
	

	

	

	
World Class SystemVerilog & UVM Training 

	
	

SystemVerilog	Logic	Specific	Processes	for	Synthesis	
‐	Benefits	and	Proper	Usage	

	

	
Clifford E. Cummings 

Sunburst Design, Inc. 
cliffc@sunburst-design.com 
www.sunburst-design.com 

	

	

ABSTRACT	

	

SystemVerilog	added	the	new	logic	specific	processes:	always_comb,	always_latch	and	always_ff.	These	
new	processes	seem	simple	enough	but	 they	also	 include	 important	simulation	checks	and	 there	are	
subtle	 recommendations	 that	 should	 be	 followed	 when	 using	 these	 processes	 that	 supersede	
recommendations	that	existed	with	Verilog	RTL	synthesis	coding	guidelines.	

There	 is	also	an	 issue	related	 to	 synthesis	 that	 should	be	addressed	by	all	 synthesis	and	 linting	 tool	
implementations.	Tools	currently	issue	warnings	when	they	should	issue	errors.		

This	paper	will	describe	advantages	to	using	the	new	 logic	specific	processes	and	offer	supplemental	
coding	guidelines	to	ensure	that	pre‐synthesis	simulations	match	post‐synthesis	implementations.	This	
paper	will	also	suggest	proper	error	conditions	that	should	be	reported	by	synthesis	and	linting	tools.	
This	 paper	 will	 also	 detail	 the	 proper	 usage	 of	 functions	 and	 tasks	 with	 the	 new	 logic	 specific	
processes.	
	 	

SNUG‐2016	
Silicon	Valley,	CA	

Voted	Best	Technical
Paper	‐	2nd	Place	



SNUG	2016	
	

Page	2		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

Table	of	Contents	
SystemVerilog	Logic	Specific	Processes	for	Synthesis	‐	Benefits	and	Proper	Usage	....................................	1 

1.  Introduction	.....................................................................................................................................................................	5 

2.  Find	and	fix	bugs	as	early	as	possible	...................................................................................................................	5 

3.  RTL	SystemVerilog	‐	8	coding	guidelines	............................................................................................................	6 

4.  functions,	void	functions	and	tasks	........................................................................................................................	6 

4.1  task‐issues	with	logic	specific	processes	...............................................................................................	7 

4.2  Void	functions	as	documentation	.............................................................................................................	7 

5.  New	logic	specific	processes	.....................................................................................................................................	8 

5.1  always_comb	.....................................................................................................................................................	8 

5.2  always_latch	.......................................................................................................................................................	8 

5.3  always_ff	..............................................................................................................................................................	8 

6.  New	checks	using	always_type	processes	...........................................................................................................	9 

6.1  Multiple	processes	assigning	to	the	same	varialble	is	illegal	........................................................	9 

6.2  Blocking	delay	assignments	are	illegal	.................................................................................................	12 

7.  New	advantages	to	using	always_type	processes	.........................................................................................	14 

7.1  Improved	automatic	sensitivity	list	creation	.....................................................................................	14 

7.2  Ability	to	call	void	functions	without	argument	lists	.....................................................................	15 

7.3  Always_type	processes	automatically	trigger	at	time‐0	................................................................	17 

7.4  Differences	between	always_comb	and	always	@*	.........................................................................	17 

7.5  Possible	future	synthesis	enhancement	‐	dual	edge	flip‐flop	.....................................................	18 

8.  Simulators	can	warn	of	incorrectly	inferred	logic	‐	they	don't	...............................................................	19 

9.  Synthesis	tools	warn	of	incorrectly	inferred	logic	‐	they	should	report	errors	................................	20 

9.1  Design	Compiler	always_comb	warnings	............................................................................................	20 

9.2  Design	Compiler	always_latch	warning	...............................................................................................	21 

9.3  Design	Compiler	always_ff	warning	......................................................................................................	22 

9.4  Why	warnings	and	not	errors?	................................................................................................................	24 

10.  Proposed:	always_comb_fb	................................................................................................................................	25 

11.  Conclusions	..............................................................................................................................................................	26 

12.  Acknowledgements	...............................................................................................................................................	27 

13.  References	................................................................................................................................................................	27 

14.  Author	&	Contact	Information	..........................................................................................................................	27 

  Tools	and	OS	versions	.............................................................................................................................	29 Appendix	1

  The	design	flow	‐	Finding	and	fixing	bugs	......................................................................................	29 Appendix	2



SNUG	2016	
	

Page	3		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

	

Table	of	Figures	
Figure	1	‐	Multi‐driver	simulation	waveform	(bad	results)	................................................................................	10 

Figure	2	‐	Design	Compiler	multi‐driver	error	message	.......................................................................................	10 

Figure	3	‐	VCS	error	messages	for	illegal	same‐variable	assignments	from	more	than	one	always_ff	
process	.......................................................................................................................................................................................	11 

Figure	4	‐	VCS	error	message	for	illegal	same‐variable	assignments	from	always_ff	&	always	
processes	...................................................................................................................................................................................	11 

Figure	5	‐	Timing	diagram	of	RTL	flip‐flop	with	missed	reset	............................................................................	13 

Figure	6	‐	VCS	error	message	when	blocking	delays	are	added	to	always_type	processes	....................	13 

Figure	7	‐	always	process	sensitivity	list	generation	when	calling	tasks	and	functions	..........................	14 

Figure	8	‐	always_type	process	sensitivity	list	generation	when	calling	tasks	and	functions	...............	15 

Figure	9	‐	Large	combinational	logic	and	split	combinational	logic	.................................................................	16 

Figure	10	‐	Large	combinational	logic	and	narrative	combinational	logic	calling	void	functions	.......	16 

Figure	11	‐	DC	reports	error	for	edge	/	no‐edge	flip‐flop	model	.......................................................................	18 

Figure	12	‐	DC	error	message	for	dual‐clk‐edge	flip‐flop	‐	always_ff‐edge	version	...................................	19 

Figure	13	‐	Design	Compiler	always_comb	warning	message	............................................................................	20 

Figure	14	‐	VCS	error	message	for	illegal	always_comb	code	with	sensitivity	list	.....................................	21 

Figure	15	‐	always_latch	‐	Improperly	coded	latch	logic	‐	combinational	logic	..........................................	21 

Figure	16	‐	VCS	error	message	for	illegal	always_latch	code	with	sensitivity	list	......................................	22 

Figure	17	‐	Design	Compiler	always_ff	warning	message	....................................................................................	22 

Figure	18	‐	always_ff	check_design	warning	..............................................................................................................	22 

Figure	19	‐	Incorrect	synthesized	and‐gate	from	erroneous	always_ff	process	sensitivity	list	............	23 

	
	 	



SNUG	2016	
	

Page	4		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

Table	of	Examples	
Example	1	‐	always_ff	flip‐flop	with	asynchronous	low‐true	reset	....................................................................	8 

Example	2	‐	Multi‐driver	SystemVerilog	model	‐	always	processes	‐	simulates	(poorly)	‐	does	not	
synthesize	...................................................................................................................................................................................	9 

Example	3	‐	Multi‐driver	SystemVerilog	model	‐	always_ff	processes	‐	fails	simulation	compilation
	.......................................................................................................................................................................................................	10 

Example	4	‐	Multi‐driver	SystemVerilog	model	‐	always_ff	&	always	processes	........................................	11 

Example	5	‐	dff	model	using	always	process	with	#2	delays	‐	simulation	problems	................................	12 

Example	6	‐	dff	model	using	always_ff	process	with	#2	delays	‐	properly	fails	to	compile	...................	13 

Example	7	‐	Erroneous	edge	/	no‐edge	flip‐flop	model	.........................................................................................	18 

Example	8	‐	Dual‐clk‐edge	flip‐flop	‐	always_ff‐NO‐edge	version	.....................................................................	18 

Example	9	‐	Dual‐clk‐edge	flip‐flop	‐	always_ff‐edge	version	.............................................................................	19 

Example	10	‐	always_comb	‐	Improperly	coded	combinational	logic	‐	latch	style	#1	..............................	20 

Example	11	‐	always_comb	‐	Improperly	coded	combinational	logic	‐	ff	.......................................................	20 

Example	12	‐	always_latch	‐	Improperly	coded	latch	logic	‐	combinational	.................................................	21 

Example	13	‐	always_latch	‐	Improperly	coded	latch	logic	‐	combinational	.................................................	21 

Example	14	‐	always_ff	‐	Improperly	coded	ff	logic	................................................................................................	22 

	

Table	of	Tables	
Table	1	‐	Comparing	SystemVerilog	tasks,	functions	and	void	functions	........................................................	7 

Table	2	‐	Proposed	synthesis	tool	legal‐logic	checking	.........................................................................................	25 
	
	 	



SNUG	2016	
	

Page	5		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

1. Introduction	
SystemVerilog	added	logic	specific	processes	 to	show	designer	 intent.	SystemVerilog	added	other	
features	 to	 facilitate	 RTL	 design.	 The	 new	 SystemVerilog	 features	 motivated	 a	 new	 set	 of	
recommended	RTL	coding	guidelines.	This	paper	details	 the	benefits	of	many	new	SystemVerilog	
features	and	proposes	guidelines	for	their	proper	usage.		

The	new	SystemVerilog	features	should	have	also	encouraged	simulation	and	synthesis	vendors	to	
do	additional	checking	and	reporting	of	errors	in	the	SystemVerilog	RTL	code,	but	the	added	checks	
do	not	go	as	 far	as	they	could	to	help	RTL	coders	remove	errors	 from	simulated	and	synthesized	
designs.	Appendix	2	of	 this	paper	details	additional	checks	and	errors	that	should	be	reported	by	
vendor	tools.		

RTL	 coders	 are	 encouraged	 to	 demand	 reasonable	 additional	 checks	 from	 their	 vendors	 to	 help	
improve	the	quality	of	front‐end	RTL	designs.	

2. Find	and	fix	bugs	as	early	as	possible	
The	earlier	a	bug	is	identified	and	fixed,	the	faster	a	high	quality	design	will	be	released	to	market,	
enabling	successful	companies	to	become	more	profitable.		

0	includes	a	detailed	list	of	design	steps	and	the	types	of	bugs	that	are	typically	discovered	within	
each	step.		

An	abbreviated	list	of	techniques	and	places	to	identify	and	correct	bugs	is:	

 Use	a	colorized	code	editor	to	help	find	misspelled	keywords	and	unterminated	strings.	
 Use	 the	 simulation	compilation	 tool	 to	 identify	 syntax	and	semantic	errors	(illegal	 coding	

styles	that	if	permitted	could	cause	bugs	to	go	undetected	until	late	in	the	design	flow).	
 Use	simulation	to	find	functional	RTL	bugs.	
 Use	 synthesis	 compilation	 tools	 to	 identify	 coding	 styles	 that	 do	 not	 match	 expressed	

designer	intent.	Many	linting	tools	can	do	this	task	if	the	engineer	has	access	to	linting	tools.	
 Use	synthesized	gate‐level	netlists	to	run	simulations	to	identify	a	mismatch	between	pre‐	

and	post‐synthesis	simulations.	

