast operation failed ...");
if (!class_variable.randomize())$error("Randomization failed ...");

Figure	14	‐	If‐statement	"assertion"	testing	of	$cast	and	randomize()	functions	

8. Simple	assertion	macros	
Guideline	#9:	Use	macros	to	reduce	SVA	coding	efforts.		

For	many	years	I	have	documented	what	I	call:	

The	SVA	"circle	of	life"	(also	known	as	The	disillusioned	Design	Engineer	cycle!!).	

The	SVA	"circle	of	life"	consists	of	the	following	steps:	 	

 Engineers	get	excited	about	SVA	capabilities	
 Engineers	take	SVA	training	
 Engineers	start	to	use	SVA	
 Engineers	find	SVA	to	be	too	verbose	
 Engineers	abandon	SVA	!!	

Figure	15	‐	The	SVA	"circle	of	life"	

Over	the	years,	I	have	noted	the	following	issues	that	have	contributed	to	the	abandoning	
of	SVA	usage	by	designers.	

 There	is	a	lot	of	SVA	syntax	to	learn	and	remember.	
 SVA	 syntax	 can	 be	 very	 verbose.	 The	 syntax	 often	 requires	 three	 or	more	 (many	

more)	 lines	 of	 code	 to	 test	 one	 simple	 design	 feature	 (X	 lines	 of	 code	 to	 test	 one	
simple	feature).	

 SVA	 coding	 styles	 are	 very	 susceptible	 to	 syntax	 errors	 and	 typos	 (engineers	
complain	that	they	are	"spending	too	much	time	debugging	assertions!")	

 Assertions	are	sometimes	hard	to	debug.	
 Some	frontend	tools	do	not	support	some	assertion	keywords	and	abort.	

Figure	16	‐	Reasons	engineers	abandon	SVA	

If	you	want	design	engineers	to	use	assertions,	I	claim	the	assertion	coding	style	has	to	be	
simple	and	it	has	to	be	concise.	In	2009	I	authored	a	paper	that	showed	concise	macros	that	
could	be	used	to	reduce	assertion	coding	errors	significantly	and	reduce	assertion	coding	
verbosity	by	40%‐80%	over	conventional	assertion	coding	styles	[3].	Some	colleagues	have	
mentioned	that	they	do	not	use	the	macros	because	they	are	not	powerful	enough,	and	my	
colleagues	are	correct,	but	I	have	found	that	the	concise	and	simple	nature	of	the	macros	is	
very	attractive	 to	most	design	engineers.	 If	 the	macros	are	not	powerful	enough	 to	write	
the	assertions	that	you	want	it	may	be	that	you	are	writing	assertions	that	are	typically	too	
complex	for	many	designers.	

When	I	show	these	macros	to	designers	who	have	been	trained,	used	and	abandoned	SVA,	
the	overwhelming	majority	re‐embrace	SVA	adoption	by	using	the	simple	macros.	

In	recent	years	I	have	slightly	modified	the	macro	names	and	content	from	the	macros	that	
I	showed	in	the	2009	paper.	Section	8.1	documents	the	macro	definitions	that	I	now	use.	

SNUG	2016	
	

Page	27	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

8.1 Sunburst	Design	SVA	macro	definitions	

I	keep	the	following	macro	definitions	in	a	file	called	assert_macros.sv.	

	
`ifndef ASSERT_MACROS
`define ASSERT_MACROS

`define assert_clk_xrst(arg) \
 assert property (@(posedge clk) disable iff (!rst_n) arg);

`define assert_clk(arg) \
 assert property (@(posedge clk) arg);

`endif

Example	14	‐	assert_macros.sv	file	 	

The	first	two	lines	of	code	in	this	file	are	a	common	trick	used	by	software	engineers	to	ensure	that	
only	one	copy	of	the	assertion	macros	file	is	read.	

The	 first	 macro,	 assert_clk_xrst(arg),	 has	 all	 of	 the	 necessary	 code	 to	 properly	 add	 a	
concurrent	assertion	 to	a	bindfile.	The	 "	_xrst	 "	portion	of	 the	macro	 indicates	 that	assertion	 is	
checked	on	each	clock	edge,	"except	when	reset	is	asserted"	(disable iff (!rst_n)).	 	 	

The	second	macro,	assert_clk(arg),	has	all	of	the	necessary	code	to	properly	add	a	concurrent	
assertion	to	a	bindfile	and	is	not	disabled	for	any	condition,	not	even	reset.	

Not	 only	 do	 these	 macros	 reduce	 assertion	 coding	 effort,	 a	 major	 complaint	 by	 most	 design	
engineers,	but	they	also	reduce	assertion	syntax	errors.	

One	of	the	most	common	syntax	errors	encountered	by	most	new	SVA	users	is	the	correct	number	
and	balancing	of	parentheses.	

Consider	the	following	assertion	example	without	using	a	macro:	

	
ERR_FIFO1_SHOULD_NOT_BE_EMPTY:
 assert property (@(posedge clk) disable iff (!rst_n) cnt>0 |-> !mt)

Example	15	‐	Properly	coded	concurrent	assertion	‐	verbose	style	

In	this	properly	coded	assertion	example,	there	are	three	open	parens	(((and	three	closed	parens	
))).	 Coding	 the	 same	 example	 using	 the	 first	 macro	 shown	 in	 Example	 14	 would	 be	 done	 as	
follows:	

	
ERR_FIFO1_SHOULD_NOT_BE_EMPTY:
 `assert_clk_xrst(cnt>0 |-> !mt);

Example	16	‐	Properly	coded	concurrent	assertion	‐	macro	style	

Since	 the	 overhead‐code	 has	 been	 captured	 in	 the	 macro,	 the	 macro	 has	 reduced	 the	 required	
number	of	parentheses	in	this	example	to	just	one	set.		
	 	

SNUG	2016	
	

Page	28	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

9. Implications	|‐>		|=>	
Guideline	#10:	Use	|-> ##1	implications	and	not	|=>	implications.		

|->	tests	for	a	valid	consequent	expression	in	the	same	cycle.	 	 	

|=>	tests	for	a	valid	consequent	expression	in	the	next	cycle.	

Implication	 operations	 can	 be	 described	 in	 English	 as,	 "IF	 a	 qualifying	 (antecedent)	 condition	 is	
met,	the	implication	is	that	the	resultant	(consequent)	condition	must	also	be	true	in	the	same	cycle	
(|->),	or	in	the	next	cycle	(|=>),	or	in	n‐cycles	(|-> ##n)."	

These	 similar	but	 slightly	different	 implication	operators	 are	often	confused	or	 switched	by	new	
users	and	their	similar	syntax	often	makes	them	difficult	to	detect.	

At	multiple	DAC	 conferences	many	 years	 ago	 (~2004	and	~2005),	my	 colleague,	 Alan	Hunter	 of	
ARM	shared	that	ARM	engineers	were	not	allowed	to	use	|=>	 	 instead	they	were	required	to	use		
|-> ##1	

Another	respected	colleague,	Harry	Foster,	explained	 to	me	the	history	of	how	|=>	was	added	to	
PSL	and	subsequently	to	SVA.	Harry	explained	that	there	was	one	unidentified	member	of	the	PSL	
committee	who	 complained	 that	 he	 frequently	was	 checking	 consequent	 expressions	 in	 the	 next	
cycle	and	wanted	a	dedicated	shorter	token	to	do	that	type	of	testing;	hence,	the		|=>	operator	was	
born.	This	type	of	operator	is	often	called	"syntactic	sugar."	

In	computer	science,	syntactic	sugar	is	syntax	within	a	programming	language	that	
is	 designed	 to	 make	 things	 easier	 to	 read	 or	 to	 express.	 It	 makes	 the	 language	
"sweeter"	for	human	use:	things	can	be	expressed	more	clearly,	more	concisely,	or	 in	
an	alternative	style	that	some	may	prefer.[10]	

Basically,	|->	 is	a	superset	of	 the	|=>	operator.	The	|=>	operator	 is	completely	unnecessary,	but	
was	added	for	engineers	who	wanted	to	avoid	the	slightly	more	verbose	coding	style:			|-> ##1	

Looking	at	the	implications	with	large	fonts	makes	it	reasonably	easy	to	see	the	different	|=>	and	
|->	implication	operators	as	shown	in	Figure	17.	