Finding	bugs,	fixing	bugs,	and	exhaustively	identifying	all	bugs	early	are	all	reasons	to	set	guidelines	
and	add	SystemVerilog	language	features.	If	a	bug	can	be	identified	at	an	earlier	design	stage,	every	
effort	should	be	made	to	make	that	happen.	If	you	understand	the	importance	of	finding	and	fixing	
bugs	early,	you	can	skip	0	that	describes	in	more	detail	where	bugs	can	be	found.	
	 	



SNUG	2016	
	

Page	6		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

3. RTL	SystemVerilog	‐	8	coding	guidelines	
Good	 coding	 guidelines	 help	 designers	 avoid	 mistakes	 and	 help	 identify	 problems	 as	 early	 as	
possible.	

In	 the	 year	 2000,	 I	 presented	 a	 paper	 with	 8	 Verilog	 RTL	 coding	 guidelines	 to	 help	 avoid	
mismatches	between	pre‐	and	post‐synthesis	simulations[2].	Those	guidelines,	 shown	below,	still	
apply	to	SystemVerilog	RTL	coding!	

RTL	Coding	Guidelines	

Guideline	#1:	 Sequential	logic		‐	use	nonblocking	assignments	

Guideline	#2:	 Latches		‐	use	nonblocking	assignments	

Guideline	#3:	 Combinational	logic	in	an	always	block	‐	use	blocking	assignments	

Guideline	#4:	 Mixed	sequential	and	combinational	logic	in	the	same	always	block	‐	use	
nonblocking	assignments	

Guideline	#5:	 Do	not	mix	blocking	and	nonblocking	assignments	in	the	same	always	block	

Guideline	#6:	 Do	not	make	assignments	to	the	same	variable	from	more	than	one	always	
block		(This	guideline	is	now	enforced	by	the	SystemVerilog	compiler	‐	see	Section	6.1	
for	details)	

Display	Guideline	

Guideline	#7:	 Use	$strobe	to	display	values	that	have	been	assigned	using	nonblocking	
assignments	

General	Guideline	

Guideline	#8:	 Do	not	make	#0	procedural	assignments	

RTL	 coders	 that	 follow	 these	 guidelines	 will	 remove	 90%‐100%	 of	 all	 SystemVerilog	 race	
conditions	from	their	simulations.	

4. functions,	void	functions	and	tasks	
Verilog	 had	 both	 functions	 and	 tasks.	 SystemVerilog	 added	 the	 exceptionally	 useful	 void	
function.	A	quick	description	of	the	functionality	and	utility	of	SystemVerilog	tasks,	functions	
and	void	functions	is	included	here	before	their	preferred	usage	is	described	starting	in	Section	5	
and	continuing	through	the	rest	of	the	paper.	

Tasks	 are	 time‐consuming	 subroutines.	 SystemVerilog	 void	 functions	 are	 0‐time	 subroutines.	
Verilog	functions	were	sub‐programs	 that	 returned	a	single	value	and	 the	function	 had	 to	be	
part	of	another	expression.	

When	comparing	functions,	void	functions	and	tasks,	 the	following	table	shows	some	of	the	
similarities	and	differences.	

	
	 	



SNUG	2016	
	

Page	7		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

	

	
Timing	 Simulation	Note	 Synthesis	Note	

task 

No	delays Legal	 Legal,	but	now	
discouraged	

#delays	 Legal	 Ignored	by	
synthesis	

@(posedge clk) Legal	 Synthesis	error	

wait Legal	 Synthesis	error	

function	&	
void	function 

No	delays Legal	 Legal	and	
encouraged	

#delays	 Compiler	error	 Illegal	

@(posedge clk) Compiler	error	 Illegal	

wait Compiler	error	 Illegal	

Table	1	‐	Comparing	SystemVerilog	tasks,	functions	and	void	functions	

As	can	be	seen	in	Table	1,	tasks	are	allowed	to	use	a	variety	of	delays	and	triggers	that	are	either	
ignored	or	cause	synthesis	errors.	Functions	are	not	allowed	to	have	any	type	of	delay	or	trigger	
and	the	simulation	compiler	catches	these	problems	early	in	the	RTL	design	cycle.		

The	point	 is,	tasks	 allow	RTL	designers	 to	 add	 time‐dependent	 constructs	 and	 to	 simulate	 code	
that	can	cause	problems	in	synthesis,	while	functions	cannot.	The	SystemVerilog	void	function	
does	 the	 same	 thing	 as	 an	 untimed	 task	 and	 hence	 tasks	 should	 no	 longer	 be	 used	 in	
SystemVerilog	RTL	synthesis.	

4.1 task‐issues	with	logic	specific	processes	

always_comb	 and	 always_latch	 will	 examine	 the	 internal	 equations	 of	 a	 void	 function	 to	
correctly	 add	 signals	 to	 the	 RTL	 simulation	 sensitivity	 lists,	 while	 internal	 task	 signals	 are	 not	
examined.	This	is	another	enhancement	that	is	made	available	to	RTL	coders	that	was	not	present	
with	the	Verilog	always	@*.	This	is	described	in	greater	detail	in	Section	7.1.	

4.2 Void	functions	as	documentation	

Tasks	 are	 exceptionally	 useful	 as	 a	 verification	 subroutine	 that	 can	 consume	 clock	 cycles,	 but	
Verilog	tasks	 have	 had	 very	 limited	 value	when	used	 in	 RTL	 synthesis	 and	 that	 is	 still	 true	 for	
SystemVerilog	.	

RTL	synthesis	tools	prohibit	the	use	of	edge‐triggering	code,	such	as	@(posedge	clk),	 inside	of	a	
task,	and	delays	in	tasks	are	completely	ignored,	so	anything	that	is	delay	or	trigger	related	in	a	
task	is	either	ignored	or	illegal.		

The	only	value	that	tasks	had	in	Verilog	synthesis	was	as	a	subroutine	to	assign	constant	values	to	
multiple	 signals	 in	multiple	 places;	 tasks	 were	 essentially	 large	macro‐like	 assignments.	 If	 one	
wanted	 to	 assign	 variable	 values	 to	 the	 signals,	 the	 variable	 arguments	had	 to	 be	 listed	 as	task	
inputs	to	be	automatically	recognized	and	added	to	the	sensitivity	list	of	an	always	@*	process.	This	
was	a	significant	limitation	imposed	by	tasks.	



SNUG	2016	
	

Page	8		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

5. New	logic	specific	processes	
Any	 language	 or	 tool	 feature	 that	 identifies	 problems	 earlier	 in	 the	 design	 flow	 is	 a	 feature	 that	
helps	engineers	shorten	the	design	cycle	and	improve	the	quality	of	the	design.	Any	new	language	
feature	that	could	help	identify	problems	earlier	in	the	design	flow	is	a	feature	worthy	of	addition	to	
the	SystemVerilog	language.	

In	general,	initial	processes	are	used	by	Verilog	testbenches	while	always	processes	are	used	for	
Verilog	 design	 modeling.	 SystemVerilog	 added	 three	 new	 types	 of	 always	 processes	 that	 were	
intended	to	show	designer	intent	and	to	enable	tools	to	help	RTL	coders	identify	problems	earlier	
in	the	design	flow.	

The	 three	 new	 logic	 specific,	 always_type	 processes	 are:	 always_comb,	 always_latch	 and	
always_ff.	These	processes	are	described	in	the	remainder	of	this	section,	along	with	some	of	the	
new	simulation	compilation	checks	that	are	included	with	these	always_type	processes.	

5.1 always_comb	

always_comb	 is	 used	 to	 describe	 combinational	 logic	 and	 automatically	 builds	 the	 proper	
sensitivity	 list	 required	 by	 the	 simulator.	 In	 fact,	 the	 always_comb	 process	 builds	 a	 better	
sensitivity	list	than	the	Verilog‐2001	always @*.	The	improvements	are	described	in	Section	7.1.	

Guideline:	use	always_comb	to	code	all	RTL	combinational	blocks	and	quit	using	always @*.	

5.2 always_latch	

always_latch	 is	 used	 to	 describe	 latch‐based	 logic	 and	 also	 automatically	 builds	 the	 proper	
sensitivity	list	required	by	the	simulator.	Just	like	the	always_comb	process,	always_latch	builds	
a	better	sensitivity	list	than	the	Verilog‐2001	always @*.	

Guideline:	when	doing	latch‐based	design,	use	always_latch	to	code	all	RTL	latch	blocks	and	quit	
using	always @*.	

5.3 always_ff	

always_ff	 is	 used	 to	 describe	 clocked	 logic	 but	 it	 does	 NOT	 automatically	 build	 the	 proper	
sensitivity	list	required	by	the	simulator.	

The	always_comb	and	always_latch	processes	can	determine	the	correct	sensitivity	list	from	the	
code	within	those	processes.	All	of	the	information	necessary	to	generate	a	correct	sensitivity	list	is	
available	in	the	equations	within	those	processes,	but	that	is	not	true	for	always_ff.	

Examine	the	always_ff	RTL	code	for	a	flip‐flop	as	shown	in	Example	1.	

	
module dff1 ( 
  output bit_t q, 
  input  bit_t d, clk, rst_n); 
   
  always_ff @(posedge clk, negedge rst_n) 
    if (!rst_n) q <= 0; 
    else        q <= d; 
endmodule 

Example	1	‐	always_ff	flip‐flop	with	asynchronous	low‐true	reset	



SNUG	2016	
	

Page	9		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

 There	is	no	information	in	the	always_ff	process	to	identify	the	name	of	the	clock.	
 There	is	no	information	in	the	always_ff	process	to	identify	the	polarity	of	the	clock.	
 There	is	no	information	in	the	always_ff	process	to	identify	if	the	reset	is	synchronous	or	

asynchronous.	

For	these	reasons,	the	always_ff	block	still	needs	a	sensitivity	list.	

Guideline:	use	always_ff	to	code	all	RTL	clocked	blocks	and	quit	using	always @(posedge clk 
...).	

6. New	checks	using	always_type	processes	
One	of	the	great	advantages	of	using	the	new	always_type	processes	is	that	the	simulation	compiler	
will	identify	and	issue	errors	for	improper	coding	styles	that	are	not	necessarily	related	to	logic	that	
would	be	 inferred	by	synthesis	 tools.	The	new	errors	 that	are	 identified	could	cause	mismatches	
between	pre‐and	post‐synthesis	simulations.	This	means	that	some	important	errors	will	be	caught	
much	earlier	than	using	older	Verilog	techniques	before	wasting	time	running	invalid	simulations	
and	synthesis.	The	additional	checks	are	described	below.	

6.1 Multiple	processes	assigning	to	the	same	varialble	is	illegal	

New	check	‐	RTL	code	that	uses	the	new	always_type	processes	‐	making	assignments	to	the	same	
variable	from	more	than	one	always_type	process	is	now	illegal.		

For	years,	all	synthesis	tools	have	given	errors	if	the	same	output	variable	was	assigned	from	more	
than	one	Verilog	always	 process,	 but	 simulators	allowed	 the	 same	 coding	 style	 to	be	 simulated.	
This	meant	that	an	engineer	could	write	and	simulate	illegal	RTL	code	and	not	discover	the	problem	
until	synthesis.	In	other	words,	the	problem	would	be	found	but	it	would	be	found	late	in	the	design	
flow	after	wasting	significant	time	doing	simulations	of	illegal	RTL	code.		

Consider	the	d‐flip‐flop	code	in	Example	2.	This	code	will	simulate,	albeit	with	a	race	condition	and	
questionable	results.	Both	always	processes	make	assignments	to	the	same	q	variable,	but	there	is	
no	 guarantee	 which	 always	 process	 will	 finish	 last.	 During	 simulation,	 whichever	 assignment	
finishes	last	will	make	the	final	assignment	seen	in	a	waveform	display.	As	can	be	seen	in	Figure	1,	
VCS	has	assigned	the	q‐variable	from	the	first	always	block	followed	by	the	second	always	block.	
This	 simulation	 behavior	 is	 legal	 but	 not	 guaranteed.	 Another	 simulator	 or	 even	 a	 different	
simulation	 might	 cause	 the	 first	 always	 process	 assignment	 to	 execute	 last,	 which	 would	 give	
different	results.		

	
module dff_2a ( 
  output logic q, 
  input  logic d1, d2, clk, rst_n); 
 
  always @(posedge clk or negedge rst_n) 
    if (!rst_n) q <= '0; 
    else        q <= d1; 
 
  always @(posedge clk or negedge rst_n) 
    if (!rst_n) q <= '0; 
    else        q <= d2; 
endmodule 

Example	2	‐	Multi‐driver	SystemVerilog	model	‐	always	processes	‐	simulates	(poorly)	‐	does	not	synthesize	



SNUG	2016	
	

Page	10		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

 

 

Figure	1	‐	Multi‐driver	simulation	waveform	(bad	results)	

For	this	reason,	RTL	Coding	Guideline	#6	of	Section	3	states:	Do	not	make	assignments	to	the	same	
variable	from	more	than	one	always	block.	Ignoring	this	guideline	causes	the	simulation	behavior	to	
be	nondeterministic.		

When	the	Example	2	code	is	read	into	Design	Compiler	(DC),	the	error	message	shown	in	Figure	2	is	
properly	reported.	

	
Error:  .../dff_2a.sv:9: Net 'q' or a directly connected net is driven by 
more than one source, and not all drivers are three-state. (ELAB-366) 
*** Presto compilation terminated with 1 errors. *** 
Error: Can't read 'sverilog' file '.../dff_2a.sv'. (UID-59) 

Figure	2	‐	Design	Compiler	multi‐driver	error	message	

The	point	is,	using	Verilog	always	processes	allows	the	designer	to	construct	flawed	RTL	code	that	
might	not	be	discovered	until	 simulation	 (if	 the	 race	 condition	 is	 recognized	 from	 the	waveform	
display),	 or	 until	 read	 into	 DC.	 Finding	 the	 bug	 during	 simulation	 or	 while	 reading	 code	 into	
synthesis	 tools	 is	needlessly	 late	 in	 the	design	 flow.	Designers	prefer	 to	 find	 this	 type	of	mistake	
earlier.	

What	was	once	just	a	guideline	is	now	enforced	by	the	SystemVerilog	simulation	compiler,	allowing	
the	RTL	designer	to	find	this	bug	very	early	in	the	design	flow.	

	
module dff_2b ( 
  output logic q, 
  input  logic d1, d2, clk, rst_n); 
 
  always_ff @(posedge clk or negedge rst_n) 
    if (!rst_n) q <= '0; 
    else        q <= d1; 
 
  always_ff @(posedge clk or negedge rst_n) 
    if (!rst_n) q <= '0; 
    else        q <= d2; 
endmodule 

Example	3	‐	Multi‐driver	SystemVerilog	model	‐	always_ff	processes	‐	fails	simulation	compilation	

The	SystemVerilog	RTL	code	of	Example	3	is	exactly	the	same	as	the	RTL	code	of	Example	2,	except	
the	always	processes	have	been	replaced	with	always_ff	processes.	Any	attempt	to	compile	this	
model	for	simulation	will	fail	and	cause	an	error	message	to	be	reported.	The	error	message	for	this	
model	as	reported	by	VCS	is	shown	in	Figure	3.	



SNUG	2016	
	

Page	11		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

Error-[ICPD] Illegal combination of drivers 
dff_2b.sv, 2 
  Illegal combination of procedural drivers 
  Variable "q" is driven by an invalid combination of procedural drivers.  
  Variables written on left-hand of "always_ff" cannot be written to by any  
  other processes, including other "always_ff" processes. 
  This variable is declared at "dff_2b.sv", 2: logic q; 
  The first driver is at "dff_2b.sv", 9: always_ff @(posedge clk or negedge  
  rst_n) if (!rst_n) begin 
  q <= '0; 
  The second driver is at "dff_2b.sv", 5: always_ff @(posedge clk or 
negedge  
  rst_n) if (!rst_n) begin 
  q <= '0; 
   ... 

Figure	3	‐	VCS	error	messages	for	illegal	same‐variable	assignments	from	more	than	one	always_ff	process	

So	what	happens	if	assignments	are	made	to	the	same	variable	 from	a	SystemVerilog	always_ff	
process	and	a	Verilog	always	process	as	shown	in	Example	4?	

	
module dff_2c ( 
  output logic q, 
  input  logic d1, d2, clk, rst_n); 
 
  always_ff @(posedge clk or negedge rst_n) 
    if (!rst_n) q <= '0; 
    else        q <= d1; 
 
  always @(posedge clk or negedge rst_n) 
    if (!rst_n) q <= '0; 
    else        q <= d2; 
endmodule 

Example	4	‐	Multi‐driver	SystemVerilog	model	‐	always_ff	&	always	processes	

When	assignments	are	made	to	a	variable	 from	any	SystemVerilog	always_type	process	and	also	
assigned	from	a	Verilog	always	process,	the	simulation	compilation	will	fail.	VCS	reports	the	error	
as	shown	in	Figure	4.	

	
Error-[ICPD] Illegal combination of drivers 
dff_2c.sv, 2 
  Illegal combination of procedural drivers 
  Variable "q" is driven by an invalid combination of procedural drivers.  
  Variables written on left-hand of "always_ff" cannot be written to by any  
  other processes, including other "always_ff" processes. 
  This variable is declared at "dff_2c.sv", 2: logic q; 
  The first driver is at "dff_2c.sv", 10: q <= '0; 
  The second driver is at "dff_2c.sv", 5: always_ff @(posedge clk or 
negedge  
  rst_n) if (!rst_n) begin 
  q <= '0; 
   ... 

Figure	4	‐	VCS	error	message	for	illegal	same‐variable	assignments	from	always_ff	&	always	processes	



SNUG	2016	
	

Page	12		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

Guideline:	Use	the	new	always_type	processes	to	help	identify	flawed	RTL	coding	styles	earlier	and	
quit	using	the	older	Verilog	always	process.	

6.2 Blocking	delay	assignments	are	illegal	

New	 check	 ‐	 RTL	 code	 that	 uses	 the	 new	 always_type	 processes	 ‐	 making	 blocking	 delay	
assignments	to	variables	is	now	illegal.	1	2	

Synthesis	tools	ignore	all	delays	in	RTL	code,	but	it	was	possible	using	the	Verilog	always	process	
to	 add	 blocking	 delays	 to	 the	 RTL	 code,	 run	 Verilog	 simulations,	 and	 cause	 the	 pre‐synthesis	
simulation	to	behave	incorrectly.	This	meant	that	an	engineer	could	code	and	simulate	illegal	RTL	
code	and	not	discover	the	functional	problem	until	post‐synthesis	simulations.	In	other	words,	the	
problem	 would	 only	 be	 found	 very	 late	 in	 the	 design	 flow	 after	 wasting	 significant	 time	 doing	
simulations	and	synthesis	of	 flawed	RTL	code,	and	finding	the	problem	required	designers	to	run	
gate‐level	simulations	to	discover	that	the	pre‐synthesis	functionality	simulation	did	not	match	the	
post‐synthesis	simulation.	

For	 the	 flip‐flop	 design	 with	 asynchronous	 low‐true	 rst_n	 shown	 in	 Example	 5,	 the	 RTL	 code	
includes	 #2	 blocking	 delays	 placed	 in	 front	 of	 the	 assignments	 to	 the	 q	 variable.	 In	 the	 timing	
diagram	for	this	example,	shown	in	Figure	5,	when	clk	goes	high,	there	is	no	active‐low	rst_n,	so	
the	RTL	code	will	 immediately	 jump	 to	 the	else	branch	of	 the	code.	The	else	 branch	must	 first	
wait	 for	 the	 #2	 delay,	 and	 then	 will	 assign	 the	 d‐input	 to	 the	 q‐output.	 The	 problem	 with	 this	
example	is	that	the	rst_n	signal	went	active‐low	#1	after	the	posedge clk,	but	since	the	simulator	
is	stuck	waiting	 for	2	nanoseconds	before	executing	 the	else	branch,	 the	active	rst_n	 is	missed	
until	 the	 next	 posedge clk	 during	 the	 RTL	 simulation.	 This	means	 that	 the	 RTL	 simulation	 is	
wrong	and	might	not	be	discovered	until	post‐synthesis	gate‐level	simulations.	

	
module dff1a ( 
  output logic q, 
  input  logic d, clk, rst_n); 
   
  always @(posedge clk, negedge rst_n) 
    if (!rst_n) #2 q <= '0; 
    else        #2 q <= d; 
endmodule 

Example	5	‐	dff	model	using	always	process	with	#2	delays	‐	simulation	problems	

																																																													

	
1	Blocking	statements	are	not	the	same	as	blocking	assignments.	Blocking	statements	refer	to	statements	that	can	force	the	simulation	
time	to	advance	before	allowing	the	subsequent	statements	to	be	executed,	including	#delays	and	calls	to	procedures	that	could	block	
such	as	task	calls	that	contain	blocking	delays.	
2	Delays	on	the	right‐hand‐side	of	nonblocking	assignments	are	not	blocking	delays	and	are	therefore	will	legal	when	using	always_type	
processes.	
	



SNUG	2016	
	

Page	13		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

	
Figure	5	‐	Timing	diagram	of	RTL	flip‐flop	with	missed	reset	

Note	 that	 synthesis	 tools	 ignore	 delays	 in	 RTL	 code	 and	 would	 infer	 the	 correct	 flip‐flop	 with	
asynchronous	reset,	which	will	not	match	the	pre‐synthesis	simulation.	This	is	an	error	that	will	not	
be	caught	until	 gate‐simulations	 fail	 to	match	pre‐synthesis	RTL	simulations	or	until	 equivalence	
checking	 tools	 mathematically	 prove	 that	 the	 RTL	 does	 not	 match	 the	 inferred	 gate‐level	
representation.	That	is	undesirably	late	in	the	design	flow.	