	
	 ERR_b_did_not_follow_a: `assert_clk (a |=> b);
 ERR_fifo1_not_full: `assert_clk ((cnt>15) |-> full);

Figure	17	‐	Viewing	implication	operators	with	large	fonts	

Young	engineers	with	mega‐perfect	eyesight	frequently	use	smaller	fonts	and	it	is	somewhat	harder	
to	see	the	difference	between	the	|=>	and	|->	operators	as	shown	in	Figure	18.	

	
 ERR_b_did_not_follow_a: `assert_clk (a |=> b);
 ERR_fifo1_not_full: `assert_clk ((cnt>15) |-> full);

Figure	18	‐	Viewing	implication	operators	with	small		fonts	

When	I	stand	behind	an	engineer	who	uses	a	smaller	font,	I	see	code	that	looks	similar	to	what	is	
shown	in	Figure	19!	The	tiny	fonts	make	it	difficult	to	see	any	implication	operator	usage	errors.	

	
 ERR_b_did_not_follow_a: `assert_clk (a |=> b);
 ERR_fifo1_not_full: `assert_clk ((cnt>15) |-> full);

Figure	19	‐	Viewing	implication	operators	with	small	fonts	from	a	distance	

SNUG	2016	
	

Page	29	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

Before	I	encouraged	engineers	to	only	use	the	overlapping	implication	operator,	my	students	and	I	
would	both	frequently	miss	that	they	were	using	the	wrong	implication	operator	and	the	debugging	
task	was	taking	longer	than	it	should.	

Engineers	must	 be	 taught	 and	 understand	 both	 syntax	 styles	 because	 there	 are	many	 examples	
using	each	style	 in	 conference	papers	and	being	used	 in	 industry,	but	 if	 you	want	 to	make	 fewer	
assertion	 coding	mistakes,	 restrict	 your	 own	 usage	 to	 just	 the	 overlapping	 implication	 operator	
(|->)	and	use	cycle	delays	as	required.	

I	was	aware	of	this	recommendation	for	years	and	have	shown	this	recommendation	frequently	in	
training,	 but	 only	 in	 recent	 years	 have	 I	 made	 this	 as	 a	 strong	 recommendation	 in	my	 training	
classes.	

After	 adding	 this	 strong	 recommendation,	 engineers	 in	 my	 training	 classes	 suddenly	 made	
dramatically	fewer	assertion	coding	mistakes.	I	am	now	a	strong	proponent	of	completely	avoiding	
the	|=>	implication	operator.	

10. Conclusions	
This	paper	has	described	a	number	of	useful	guidelines	 to	 improve	simple	assertion	usage	by	all	
engineers.	A	summary	of	those	guidelines	follows:	

Guideline	#1:	Start	learning	and	using	SVA	after	2‐3	hours	of	lecture	and	1‐3	hours	of	labs.	

Guideline	#2:	bindfiles	‐	use	them!	

Guideline	#3:	Inline	SVA	code	‐	avoid	it!	

Guideline	#4:	Use	the	bind	command	style	that	binds	to	all	DUT	modules,	not	the	bind	style	that	
only	binds	to	specified	instances.	

Guideline	#5:	Add	descriptive	labels	to	your	assertion	code.		

Guideline	 #6:	 In	 general,	 do	 not	 use	 $error(...)	 or	 $display(...)	 messages	 in	 assertion	
action	blocks.		

Using	 long,	 descriptive	 labels	 (a)	 documents	 the	 assertions,	 and	 (b)	 accelerates	 debugging	 using	
waveform	displays.	