If	 the	Verilog	always	 process	 is	 replaced	by	 the	SystemVerilog	always_ff	 process,	 the	 included	
blocking	 delays	 to	 the	 RTL	 code	 as	 shown	 in	 Example	 6	 will	 be	 flagged	 as	 an	 error	 during	
simulation	compilation,	and	thus	the	error	will	be	identified	very	early	in	the	design	flow.	

	
module dff1c ( 
  output logic q, 
  input  logic d, clk, rst_n); 
   
  always_ff @(posedge clk, negedge rst_n) 
    if (!rst_n) #2 q <= '0; 
    else        #2 q <= d; 
endmodule 

Example	6	‐	dff	model	using	always_ff	process	with	#2	delays	‐	properly	fails	to	compile	

VCS	issues	the	error	message	shown	in	Figure	6,	which	indicates	that	the	blocking	delay	 is	illegal	
inside	of	the	always_ff	process.	

	
Error-[SV-BCACF] Blocking construct in always_comb/ff 
dff1c.sv, 6 
"#(2) q <= 0;" 
Statements in an always_comb shall not include those that block, have  
blocking timing or event controls, or forkjoin statements. The always_ff  
procedure imposes the restriction that it contains one and only one event  
control and no blocking timing controls. 
Try using simple always blocks. 

	 (NOTE:	this	error	message	is	repeated	for	line	8)	

Figure	6	‐	VCS	error	message	when	blocking	delays	are	added	to	always_type	processes	

	 	



SNUG	2016	
	

Page	14		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

7. New	advantages	to	using	always_type	processes	
In	addition	to	the	two	design	checks	described	in	Section	6,	 the	new	always_type	processes	offer	
additional	design	advantages	described	in	the	remainder	of	this	Section.	

7.1 Improved	automatic	sensitivity	list	creation	

Verilog‐2001	added	the	ability	to	code	an	always	process	with	the	@*	sensitivity	 list.	The	motive	
behind	this	enhancement	was	to	allow	the	simulation	and	synthesis	tools	to	automatically	create	a	
complete	 sensitivity	 list	 for	 combinational	 and	 latch	 based	 logic.	 The	 one	 shortfall	 with	 the	 @*	
sensitivity	list	is	that	it	required	all	tasks	and	function	calls	within	the	scope	of	the	always	process	
to	list	the	task/function	calling	arguments	as	part	of	the	task/function	port	definitions	to	allow	@*	
to	 find	those	signals	to	add	to	the	sensitivity	list.	Any	signal	used	within	a	task/function	that	was	
not	part	of	the	argument	declarations	for	the	task	and	function	headers	would	be	missed	and	not	
added	to	the	sensitivity	list.	This	is	illustrated	in	Figure	7.	

	
Figure	7	‐	always	process	sensitivity	list	generation	when	calling	tasks	and	functions	

The	Figure	7	example	includes	both	a	void	function	and	a	task	that	represent	3‐input	or‐gates,	
but	only	the	a‐input	is	listed	in	the	function	and	task	headers	while	the	b	and	c‐inputs	are	read	
directly	 from	 the	module	 scope.	 The	always	@*	 processes	will	 only	 examine	 the	 headers	 of	 the	
function	and	task	and	will	 therefore	omit	 the	b	and	c‐inputs	 from	the	process	sensitivity	 lists.	
The	pre‐synthesis	simulations	will	not	match	the	post‐synthesis	simulations.	



SNUG	2016	
	

Page	15		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

	

Figure	8	‐	always_type	process	sensitivity	list	generation	when	calling	tasks	and	functions	

In	 Figure	 8,	 the	 same	 two	function	 and	task	 3‐input	or‐gates	 exist,	 but	 the	always	 processes	
have	been	replaced	with	always_comb	processes,	which	allows	the	always_comb	to	build	the	full	
and	proper	sensitivity	list	for	the	process	that	calls	the	void	function	while	still	not	building	the	
full	sensitivity	list	for	the	process	that	calls	the	task.		

The	reason	that	calling	a	task	does	not	build	the	full	sensitivity	list	from	the	internal	task	signals	is	
because	a	task	can	consume	time	and	it	may	not	even	make	sense	to	trigger	on	all	of	the	internal	
task	signals	since	they	may	not	change	until	later	in	the	simulation.		

Synthesis	 tools	 ignore	 delays	 and	do	 not	 permit	tasks	 to	 include	 any	 internal	 triggering	 signals	
such	as	@(posedge clk).	Since	delays	in	tasks	are	either	ignored	or	illegal	when	doing	synthesis,	
the	 preferred	 SystemVerilog	 solution	 is	 to	 replace	 all	 tasks	 with	 void functions.	 A	 void	
function	 is	 basically	 a	0‐delay	task	 call	with	 the	 advantage	 that	 internal	function	 signals	 are	
added	to	an	always_comb	sensitivity	list.		

7.2 Ability	to	call	void	functions	without	argument	lists	

The	ability	 to	 create	a	 full	 sensitivity	 list	 from	void	functions	with	all	 internal	 function	signals	
removed	 from	the	header	actually	allows	another	very	 interesting	and	productive	coding	style	 in	
SystemVerilog.	

Consider	the	large	combinational	logic	block	shown	on	the	left	side	in	Figure	9.	If	the	combinational	
logic	does	indeed	require	44	lines	of	code	(or	more)	to	describe	the	combinational	functionality	of	
this	block,	this	code	could	be	quite	difficult	to	understand	and	maintain.	One	solution	is	to	split	the	
code	into	smaller	always_comb	blocks	as	shown	on	the	right	side	of	Figure	9,	but	splitting	the	code	



SNUG	2016	
	

Page	16		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

does	not	necessarily	document	the	code	any	better	than	the	one	huge	always_comb	process.	

	
Figure	9	‐	Large	combinational	logic	and	split	combinational	logic	

Section	7.1	showed	that	an	always_comb	process	can	now	call	void	functions	that	do	not	require	
argument	 lists	and	those	void	functions	 can	have	very	descriptive	names.	The	void	function	
calls	 can	 now	document	 the	 higher	 functionality	 of	 the	 combinational	 logic.	The	void	function	
calls	can	now	tell	a	story	about	the	combinational	logic.	This	is	shown	in	Figure	10.	

	
Figure	10	‐	Large	combinational	logic	and	narrative	combinational	logic	calling	void	functions	



SNUG	2016	
	

Page	17		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

In	 this	 contrived	 example,	 the	 always_comb	 process	 executes	 step_a,	 followed	 by	 steb_b,	
followed	by	step_c,	and	concludes	with	step_d.	The	high‐level	intent	of	the	always_comb	process	
is	more	 clear	 and	 concise,	 and	when	 an	 engineer	 questions	what	 should	 happen	 in	step_b,	 the	
engineer	can	reference	the	step_b	void	function	to	see	the	functionality	low‐level	details.	

This	 strategy	 has	 the	 advantage	 that	 each	 step_X	 void	 function	 has	 encapsulated	 part	 of	 the	
functionality.	This	 strategy	has	 the	 advantage	 that	 if	 the	step_b	 code	needs	 to	be	modified	or	 if	
signals	need	 to	be	added	or	subtracted	 from	step_b,	 those	modifications	can	be	done	 in	step_b	
isolation	without	any	requirement	to	modify	the	calling	code	in	the	always_comb	process!	

This	enhancement	is	a	hidden	gem	that	we	get	for	free	when	we	use	always_comb	processes	that	
call	void	functions!	This	same	capability	exists	when	using	always_latch,	but	most	engineers	
avoid	coding	latches	this	complex	(or	coding	latches	altogether!)	

7.3 Always_type	processes	automatically	trigger	at	time‐0	

Time‐0	can	be	a	tricky	place	in	Verilog	simulations	and	time‐0	race	simulation	conditions	are	not	
uncommon.	Due	to	this	potential	problem,	simulation	vendors	have	implemented	time‐0	execution	
of	 simulations	 such	 that	 always	 processes	 are	 started	 before	 initial	 processes.	 This	 is	 not	
defined	 in	 the	 Verilog	 and	 SystemVerilog	 Standards,	 but	 is	 common	 practice	 among	 the	 major	
simulation	vendors.	This	hidden	practice	 removes	many	of	 the	 time‐0	simulation	 race	conditions	
because	 RTL	 designs	 are	 typically	modeled	 using	 always	 processes	 and	 are	 therefore	 activated	
before	the	initial	processes	that	are	typically	employed	in	testbench	stimulus	generation.	

The	 always_type	 processes	 added	 one	 more	 layer	 of	 time‐0	 race	 protection	 not	 available	 with	
always	processes.	All	always_type	processes	trigger	at	the	end	of	time‐0,	so	if	the	input	stimulus	
were	to	be	sent	before	the	always_type	processes	were	activated,	the	always_type	processes	would	
still	trigger	at	the	end	of	time‐0	and	would	therefore	examine	all	process	inputs	and	react	at	time‐0	
appropriately.	

Proper	stimulus	timing	generation	techniques	and	practices	are	both	significant	and	very	important	
to	testbench	strategies,	but	they	are	beyond	the	scope	of	this	paper.		

7.4 Differences	between	always_comb	and	always	@*	

A	summary	of	the	difference	between	the	Verilog	always @*	and	the	SystemVerilog	always_comb	
process	is	shown	below:	

 always_comb	may	allow	checking	for	illegal	latches.	The	Verilog	always @*	is	used	for	
both	combinational	and	latch‐based	logic.	

 always_comb	variables	cannot	be	assigned	from	another	process.	This	allows	the	
simulation	compiler	to	enforce	RTL	Coding	Guideline	#6	and	avoid	synthesis	errors.	

 always_comb	cannot	include	blocking	delays,	which	removes	a	common	pre‐synthesis	RTL	
simulation	problem.	

 always_comb	is	sensitive	to	changes	within	the	contents	of	a	function	
 always_comb	triggers	once	automatically	at	the	end	of	time‐0.	
 @*	is	permitted	to	be	nested	within	an	always	process	while	always_comb	cannot	be	

nested.	It	should	be	noted	that	nesting	@*	is	not	a	recommended	practice,	but	is	allowed	by	
the	simulator.	

Each	of	these	differences	helps	to	reduce	design	and	simulation	mistakes	and	therefore	they	show	
why	always_comb	should	be	used	over	the	Verilog	always @*.	



SNUG	2016	
	

Page	18		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

7.5 Possible	future	synthesis	enhancement	‐	dual	edge	flip‐flop		

This	section	describes	a	capability	that	does	not	currently	exist	in	synthesis	tools,	but	it	could	in	the	
future.	In	other	words,	"don't	try	this	at	home,	yet!"	

Synthesis	tools	require	that	either	every	signal	in	a	sensitivity	list	has	an	edge	specification	or	that	
none	of	the	signals	in	the	sensitivity	list	has	an	edge	specification.		

Consider	the	poorly	coded	always	process	flip‐flop	model	shown	in	Example	1.		

	
module dff1a ( 
  output logic q, 
  input  logic d, clk, rst_n); 
   
  always @(clk, negedge rst_n) 
    if (!rst_n) q <= 0; 
    else        q <= d; 
endmodule 

Example	7	‐	Erroneous	edge	/	no‐edge	flip‐flop	model	

This	model	will	 compile	and	simulate	 like	a	dual	clk‐edge	flip‐flop,	but	DC	does	not	support	 this	
coding	style	and	will	report	an	error	when	the	model	is	read	into	DC	as	shown	in	Figure	11.	One	of	
the	issues	with	this	coding	style	is	that	the	synthesis	tool	cannot	determine	if	the	always	process	is	
an	incorrectly	coded	combinational	always	process	or	if	it	is	an	incorrectly	coded	flip‐flop	always	
process.	There	simply	is	not	enough	information	in	the	RTL	model	to	determine	what	the	intended	
logic	should	be.	

	
Error:  .../dff1a.sv:5:  
The event depends on both edge and nonedge expressions, 
    which synthesis does not support. (ELAB-91) 
*** Presto compilation terminated with 1 errors. *** 

Figure	11	‐	DC	reports	error	for	edge	/	no‐edge	flip‐flop	model	

With	 the	 addition	 of	 the	 SystemVerilog	 always_type	 processes,	 it	 would	 now	 be	 possible	 to	
determine	 designer	 intent.	 Consider	 the	 dual‐edge	always_ff	 flip‐flop	model	 in	 Example	8.	 The	
always_ff	keyword	shows	the	designer's	intent	to	build	clocked	logic.	This	model	simulates	like	a	
dual‐edge	flip‐flop	but	DC	still	does	not	support	this	coding	style.		

	
module dff1c ( 
  output logic q, 
  input  logic d, clk, rst_n); 
   
  always_ff @(clk, negedge rst_n) 
    if (!rst_n) q <= 0; 
    else        q <= d; 
endmodule 

Example	8	‐	Dual‐clk‐edge	flip‐flop	‐	always_ff‐NO‐edge	version	

There	is	no	reason	that	synthesis	tools	could	not	allow	this	model	to	be	accepted	and	infer	a	dual‐
edge	 flip‐flop.	 The	 coding	 style	 would	 require	 that	 the	 signal	 in	 the	 sensitivity	 list	 without	 a	
posedge	/	negedge	keyword	would	have	to	be	absent	 from	the	equations	within	the	always_ff	



SNUG	2016	
	

Page	19		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

process.	That	is	how	the	synthesis	tool	could	identify	the	signal	as	being	a	legal	clock	signal	for	a	
dual‐edge	flip‐flop.	

There	 is	 one	 important	 negative	 issue	 with	 the	 coding	 style	 of	 Example	 8.	 What	 if	 an	 engineer	
simply	forgot	to	add	the	posedge	to	the	clk	signal?	Now	the	synthesis	tool	would	build	a	perfectly	
legal	but	unintended	dual‐edge	flip‐flop.	For	this	reason,	I	propose	that	a	dual‐edge	flip‐flop	model	
be	required	to	add	the	edge3	keyword	to	the	clk	signal	(as	shown	in	Example	9)	to	affirm	that	the	
engineer	intended	to	have	a	dual‐edge	clk	for	the	flip‐flop	model.	

	
module dff1d ( 
  output logic q, 
  input  logic d, clk, rst_n); 
   
  always_ff @(edge clk, negedge rst_n) 
    if (!rst_n) q <= 0; 
    else        q <= d; 
endmodule 

Example	9	‐	Dual‐clk‐edge	flip‐flop	‐	always_ff‐edge	version	

The	combination	of	always_ff	and	the	edge	clk	show	the	designer's	intent.	There	is	no	ambiguity	
related	 to	 whether	 the	 always	 process	 was	 combinational	 or	 sequential	 or	 if	 the	 clk	 was	
mistakenly	left	blank	versus	intentionally	chose	to	be	a	dual	edge	clk.	

VCS	will	simulate	the	Example	8	code	as	a	dual‐edge	flip‐flop,	but	currently	DC	still	applies	existing	
rules	and	reports	that	the	edge	keyword	is	not	allowed	in	synthesis,	as	shown	in	Figure	12.	

	
Error:  .../dff1d.sv:5:  
The construct 'edge' is not supported in synthesis. (VER-700) 
*** Presto compilation terminated with 1 errors. *** 

Figure	12	‐	DC	error	message	for	dual‐clk‐edge	flip‐flop	‐	always_ff‐edge	version	

If	 a	 future	ASIC	or	FPGA	 library	 included	dual‐edge	 flip‐flops,	 the	RTL	 coding	 style	of	Example	9	
could	be	a	legal	representation	of	the	desired	dual‐edge	clk	logic.	

8. Simulators	can	warn	of	incorrectly	inferred	logic	‐	they	don't	
Section	7	showed	simulation‐related	errors	that	are	now	detected	by	the	simulation	compiler	but	
does	not	address	errors	related	to	incorrectly	inferred	logic	by	synthesis	tools.	

The	 IEEE	 Std	 1800‐2012[5]	 permits	 simulators	 the	 option	 to	warn	users	 if	 the	RTL	 coding	 style	
would	not	infer	the	intended	and	requested	logic	when	synthesized.	This	action	is	purely	optional	
and	there	are	no	known	simulators	that	issue	these	useful	warnings.	

The	 warnings	 would	 be	 exceptionally	 useful	 to	 the	 RTL	 coders,	 so	 why	 don't	 simulators	 report	
these	warnings?	 In	some	cases,	 it	can	be	quite	difficult	 to	determine	what	type	of	 logic	would	be	
inferred	by	a	synthesis	tool	strictly	by	examining	the	RTL	source	code.		

Although	the	RTL	simulation	warnings	would	be	nice,	it	falls	to	RTL	synthesis	tools	to	truly	report	

																																																													

	
3	The	edge	keyword	was	added	to	IEEE	Std	1800‐2005	and	made	legal	in	this	context	in	IEEE	Std	1800‐2009.	



SNUG	2016	
	

Page	20		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

errors	related	to	mismatches	between	the	expressed	designer	intent	and	actual	inferred	logic.		

	

9. Synthesis	tools	warn	of	incorrectly	inferred	logic	‐	they	should	report	
errors	

Although	 simulators	 do	 not	 issue	 RTL	 related	 warnings	 regarding	 designer	 intent	 when	 using	
always_type	processes,	synthesis	tools	DO	warn	the	user	when	the	 inferred	 logic	does	not	match	
the	designer‐intended,	requested		logic.	

9.1 Design	Compiler	always_comb	warnings	

For	an	 improperly	coded	always_comb	process,	Design	Compiler	 (DC)	 issues	warnings	when	the	
RTL	code	is	read	into	DC.	

	 	
module ao1e ( 
  output logic q, 
  input  logic en, d); 
 
  always_comb 
    if (en) q <= d; 
endmodule 

Example	10	‐	always_comb	‐	Improperly	coded	combinational	logic	‐	latch	style	#1	

DC	shows	a	latch	inference	report	for	this	coding	style	and	then	warns	that	a	latch	was	synthesized	
as	shown	in	Figure	13.	

	
Warning: .../ao1e.sv:5: Netlist for always_comb block contains a latch. 
(ELAB-974) 

Figure	13	‐	Design	Compiler	always_comb	warning	message	

	
 
module ao1g ( 
  output logic q, 
  input  logic d, clk, rst_n); 
 
  always_comb @(posedge clk, negedge rst_n) 
    if (!rst_n) q <= '0; 
    else        q <= d; 
endmodule 

Example	11	‐	always_comb	‐	Improperly	coded	combinational	logic	‐	ff	

	

For	the	improperly	coded	always_comb	process	of	Example	11,	the	simulator	will	report	an	error	
because	VCS	expects	no	sensitivity	list	after	the	always_comb	keyword	and	therefore	interprets	the	
@(posedge clk	 ...	 as	a	blocking	delay	 that	precedes	 the	if‐test	on	 the	next	 line.	Blocking	delays	
used	in	always_type	processes	are	not	legal	as	will	be	explained	in	Section	6.2.	In	this	example,	the	
VCS	compiler	(and	not	DC)	reports	a	timing	related	error	not	related	to	the	incorrect	always_comb:	

	



SNUG	2016	
	

Page	21		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

Error-[SV-BCACF] Blocking construct in always_comb/ff 
ao1g.sv, 5 
ao1g 
  Statements in an always_comb shall not include those that block, have  
  blocking timing or event controls, or forkjoin statements. The always_ff  
  process imposes the restriction that it contains one and only one event  
  control and no blocking timing controls. 
  Try using simple always blocks. 

Figure	14	‐	VCS	error	message	for	illegal	always_comb	code	with	sensitivity	list	

The	code	in	Example	11	never	even	compiles	for	simulation	so	it	was	not	read	into	DC.	

9.2 Design	Compiler	always_latch	warning	

For	an	improperly	coded	always_latch	process,	Design	Compiler	(DC)	issues	warnings	when	the	
RTL	code	is	read	into	DC.	

	
module lat1d ( 
  output logic q, 
  input  logic en, d); 
 
  always_latch 
    q = en & d; 
endmodule 

Example	12	‐	always_latch	‐	Improperly	coded	latch	logic	‐	combinational	

DC	 shows	 NO	 latch	 inference	 report	 for	 this	 coding	 style	 and	 then	 warns	 that	 a	 latch	 was	 not	
synthesized	as	shown	in	Figure	15.	

	 	 	 	
Warning: .../lat1d.sv:5: Netlist for always_latch block does not contain a 
latch. (ELAB-975) 

Figure	15	‐	always_latch	‐	Improperly	coded	latch	logic	‐	combinational	logic	

	
module lat1e ( 
  output logic q, 
  input  logic d, clk, rst_n); 
 
  always_latch @(posedge clk, negedge rst_n) 
    if (!rst_n) q <= '0; 
    else        q <= d; 
endmodule 

Example	13	‐	always_latch	‐	Improperly	coded	latch	logic	‐	combinational	

For	the	improperly	coded	always_latch	process	of	Example	13,	the	simulator	will	report	an	error	
because	VCS	expects	no	sensitivity	list	after	the	always_latch	keyword	and	therefore	interprets	
the	@(posedge clk	...	as	a	blocking	delay	("a single statement which is an event 
control")	that	precedes	the	if‐test	on	the	next	line.	Blocking	delays	used	in	always_type	
processes	are	not	legal	as	will	be	explained	in	Section	6.2.	In	this	example,	the	VCS	compiler	(and	
not	DC)	reports	a	timing	related	error	not	related	to	the	incorrect	always_comb:	

	



SNUG	2016	
	

Page	22		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

Error-[OECAB] Singular control statement in always 
lat1e.sv, 5 
lat1e 
'always_comb'/'always_ff' block has a single statement which is an event  
control. Such usage is disallowed due to likelihood of user error. 

Figure	16	‐	VCS	error	message	for	illegal	always_latch	code	with	sensitivity	list	

9.3 Design	Compiler	always_ff	warning	

For	an	improperly	coded	always_ff	process,	Design	Compiler	(DC)	issues	warnings	when	the	RTL	
code	is	read	into	DC.	

	
module dff1d ( 
  output logic q, 
  input  logic d, clk, rst_n); 
   
  always_ff @(clk, rst_n) 
    if (!rst_n) q <= '0; 
    else        q <= d; 
endmodule 

Example	14	‐	always_ff	‐	Improperly	coded	ff	logic	

The	always_ff	 sensitivity	 list	of	Example	14	 is	missing	 edge	 specifications.	 If	 this	 example	only	
used	the	older	Verilog	always	keyword,	the	synthesis	tool	would	assume	that	the	code	represented	
combinational	logic,	but	the	always_ff	keyword	is	recognized	by	DC	so	DC	warns	that	a	flip‐flop	
was	not	synthesized	as	shown	in	Figure	17.	 	