Guideline	#7:	Use	label	names	that	start	with	"ERR"	or	"ERROR"	and	then	include	a	short	sentence	
to	describe	what	is	wrong	if	that	assertion	is	failing.	

Guideline	#8:	Use	concurrent	assertions	and	avoid	using	immediate	assertions.		

Guideline	#9:	Use	macros	to	reduce	SVA	coding	efforts.		

Guideline	#10:	Use	|-> ##1	implications	and	not	|=>	implications.		

Following	 these	guidelines	will	simplify	 the	use	of	assertions,	 reduce	assertion	coding	errors	and	
accelerate	RTL	design	debug	using	assertions.	

11. Acknowledgements	
I	am	grateful	to	my	colleague	Don	Mills	of	Microchip	for	his	review	and	suggested	improvements	to	
this	paper.	Don	Mills	and	Chuck	McClish	of	Microchip	 are	 also	 responsible	 for	 the	EMACS	macro	
code	shown	in	Appendix	2.2.	

SNUG	2016	
	

Page	30	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

12. Postlude	
It	should	be	noted	that	it	took	me	a	few	years	to	adopt	some	of	the	best	practices	described	in	this	
paper,	even	after	they	were	shared	with	me	by	respected	colleagues.	I	thought	I	was	already	using	
best	 practices	 when	 I	 was	 shown	 these	 contradictory	 recommendations.	 As	 engineers,	 we	 are	
sometimes	 resistant	 to	 new	 and	 often	 foreign	 recommendations	 before	 we	 arrive	 at	 our	 own	
conclusion	that	the	new	practices	will	serve	us	better	than	those	that	we	are	currently	using	and	
that	have	seemingly	served	us	well.		

I	fully	expect	that	the	reader	will	also	need	time	to	consider	the	recommendations	in	this	paper.	

I	also	know	that	today's	best	practices	may	be	superseded	by	new	and	better	practices	in	the	future.	
It	would	be	a	mistake	for	me	to	assume	that	I	now	have	all	of	the	final‐best	practices.	As	engineers	it	
would	be	wise	to	keep	an	open	mind	to	new	recommendations	that	might	come	to	us	in	the	future.	
Please	feel	free	to	email	me	with	your	own	best	SVA	practices.

13. References	
[1] Harry	Foster,	"Maturing	a	Project's	ABV	Process	Capabilities."	Available	at	

https://verificationacademy.com/sessions/maturing‐abv‐process‐capabilities	

[2] Harry	Foster,	Adam	Krolnik,	David	Lacey,	"Assertion	Based	Design,	2nd	Edition,"	Springer,	
www.springeronline.com	

[3] Clifford	E.	Cummings,	“SystemVerilog	Assertions	‐	Design	Tricks	&	SVA	Bindfiles,”	SNUG	2009	(San	Jose).	
Available	at	www.sunburst‐design.com/papers	

[4] Clifford	E.	Cummings,	“SystemVerilog	Implicit	Port	Enhancements	Accelerate	System	Design	&	
Verification,”	SNUG	2007	(Boston).	Available	at	www.sunburst‐design.com/papers	

[5] Don	 Mills,	 "Being	 Assertive	 With	 Your	 X	 (SystemVerilog	 Assertions	 for	 Dummies),"	 SNUG	 2004.	
Available	at	w	ww.lcdm‐eng.com/papers/snug04_assertiveX.pdf	

[6] "IEEE	Standard	Verilog	Hardware	Description	Language,"	IEEE,	New	York,	NY,	IEEE	Std	1364‐2001	

[7] "IEEE	Standard	For	SystemVerilog	‐	Unified	Hardware	Design,	Specification	and	Verification	Language,"	
IEEE,	New	York,	NY,	IEEE	Std	1800‐2009	

[8] "IEEE	Standard	For	SystemVerilog	‐	Unified	Hardware	Design,	Specification	and	Verification	Language,"	
IEEE,	New	York,	NY,	IEEE	Std	1800™‐2012	