	
Warning: .../dff1d.sv:6: Netlist for always_ff block does not contain a 
flip-flop. 

Figure	17	‐	Design	Compiler	always_ff	warning	message	

The	always_ff	code	of	Example	14	also	causes	DC	to	report	a	potential	problem	and	instructs	the	
user	to	run	the	check_design	command	as	shown	in	Figure	18.	

	
Information: There are 1 potential problems in your design.  
Please run 'check_design' for more information. 
 
check_design: 
Warning: In design 'dff1d', port 'clk' is not connected to any nets.  

Figure	18	‐	always_ff	check_design	warning	

After	 running	 the	check_design	 command,	DC	reports	 that	 the	design	 is	missing	 the	clk	 signal	
from	 any	 assignments	 in	 the	 process	 and	 then	 proceeds	 to	 build	 the	 2‐input	and‐gate	 shown	 in	
Figure	 19.	 Also	 shown	 in	 Figure	 19	 is	 that	 the	clk	 signal	 is	 unconnected	 and	 is	 just	 a	 dangling	
signal.	



SNUG	2016	
	

Page	23		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

	
Figure	19	‐	Incorrect	synthesized	and‐gate	from	erroneous	always_ff	process	sensitivity	list	

	

What	is	disturbing	about	this	implementation	is	that	there	was	no	warning	issued	by	DC	that	the	d‐
input	signal	was	not	part	of	the	sensitivity	list.	The	missing	d‐input	signal	means	that	pre‐synthesis	
changes	to	the	d‐input	will	not	cause	the	always_ff	process	to	re‐evaluate	the	assignments	in	the	
always_ff	 process,	while	 the	post‐synthesis	 gate‐level	 simulation	will	 indeed	 re‐evaluate	 the	q‐
output	 assignment	 every	 time	 the	 d‐input	 changes.	 This	 is	 a	 potential	 source	 for	 mis‐matches	
between	pre‐synthesis	and	post‐synthesis	simulations.		

	

9.3.1 Did	Design	Compiler	quit	issuing	sensitivity	list	warnings?	

I	remember	that	DC	used	to	build	combinational	logic	from	an	always	process	without	considering	
the	process	 sensitivity	 list,	 but	 after	building	 the	 logic,	would	 then	warn	 the	user	 if	 signals	were	
missing	 from	 the	 sensitivity	 list.	 This	 was	 a	 valuable	 warning	 but	 it	 appears	 that	 the	 missing	
sensitivity	list	signals	are	no	longer	being	checked.		

My	colleague	Brian	Kane	noticed	this	same	problem	in	2013	and	reported	the	issue.	The	assigned	
case	number	was	"Case 8000639472 : incomplete combinatorial sensitivity" 

The	Synopsys	response	to	Brian	at	that	time	was		

I was able to reproduce what you described, and I was as surprised by it as 
you were, since historically the tool would issue an ELAB-292 warning for an 
incomplete sensitivity list.  I did some research, and it turns out that the 
behavior you're seeing is part of a larger effort to remove lint-like (i.e. 
code quality) checks from HDL Compiler.  According to R&D, "HDL Compiler was 
issuing too many 'false positives', thus the message was unreliable and it 
was removed."  The expectation nowadays is that users will do their code 
quality checks with a dedicated linting tool. 

Removal	 of	 linting	 checks	 from	 DC	 does	 not	 benefit	 users	 but	 at	 least	 with	 the	 addition	 of	
always_comb	 and	 always_latch,	 there	 is	 no	 need	 to	 check	 the	 sensitivity	 list	 for	 these	
always_type	processes.	

Unfortunately	if	an	always_ff	process	is	used	incorrectly,	DC	now	warns	that	a	flip‐flop	was	not	
inferred,	 builds	 combinational	 logic,	 and	 then	 does	 not	 warn	 users	 that	 the	 combinational	 pre‐
synthesis	RTL	is	missing	important	sensitivity	list	signals.	If	the	synthesis	tool	would	issue	an	error	
for	this	flawed	coding	style,	there	would	be	no	need	for	DC	to	check	the	sensitivity	list	signals	but	
that	currently	is	not	the	case.	



SNUG	2016	
	

Page	24		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

9.4 Why	warnings	and	not	errors?	

Why	do	synthesis	vendors	issue	warnings	instead	of	errors?		

First,	 it	 should	 be	 noted	 that	 synthesis	 behavior	 regarding	 the	 implementation	 of	 always_type	
processes	is	not	defined	by	any	IEEE	Standard.	

Second,	vendors	are	concerned	about	issuing	false	error	messages	("false	positives").	If	the	vendor	
tool	 issues	an	error	message	where	no	error	 is	present,	customers	will	 lose	confidence	 in	vendor	
error	messages.	

Third,	vendor	synthesis	 tools	have	 issued	always_type	warnings	 for	years	and	 if	 they	change	 the	
warnings	to	errors,	this	might	cause	poorly	coded	designs	that	previously	compiled	to	fail	synthesis	
compilation.	There	are	two	possible	solutions	to	this	latter	problem:	

a) My	 preference	 is	 that	 vendors	 change	 the	 always_type	 warnings	 to	 errors	 and	 force	
designers	to	use	good	and	informed	coding	styles.	If	an	always_comb	process	infers	latches,	
I	 believe	 synthesis	 tools	 should	 force	 the	 engineer	 to	 change	 the	 flawed‐always_comb	
keyword	to	the	actual‐intent	keyword	of	always_latch.	As	an	alternative,	the	designer	can	
change	the	always_comb	to	always	keyword	to	avoid	additional	checking,	or	tool	vendors	
could	 give	 engineers	 a	 new	 command	 switch	 that	 converts	 always_type	 violations	 from	
errors	into	the	currently	reported	warnings.	

b) A	second	and	 less‐attractive	alternative	 is	 to	give	designers	a	synthesis	 switch	 to	convert	
always_type	warnings	into	errors.	The	flaw	with	this	alternative	is	that	the	synthesis	tool	is	
issuing	 warnings	 when	 errors	 would	 help	 designers	 identify	 design‐intent	 errors.	 If	 this	
alternative	is	implemented,	I	would	encourage	all	synthesis	engineers	to	turn	this	switch	on	
permanently.	

The	always_type	synthesis	compilation	warnings	should	be	replaced	with	errors	for	the	following	
reasons.	

If	 I,	as	an	RTL	designer,	 took	 the	 time	to	specify	 the	 type	of	 logic	I	 intended	to	be	 inferred	 in	my	
design,	and	if	that	logic	is	not	inferred	by	the	synthesis	tool,	then	I	want	an	error	that	will	force	me	
to	correct	my	design	before	DC	legally	reads	the	design,	not	a	warning	that	is	easily	lost	as	it	scrolls	
past	my	visible	synthesis	transcript	window.	The	whole	intent	of	adding	always_type	processes	is	
to	allow	me	to	show	enforceable	designer	intent	and	warnings	just	do	not	adequately	achieve	that	
goal.	 If	 the	 proposed	 synthesis	 tool	 errors	 prove	 to	 be	 problematic,	 I	 have	 an	 existing	 fallback	
position.	I	can	remove	all	of	the	new	SystemVerilog	always_type	processes	and	go	back	to	using	a	
plain	old	Verilog	always	process,	which	is	mostly	ignored	by	synthesis	tools	as	it	pertains	to	intent‐
checking.		

There	 is	 some	 concern	 regarding	which	 inferred	 logic	 should	 be	 legal	with	 existing	always_type	
coding	 styles.	 As	 someone	 who	 has	 worked	 with	 RTL	 coders	 for	 about	 22	 years	 and	 who	 also	
participated	on	the	creation	of	the	IEEE	Std.	1364.1‐2002[6]	standard	(RTL	synthesis	standard),	I	
propose	that	the	following	styles	should	be	legal	or	illegal	as	outlined	in	Table	2.	



SNUG	2016	
	

Page	25		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

	
Table	2	‐	Proposed	synthesis	tool	legal‐logic	checking	

As	noted	beneath	Table	2,	it	should	be	legal	for	always_latch	and	always_ff	to	simultaneously	
infer	combinational	 logic	as	 long	as	they	also	drive	the	data	pin	of	 the	requested	 latches	and	flip‐
flops	respectively.	

Also	as	noted	in	Table	2,	combinational	 feedback	 logic	can	be	problematic	 for	designs.	Full	Static	
Timing	Analysis	(STA)	cannot	be	performed	on	a	combinational	feedback	 loop	and	such	feedback	
loops	have	latch‐behavior	without	checking	the	setup	and	hold	times	of	the	latching	control	signals	
inherently	 associated	 with	 such	 logic.	 For	 those	 reasons,	 I	 propose	 that	 currently	 defined	
always_type	blocks	be	prohibited	from	legally	building	logic	with	combinational	feedback	loops.	If	
such	logic	is	desired,	engineers	should	be	forced	to	use	older	Verilog	always	processes	so	that	they	
are	aware	of	the	potential	dangers	of	these	types	of	designs.	See	Section	10	for	a	proposed	solution	
to	this	issue.	

The	problem	with	the	proposed	error	checking	is	that,	as	noted	above,	synthesis	tools	have	allowed	
engineers	 to	 get	 by	 with	 warnings	 on	 existing	 designs.	 Synthesis	 tool	 vendors	 might	 find	 it	
acceptable	to	provide	a	-warn_only	or	-relax_fatal	switch	(the	exact	name	is	not	important)	to	
allow	 engineers	 to	 use	 the	 tools	without	 errors	 if	 they	 choose	 to	 ignore	 important	 design	 intent	
violations.	

As	an	alternative,	synthesis	tools	could	issue	"violations,"	which	could	be	put	under	user	control	to	
either	convert	violations	into	errors	or	into	the	current	set	of	warnings	as	selected	by	the	user.	

The	point	is,	synthesis	tools	are	currently	issuing	warnings	when	errors	are	incorrectly	coded	into	
RTL	 designs.	 Warnings	 are	 almost	 useless.	 Errors/violations	 will	 help	 engineers	 to	 build	 better	
designs!	

10. Proposed:	always_comb_fb	
One	observation	that	I	made	while	compiling	the	 list	of	 important	synthesis	tool	errors	shown	in	
Table	2,	is	that	I	believe	RTL	designers	actually	need	another	always_type	process.	

RTL	models	should	be	 re‐targetable	 to	different	devices	 to	allow	 for	 reuse	 in	 future	projects	and	
technologies,	 and	 therefore	 the	 RTL	 code	 cannot	 know	 if	 the	 target	 implementation	 will	 have	
latches	available	

Although	always_comb,	always_latch	and	always_ff	cover	95%+	of	RTL	coding	styles,	there	is	
still	one	more	style	that,	although	rarely	used,	might	be	useful	 to	some	designers.	 	That	style	 is	a	



SNUG	2016	
	

Page	26		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

combinational	feedback	loop	that	acts	like	a	latch.	