[9] Stuart	Sutherland,	"Who	Put	Assertions	In	My	RTL	Code?	And	Why?	How	RTL	Design	Engineers	Can	
Benefit	from	the	Use	of	SystemVerilog	Assertions,"	SNUG	2015	(Silicon	Valley).	Available	at	
www.sutherland‐hdl.com/papers/2015‐SNUG‐SV_SVA‐for‐RTL‐Designers_paper.pdf	

[10] Syntactic	sugar	definition.	https://en.wikipedia.org/wiki/Syntactic_sugar		

	

14. Author	&	Contact	Information	
	

Cliff	Cummings,	President	of	Sunburst	Design,	Inc.,	is	an	independent	EDA	consultant	and	trainer	
with	34	years	of	ASIC,	FPGA	and	system	design	experience	and	24	years	of	SystemVerilog,	synthesis	
and	methodology	training	experience.	

Mr	 Cummings	 has	 presented	more	 than	 100	 SystemVerilog	 seminars	 and	 training	 classes	 in	 the	
past	13	years	and	was	the	featured	speaker	at	the	world‐wide	SystemVerilog	NOW!	seminars.		

SNUG	2016	
	

Page	31	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

Mr	Cummings	has	participated	on	every	IEEE	&	Accellera	SystemVerilog,	SystemVerilog	Synthesis,	
SystemVerilog	 committee,	 and	 has	 presented	 more	 than	 40	 papers	 on	 SystemVerilog	 &	
SystemVerilog	related	design,	synthesis	and	verification	techniques.	

Mr	 Cummings	 holds	 a	 BSEE	 from	 Brigham	 Young	 University	 and	 an	 MSEE	 from	 Oregon	 State	
University.	

Sunburst	 Design,	 Inc.	 offers	 World	 Class	 Verilog	 &	 SystemVerilog	 training	 courses.	 For	 more	
information,	visit	the	www.sunburst‐design.com	web	site.	

Email	address:	cliffc@sunburst‐design.com	

Last	Updated:	April	2016	
	
	 	

SNUG	2016	
	

Page	32	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

 Tools	and	OS	versions	Appendix	1
The	examples	in	this	paper	were	run	using	the	following	Linux	and	Synopsys	tool	versions:	

64‐bit	Linux	laptop:	CentOS	release	6.5	

VCS	version	K‐2015.09‐SP1_Full64	

Running	vcs	and	dve	each	required	the	command	line	switch	‐full64	

Without	the	‐full64	command	line	switch,	vcs	compilation	would	fail	with	the	message:	
g++: /home/vcs/linux/lib/ctype-stubs_32.a: No such file or directory
make: *** [product_timestamp] Error 1
Make exited with status 2

 Editor	key	definitions	to	ease	adding	assertion	labels	Appendix	2
Labeling	is	an	important	tip	that	I	shared	in	this	Assertions	paper[3]	and	in	Section	6	of	this	paper.	
In	vim,	 I	have	a	key	definition	 that	auto‐inserts	 "_"	characters	between	text	and	ensures	 that	 the	
last	character	on	the	label	is	a	":"	

The	key	definition	allows	me	to	enter	the	type	of	error	that	is	happening	if	the	assertion	is	failing	
without	the	need	to	keep	hitting	<shift><_>	in	place	of	all	of	the	blanks.	It	is	a	convenience	key	that	
allows	me	to	enter	assertion	labels	quickly	and	naturally.	

Using	VIM,	I	create	labels	by	typing:	

	
ERR definition of what is going wrong if the assertion fails

Figure	20	‐	Raw	label	entry	using	vim	

I	then	exit	the	vim	insertion	mode	and	then	press	the	<shift><_>	keys,	which	converts	this	text	into	
the	following	valid	label:	

	
 ERR_definition_of_what_is_going_wrong_if_the_assertion_fails:

Figure	21	‐	Label	properly	formatted	using	vim	key	definition	

I	have	assigned	the	vim	key	definition	to	the	"_"	key,	so	after	I	add	my	text	and	exit	the	insert	mode	
of	 vim,	 I	 can	 hit	 the	 <shift><_>	 keys	 once	 and	 it	will	 insert	 the	 proper	 "_"	 characters	 and	 label	
termination.	I	have	placed	this	key	definition	in	the	.vimrc	file	in	my	users	home	directory.	

For	example,	if	I	have	any	of	the	following	text	examples:	

	
ERR FULL write caused wptr to change
 ERR FULL write caused 1 2 3 wptr to change :: : :

Figure	22	‐	Examples	of	raw	label‐text	entry	using	vim	

After	hitting	the	_	key	on	each	line,	the	text	is	properly	modified	as	shown	below:	

	
ERR_FULL_write_caused_wptr_to_change:
 ERR_FULL_write_caused_1_2_3_wptr_to_change:

Figure	23	‐	Example	labels	properly	formatted	using	vim	key	definition	

SNUG	2016	
	

Page	33	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

For	an	equivalent	EMACS	key	definition,	see	Appendix	2.2.	

 The	VIM	key	assertion	label	definition	Appendix	2.1

The	following	is	an	explanation	of	my	vim	key	definition.	

VIM	key	definition	(and	explanation):	
map _ ma:%s// /ge><cr>'a:s/\(\w\)\s\+\(\w\)/\1_\2/ge<cr>:s//\1_\2/ge<cr>:s[_:
]*$/:/<cr>:/:$/<cr>'az.

Explanation:	

map _ map	the	"_"	key

ma Mark	the	current	line	as	"a"

:%s/ <tab character> / <8 spaces> /ge><cr> Whole	 file,	 replace	 all	 <tab>	 characters	
with	8	spaces	(ge	‐	globally	and	ignore	not‐found	errors)	

'a Go	back	to	line	marked	"a"

:s/\(\w\)\s\+\(\w\)/\1_\2/ge<cr> This	 line	 only,	 find	 and	 save	 any	 word	
character	\(\w\),	followed	by	one	or	more	white	space	characters	\s\+,	
and	again	find	and	save	any	word	character	\(\w\),	replace	it	with	the	
1st	 word	 character	 saved	 \1,	 followed	 by	 "_",	 followed	 by	 2nd	 word	
character	saved	\2,	and	replace	it	globally	on	this	line	(ge<cr>).	

:s//\1_\2/ge<cr> Problem:	 the	 above	 command	 does	 not	 properly	 substitute	 single	
characters	 ("full 1 empty"	becomes	"full_1 empty")	because	 the	
single	 character	 cannot	 both	 end	 the	 last	 found	 pattern	 and	 start	 the	
next	found	pattern,	so	repeat	the	previous	substitution	(//	finds	the	last	
searched	pattern	again).	

:s[_:]*$/:/<cr> This	 line	only,	 find	any	pattern	of	 "_"	:	 and	blanks	at	 the	end	of	a	 line	
and	replace	them	with	a	single	:	(label	termination).	

:/:$/<cr> Find	":"	at	the	end	of	a	line	(this	will	highlight	all	label	terminations	in	
the	file,	useful	for	viewing	labels).	

'a Go	back	to	line	marked	"a"

z. Center	this	line	on	the	screen	

	
	 	

SNUG	2016	
	

Page	34	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

 EMACS	auto‐assertion	label	creation	Appendix	2.2

My	 colleagues	 Don	 Mills	 and	 Chuck	 McClish	 of	 Microchip	 have	 graciously	 supplied	 a	 similar	
definition	that	can	be	used	in	EMACS	to	insert	the	"_"	characters	just	like	the	vim	key	description	
shown	in	Appendix	2.1.	The	code	below	is	mapped	to	"C‐x	_"	but	the	EMACS	user	can	map	the	macro	
to	any	key	they	want.			