Although	 latches	 are	 frequently	 discouraged	 in	RTL	designs	 by	most	 companies,	 there	 are	 times	
when	latch‐based	logic	is	useful.	There	are	many	FPGA	families	that	do	not	include	usable	latches	
and	for	those	FPGA	devices,	a	latch	must	be	modeled	as	combinational	logic	with	a	feedback‐loop	to	
hold	 the	 desired	 latched	 values.	 I	 propose	 that	 one	 new	 always_type	 process	 be	 added	 to	
SystemVerilog:	always_comb_fb	(combinational	logic	with	intentional	feedback).		

RTL	simulations	frequently	do	not	have	enough	context	to	know	if	a	 latch	will	be	available	in	the	
implementation	logic.	ASICs	could	allow	latches	while	equivalent	prototype	FPGA	devices	might	not	
have	 access	 to	 dedicated	 latches.	 Since	 this	 is	 a	 real	 possibility,	 simulators	 should	 just	 treat	
always_comb_fb	the	same	as	always_comb.	For	simulators,	always_comb	and	always_comb_fb	
would	be	synonyms.	

For	synthesis	tools,	there	are	multiple	scenarios	that	should	be	addressed:	

(1)	If	a	latch	is	inferred	from	an	always_comb	process,	the	synthesis	tool	should	report	one	of	two	
errors,	 with	 messages	 similar	 to,	 "always_comb	 inferred	 a	 latch"	 or	 "always_comb	 inferred	
combinational	logic	with	a	feedback	loop."	

(2)	If	no	latch	is	inferred	from	an	always_latch	process,	the	synthesis	tool	should	report	one	of	
two	 errors,	 with	 messages	 similar	 to,	 "always_latch	 used	 but	 no	 latch	 inferred"	 or	
"always_latch	inferred	combinational	logic	with	a	feedback	loop."	

(3)	 If	 a	 latch	 is	 inferred	 from	 an	 always_comb_fb	 process,	 the	 synthesis	 tool	 should	 report	 an	
error,	with	a	message	similar	to,	"always_comb_fb	inferred	a	latch."		

(4)	If	non‐latch	and	non‐feedback	logic	is	inferred	from	an	always_comb_fb	process,	the	synthesis	
tool	should	report	an	error,	with	a	message	similar	 to,	 "always_comb_fb	 inferred	combinational	
logic	but	no	combinational	feedback	logic	as	requested."		

I	have	also	considered	a	coding	style	that	infers	both	latches	and	flip‐flops	from	the	same	process,	
but	I	consider	that	to	be	somewhat	questionable	since	an	RTL	coder	could	easily	separate	latches	
from	the	flip‐flops	by	separately	coding	the	always_latch	and	always_ff	processes.	

11. Conclusions	
Follow	 the	 8	 RTL	 coding	 guidelines	 shown	 in	 Section	 3.	 These	 guidelines,	 originally	 shown	 for	
Verilog	RTL	designs	still	apply	to	SystemVerilog	RTL	designs.	

Guideline:	Quit	using	tasks	in	RTL	design.	Replace	all	tasks	with	void	functions.	

Guideline:	Quit	using	the	always	@*	process	for	RTL	combinational	and	latching	logic.	The	always	
@*	does	not	do	deep‐searching	into	called	functions	to	build	the	complete	process	sensitivity	list.	

Guideline:	 Quit	 using	 all	 always	 processes	 for	 RTL	 designs	 and	 instead	 use	 the	 always_type	
processes	exclusively.	

The	new	SystemVerilog	always_type	logic	processes	are	far	superior	to	existing	always	processes.	
The	always_type	 processes	 do	more	 checking	 during	 simulation	 compilation	 for	 potential	 error	
conditions	and	they	currently	allow	synthesis	tools	to	at	 least	warn	engineers	when	the	intended	
logic	is	not	synthesized.	

Synthesis	tool	warnings	related	to	always_type	processes	are	not	nearly	as	useful	as	errors	that	
would	cause	the	synthesis	tool	to	stop	before	compiling	a	design.	Warnings	are	too	easily	missed.		



SNUG	2016	
	

Page	27		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

Synthesis	tool	vendors	should	issue	errors	when	the	designer's	intended	and	requested	logic	is	not	
inferred	as	described	in	Table	2.	Designers	have	a	readily	available	fallback	position	if	they	want	to	
avoid	the	errors,	and	that	fallback	position	is	to	use	the	simple	Verilog	always	process.	Synthesis	
tool	 vendors	 could	 help	 accelerate	 correct	 RTL	 synthesis	 by	 allowing	 the	 current	 always_type	
warnings	to	be	converted	into	errors.	

Call	to	action!	Ask	your	synthesis	tool	vendor	to	please	give	us	a	way	to	generate	errors	instead	of	
warnings	when	the	RTL	designs	are	read	into	the	synthesis	tool.	Ask	the	synthesis	tool	vendor	to	
disallow	compilation	of	 the	 incorrect	designs	until	 the	errors	have	been	addressed	by	 the	design	
engineer.	

12. Acknowledgements	
I	am	grateful	 to	my	colleagues	Stuart	Sutherland	and	Brian	Kane	 for	 their	reviews	and	suggested	
improvements	to	this	paper.	

13. References	
[1] Clifford	 E.	 Cummings,	 '"full_case	 parallel_case",	 the	 Evil	 Twins	 of	 Verilog	 Synthesis,'	 SNUG'99	 Boston	

(Synopsys	Users	 Group	Boston,	MA,	 1999)	 Proceedings,	 1999.	 Also	 available	 online	 at	www.sunburst‐
design.com/papers	

[2] Clifford	 E.	 Cummings,	 "Nonblocking	 Assignments	 in	 Verilog	 Synthesis,	 Coding	 Styles	 That	 Kill!,"	 SNUG	
(Synopsys	 Users	 Group)	 2000	 User	 Papers,	 section‐MC1	 (1st	 paper),	 March	 2000.	 Also	 available	 at	
www.sunburst‐design.com/papers	

[3] Clifford	 E.	 Cummings,	 “SystemVerilog	 Implicit	 Port	 Enhancements	 Accelerate	 System	 Design	 &	
Verification,”	 SNUG	 (Synopsys	 Users	 Group)	 September	 2007	 (Boston,	 MA),	 September	 2007.	 Also	
available	at	www.sunburst‐design.com/papers	

[4] Don	Mills	and	Clifford	E.	Cummings,	“RTL	Coding	Styles	That	Yield	Simulation	and	Synthesis	Mismatches,”	
SNUG	(Synopsys	Users	Group)	1999	Proceedings,	section‐TA2	(2nd	paper),	March	1999.	Also	available	at	
www.lcdm‐eng.com/papers.htm	and	www.sunburst‐design.com/papers	

[5] IEEE	 Standard	 Verilog	 Hardware	 Description	 Language,	 IEEE	 Computer	 Society,	 IEEE,	 New	 York,	 NY,	
IEEE	Std	1364‐2001.	

[6] IEEE	Standard	for	Verilog	Register	Transfer	Level	Synthesis,	IEEE	Computer	Society,	IEEE,	New	York,	NY,	
IEEE	Std	1364.1‐2002	

[7] "IEEE	Standard	For	SystemVerilog	‐	Unified	Hardware	Design,	Specification	and	Verification	Language,"	
IEEE	Computer	Society	and	the	IEEE	Standards	Association	Corporate	Advisory	Group,	IEEE,	New	York,	
NY,	IEEE	Std	1800™‐2012	

	

14. Author	&	Contact	Information	
	

Cliff	Cummings,	President	of	Sunburst	Design,	Inc.,	is	an	independent	EDA	consultant	and	trainer	
with	34	years	of	ASIC,	FPGA	and	system	design	experience	and	24	years	of	SystemVerilog,	synthesis	
and	methodology	training	experience.	

Mr	 Cummings	 has	 presented	more	 than	 100	 SystemVerilog	 seminars	 and	 training	 classes	 in	 the	
past	13	years	and	was	the	featured	speaker	at	the	world‐wide	SystemVerilog	NOW!	seminars.		

Mr	Cummings	has	participated	on	every	IEEE	&	Accellera	SystemVerilog,	SystemVerilog	Synthesis,	



SNUG	2016	
	

Page	28		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

SystemVerilog	 committee,	 and	 has	 presented	 more	 than	 40	 papers	 on	 SystemVerilog	 &	
SystemVerilog	related	design,	synthesis	and	verification	techniques.	

Mr	 Cummings	 holds	 a	 BSEE	 from	 Brigham	 Young	 University	 and	 an	 MSEE	 from	 Oregon	 State	
University.	

Sunburst	 Design,	 Inc.	 offers	 World	 Class	 Verilog	 &	 SystemVerilog	 training	 courses.	 For	 more	
information,	visit	the	www.sunburst‐design.com	web	site.	

Email	address:	cliffc@sunburst‐design.com	

Last	Updated:	April	2016	
	
	 	



SNUG	2016	
	

Page	29		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

 Tools	and	OS	versions	Appendix	1
The	examples	in	this	paper	were	run	using	the	following	Linux	and	Synopsys	tool	versions:	

64‐bit	Linux	laptop:	CentOS	release	6.5	

VCS	version	K‐2015.09‐SP1_Full64	

Running	vcs	and	dve	each	required	the	command	line	switch	‐full64	

Without	the	‐full64	command	line	switch,	vcs	compilation	would	fail	with	the	message:	
g++: /home/vcs/linux/lib/ctype-stubs_32.a: No such file or directory 
make: *** [product_timestamp] Error 1 
Make exited with status 2 

Design	Compiler	version	K‐2015.06‐SP4	

 The	design	flow	‐	Finding	and	fixing	bugs	Appendix	2
The	earlier	a	bug	is	identified	and	fixed,	the	faster	a	high	quality	design	will	be	released	to	market.	
The	subsections	in	this	appendix	give	somewhat	detailed	descriptions	of	how	and	where	bugs	can	
be	identified	and	fixed.	

 Coding	Appendix	2.1

If	a	bug	can	be	spotted	while	the	RTL	is	being	entered,	the	bug	can	be	quickly	fixed	before	any	tool	
is	used	to	identify	bugs.	A	colorizing	and	indenting	editor	will	help	the	skilled	coder	to	identify	bugs	
before	the	design	is	even	compiled	by	any	tool.	

SystemVerilog	 does	 not	 necessarily	 add	 any	 new	 features	 that	 a	 colorizing	 editor	 would	 use	 to	
identify	bugs	that	were	not	already	found	using	a	colorizing	editor	with	Verilog.	

 Linting	Appendix	2.2

Linting	tools	examine	code	to	identify	suspect	declarations,	assignments	and/or	coding	styles.	If	a	
company	has	access	 to	a	 linting	 tool,	 the	design	should	be	 "linted"	 (compiled	by	 the	 linting	 tool)	
before	it	is	compiled	for	simulation.		