	
(fset 'auto-underscore-insert
 [?\C-x ?r ? ?q ?\C-a ?\C- ?\C-e ?\M-x ?n ?a ?r ?r ?o ?w ?- ?t ?o ?- ?r
?e ?g ?i ?o ?n return ?\C- ?\C-\M-r ?\\ ?w ?\C-m ?\C-f ?\C-w ?: ?\C-a ?\C-
\M-s ?\\ ?w ?\C-m ?\C-b ?\C- ?\C-e ?\M-x ?r ?e ?p ?l ?a ?c ?e ?- ?r ?e ?g ?e
?x ?p return ? return ?_ return ?\C-a ?\M-x ?w ?i ?d ?e ?n return ?\C-x ?r
?j ?q])

(global-set-key (kbd "C-x _") 'auto-underscore-insert)

	

 Bind	to	specific	DUT	instance	Appendix	3
Recommendation:	Do	not	use	this	style.	

This	style	specifies	both	the	target	dutfile	to	bind	to,	as	well	as	which	instance	of	the	target	dutfile	is	
being	bound	 to.	 In	 theory,	 it	 is	 possible	 to	 list	multiple	bind	 commands	of	 this	 style	 to	different	
instances	of	the	target	dutfile.	

	
bind fifo1 :u1 fifo1_asserts p1 (.*);

Example	17	‐	Non‐recommended	bind	style	‐	binds	to	just	one	instance	of	a	DUT

Example	17	shows	how	to	bind	to	the	u1	instance	of	the	fifo1	design.	This	style	requires	that	the	
bind	 command	be	 scoped	 to	 the	 same	module	 as	 the	u1	 instance	 of	 the	fifo1	 since	 the	fifo1	
could	 be	 placed	 in	multiple	 levels	 of	 hierarchy	 and	 in	 each	 scoped	 hierarchy	 the	 instance	 name	
could	also	be	u1.	

The	:u1	instance	name	could	be	a	hierarchical	path	such	as	:w1.u1	and	could	be	a	list	of	instances	
in	the	design	with	different	hierarchical	listings.	

NOTE:	 Until	 recently,	 older	 versions	 of	 VCS	 did	 not	 support	 this	 bind‐style	 but	 as	 of	 the	 VCS	
2015.06	 version,	 this	 style	 is	 now	 fully	 supported.	 I	 am	 not	 sure	 which	 VCS	 version	 started	 to	
support	binding	to	a	single	instance.	VCS'	previous	lack	of	support	for	this	style	was	not	an	issue	for	
me	because	in	my	opinion,	it	was	not	wise	to	limit	assertion	checking	to	just	one	copy	of	a	module.	
A	designer	who	uses	this	style	or	the	style	shown	in	Appendix	4	might	bind	to	a	working	instance	
while	another	instance	in	the	design	could	be	failing.		

 Bind	to	an	instance	name	without	specifying	the	DUT	Appendix	4
module	name	

Recommendation:	Do	not	use	this	style.	

This	 style	 only	 specifies	 the	 instance	 name	 of	 the	 target	 dutfile	 that	 is	 being	 bound	 to	 without	
specifying	 the	module	 type,	while	 the	 style	 in	Appendix	3	 first	 referenced	 the	module	name	and	
then	included	the	instance	name.	

SNUG	2016	
	

Page	35	 	
Rev	1.0	

SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	
for	Simple	SVA	Usage	

As	with	 the	previous	style,	 it	 is	possible	 to	 list	multiple	bind	 commands	of	 this	style	 to	different	
instances	of	different	DUTs.	

	
bind :u1 fifo1_asserts p1 (.*);

Example	18	‐	Non‐recommended	bind	style	‐	binds	to	an	instance	name	only

Example	18	shows	how	to	bind	to	the	u1	instance	in	the	current	scope.	This	style	also	requires	that	
the	bind	command	be	scoped	to	the	same	module	as	the	u1	instance	of	the	DUT.	

Once	again,	the	:u1	instance	name	could	be	a	hierarchical	path	such	as	:w1.u1	and	could	be	a	list	of	
instances	in	the	design	with	different	hierarchical	listings.	

NOTE:	even	 though	older	versions	of	VCS	did	not	support	 the	ability	 to	bind	 to	one	 instance	of	a	
module	until	recently,	VCS	has	long	supported	this	style	to	bind	to	an	instance	name.	