Not	all	designers	have	access	to	linting	tools.	Designers	that	do	have	access	to	linting	tools	often	can	
identify	 problems	 that	 otherwise	 would	 not	 be	 found	 until	 a	 design	 is	 compiled	 for	 simulation,	
simulated,	compiled	for	synthesis	or	synthesized.	It	should	be	noted	that	a	synthesis	tool	is	a	very	
expensive	linting	tool	that	only	reports	a	few	errors	at	a	time	while	commercial	linting	tools	have	
been	optimized	to	find	and	report	as	many	errors	as	is	possible	with	just	a	few	passes	through	the	
tool	and	before	using	any	other	tool.	

The	same	SystemVerilog	features	that	enable	simulators	and	synthesis	tools	to	identify	bugs	early	
will	also	help	linting	tools	to	become	more	valuable.	

I	am	frequently	asked	if	there	are	any	public	domain	linting	tools.	As	of	this	writing,	I	know	of	no	
freely	 available,	 public	 domain	 linting	 tools.	 If	 I	 become	 aware	 of	 any	 publically	 available	 linting	
tools,	I	will	report	that	information	in	an	updated	version	of	this	paper	on	the	sunburst‐design.com	
web	page.	Please	do	not	email	to	ask	if	I	know	of	any	updates!	Feel	free	to	email	me	if	YOU	know	of	
any	updates!	

 Compiling	for	simulation	Appendix	2.3

Compilation	 typically	 refers	 to	 both:	 (a)	 syntax	 checking	 during	 a	 compilation	 phase,	 and	 (b)	



SNUG	2016	
	

Page	30		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

connectivity	and	parameter	resolution	during	an	elaboration	phase.	Some	simulators	do	both	when	
you	call	the	compilation	command,	while	other	simulators	do	part	(a)	during	compilation	and	part	
(b)	when	a	separate	simulation	command	is	called.	

Finding	 bugs	 during	 compilation	 saves	 lengthy	 and	 wasted	 simulations.	 Every	 designer	 who	
executes	 a	 simulation	 command	 automatically	 calls	 a	 tool	 that	 performs	 these	 syntax	 and	
connectivity	checks,	and	the	designer	is	required	to	fix	problems	before	simulation	will	start.		

SystemVerilog	 enhancements	 add	 value	 to	 the	 compilation	 and	 elaboration	 steps,	 helping	 to	
identify	additional	problems	that	previously	went	undetected	during	Verilog	compilation.	Examples	
of	this	have	been	shown	in	this	paper.	The	bottom	line	is	that	SystemVerilog	helps	catch	more	bugs	
earlier	in	the	design	compilation	stage.	

 Simulation	Appendix	2.4

Functional	 simulation	 (pre‐synthesis	 simulation)	 is	 used	 to	 prove	 that	 the	 logic,	 as	 coded,	 will	
function	properly	in	an	actual	design,	assuming	that	there	are	no	coding	issues	that	would	cause	a	
mismatch	between	pre‐synthesis	and	post‐synthesis	simulations.		

Simulation	requires	the	design	and	verification	teams	to	put	together	an	elaborate	set	of	test	cases	
to	 apply	 useful	 stimulus	 to	 the	 design.	 It	 should	 be	 noted	 that	 simulation	 is	 not	 inherently	
exhaustive,	and	is	only	as	thorough	as	what	a	verification	engineering	team	coded	for	the	testbench	
stimulus	and	output	checking.	

Simulation	should	be	used	to	prove	the	design	functionality	is	correct	before	launching	a	synthesis	
tool.	If	the	design	is	not	proven	to	be	functionally	correct	before	synthesis,	then	synthesis	runs	are	
largely	a	waste	of	project	time.	

 Simulation	‐	code	coverage	Appendix	2.5

When	a	 full	 set	of	 tests	 is	 run	against	 the	design,	code	coverage	can	be	enabled	 through	vendor‐
specific	command	line	switches.	Code	coverage	does	not	require	any	special	effort	on	the	part	of	the	
verification	 engineer,	 aside	 from	 enabling	 the	 switches	 and	 the	 time	 spent	 to	 analyze	 the	 code	
coverage	results,	which	can	be	significant.	

At	the	same	time,	code	coverage	does	not	answer	the	question	regarding	completeness	of	design	or	
completeness	of	 test	 generation.	The	only	question	 answered	by	 code	 coverage	 is	 if	 there	 is	 any	
code	that	has	not	been	touched	by	any	of	the	tests	and	hence,	if	there	is	any	code	that	has	not	been	
tested.	Untouched	code	could	still	have	functional	bugs.	Code	coverage	is	used	to	ensure	that	all	the	
code	has	been	touched.	

 Simulation	‐	functional	coverage	Appendix	2.6

While	 code	 coverage	was	 a	 semi‐automatic	process	 to	 ensure	 that	 all	 code	had	been	 touched	by	
tests,	functional	coverage	is	not	automatic	and	requires	a	test	plan.	Functional	coverage	is	used	to	
ensure	that	all	of	the	specified	design	features	have	been	exercised.	Functional	coverage	does	not	
ensure	that	the	features	work	properly.	 It	 is	a	combination	of	simulation	and	functional	coverage	
reports	 (ideally	 with	 100%	 functional	 coverage)	 that	 indicates	 that	 the	 design	 is	 functionally	
correct	and	ready	to	be	delivered	to	customers.	In	a	perfect	scenario,	functional	coverage	indicates	
that	ideally	100%	of	the	specified	features	have	been	tested	and	if	the	functional	simulation	passes,	
those	features	are	working.	

SystemVerilog	 adds	 features	 to	 significantly	 improve	 functional	 coverage	 capabilities,	 but	 those	
features	are	not	described	in	this	paper.	



SNUG	2016	
	

Page	31		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

 Synthesis	compilation	Appendix	2.7

Synthesis	compilation	is	basically	the	synthesis	linting	step	to	identify	illegal	RTL	coding	styles	per	
the	RTL	coding	policies	of	the	synthesis	tool,	followed	by	inference	of	logic	from	the	RTL	equations	
and	 mapping	 the	 design	 into	 target‐specific	 gates.	 The	 logic	 inference	 is	 also	 influenced	 by	 the	
availability	of	common	gates	in	specific	vendor	libraries.	For	example,	most	ASIC	families	can	infer	
latches	while	many	FPGA	families	do	not	have	latches.	

SystemVerilog	 could	 potentially	 add	 significant	 value	 to	 identify	 problems	 during	 synthesis	
compilation,	 helping	 to	 identify	 additional	 problems	 that	 previously	 went	 undetected	 during	
Verilog	synthesis.	Examples	have	been	shown	in	this	paper.	SystemVerilog	helps	catch	more	bugs	
earlier	in	the	design	stage.	

It	 should	 also	 be	 noted	 that	 SystemVerilog	 synthesis	 tools	 should	 do	 a	 better	 job	 of	 identifying	
problems	 than	 is	 currently	 true.	How	 SystemVerilog	 synthesis	 tools	 can	 improve	were	 shown	 in	
Section	9.	

Where	possible,	synthesis	tools	should	report	errors	as	opposed	to	reporting	warnings.	Warnings	
are	easily	missed	and	 indeed	are	 frequently	missed.	Valid	error	reporting	 is	much	more	valuable	
than	reporting	warnings	as	the	latter	can	often	lead	to	wasted	synthesis	runs.	

 Post‐synthesis	simulation	/	Equivalency	checking	Appendix	2.8

After	the	design	is	synthesized	and	a	gate‐level	netlist	is	available,	a	designer	should	perform	post‐
synthesis	simulations	or	equivalency	checking	before	tape‐out	of	a	design.	

If	an	engineer	does	not	have	access	to	equivalency	checking	tools,	the	engineer	must	run	gate‐level	
simulations	 (gate‐sims)	 to	 prove	 that	 the	 post‐synthesis	 gate‐level	 design	 matches	 the	 pre‐
synthesis	RTL	representation	of	the	design.	

A	 frequently	 asked	 question	 regarding	 gate‐sims	 is,	 if	 the	 design	 passed	 RTL	 simulations	 and	
passed	synthesis,	why	do	I	have	to	run	gate‐sims?	There	are	many	well	documented	coding	styles	
and	 coding	 practices	 that	 can	 lead	 to	 a	mis‐match	 between	 pre‐synthesis	 simulations	 and	 post‐
synthesis	simulations[1][4].	These	mismatches	are	indications	of	functional	bugs.	

If	 a	 designer	has	 access	 to	 equivalency	 checking	 tools,	 these	 tools	 can	be	used	 to	 reduce	 lengthy	
gate‐level	simulations.	Equivalency	checking	tools	attempt	to	mathematically	prove	that	the	post‐
synthesis	gate‐level	representation	of	the	design	matches	the	pre‐synthesis	RTL	representation	of	
the	design.	 If	 it	can	be	proven	mathematically	that	the	gate‐level	representation	matches	the	RTL	
representation,	 and	 if	 the	 RTL	 simulations	 proved	 that	 the	 designed	 worked	 and	 was	 fully	
functional,	then	there	is	reduced	need	to	run	gate‐sims.	

Gate‐level	simulations	can	help	check	timing	constraints	or	timing	exceptions	and	can	test	logic	that	
does	not	exist	in	RTL	simulations	such	as	DFT	logic.	

SystemVerilog	does	not	necessarily	add	any	new	features	 that	gate‐sims	or	equivalence	checking	
tools	would	use	to	identify	bugs	that	were	not	already	found	using	Verilog	versions	of	these	tools.	

 Silicon	testing	Appendix	2.9

Placing	the	completed	ASIC	or	FPGA	into	a	design	for	system	testing	is	the	second‐to‐last	place	an	
engineer	wants	to	find	a	bug.	For	ASICs	and	FPGAs,	finding	a	bug	this	late	in	the	development	cycle	
will	require	engineering	teams	to	identify	deficiencies	in	the	functional	coverage	model,	followed	by	
the	deficiency	in	the	simulation	tests,	followed	by	the	deficiency	in	the	RTL	code	itself.		

Replacing	 a	 failing	ASIC	 that	 cannot	be	 fixed	by	 software	patches	 can	be	 a	 very	 costly	 and	 time‐



SNUG	2016	
	

Page	32		

Rev	1.0	

SystemVerilog	Logic	Specific	Processes	for	Synthesis
‐	Benefits	and	Proper	Usage

consuming	 process.	 Replacing	 the	 FPGA	 is	 less	 painful	 but	 still	 requires	 all	 of	 the	 same	ASIC	 re‐
testing	steps	followed	by	successful	synthesis,	placement	and	routing	of	the	FPGA	design.	

One	of	the	goals	of	SystemVerilog	is	to	identify	more	of	these	issues	early	to	help	avoid	these	costly	
problems.	

Silicon	testing	is	used	to	find	any	final	bugs	before	delivering	the	chip	to	the	customer.	

 Customer	testing	Appendix	2.10

Finding	the	bug	once	the	design	is	in	the	hands	of	customers	is	the	last	place	an	engineer	wants	to	
find	 a	 bug.	 Fixing	 bugs	 found	 by	 a	 customer	 can	 require	 a	 costly	 recall	 of	 the	 product,	 or	 going	
bankrupt!	

One	of	the	goals	of	SystemVerilog	is	to	keep	your	company	from	going	bankrupt!	
	


