
	

	

	

	
World Class SystemVerilog & UVM Training

	
	

UVM	Analysis	Port	Functionality	and	
Using	Transaction	Copy	Commands	

	 	 	

	
 Clifford E. Cummings Heath Chambers
 Sunburst	Design,	Inc.	 HMC	Design	Verification	
	 cliffc@sunburst‐design.com	 hmcdvi@msn.com	
	 Provo,	UT,	USA	 Albuquerque,	NM,	USA	
	 www.sunburst‐design.com	

	

	
ABSTRACT	

There	is	significant	confusion	surrounding	UVM	analysis	ports	and	similar	confusion	about	the	
UVM	transaction	copy	command.	Many	verification	engineers	who	consider	themselves	to	be	
UVM	 experts	 can	 easily	 spend	hours	debugging	analysis	port	 issues	 if	 they	are	unaware	of	
important	considerations	related	to	analysis	port	paths.		
This	paper	 explains	UVM	analysis	port	usage	and	 compares	 the	 functionality	 to	 subscriber	
satellite	TV.	The	paper	shows	simplified,	non‐UVM,	analysis	port	implementations	to	clarify	how	
the	 corresponding	UVM	port	 connections	work.	The	paper	describes	how	 the	analysis	port	
write()	method	 efficiently	 calls	 each	 subscriber's	 write()	method.	 Part	 of	 the	 explanation	
describes	when	 an	 analysis	 implementation	 port	 requires	 the	 use	 of	 a	 transaction	 copy()	
command.	 The	 paper	 describes	 problems	 that	 arise	 when	 multiple	 analysis	 port	
implementations	are	required	in	the	same	component	and	how	to	address	the	problems.	 	
The	paper	also	describes	an	example	of	how	improper	handling	of	transactions	can	hide	design	
and	 testbench	bugs.	The	 example	 shows	how	a	bug	was	hidden	 in	a	 scoreboard	 that	went	
unnoticed	 for	months	and	 took	hours	 to	detect	and	 fix	once	we	 identified	 that	 there	was	a	
problem.	

SNUG-2018 Austin
Voted Best Presentation

2nd Place

SNUG	2018	
	

Page	2	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

Table	of	Contents	
1.	Introduction	‐	Satellite	TV	Example	..	5

2.	Observer	pattern	&	analysis	path	basics	...	5

2.1	Observer	pattern	definition	..	5

2.2	Simple	SystemVerilog	analysis	path	examples	...	5

2.2.1	Scenario	common	files	...	6

2.2.2	Scenario1	‐	monitor1	with	separate	analysis_if	declarations	–	no	connect()	methods	7

2.2.3	Scenario	2	‐	monitor2	with	separate	analysis_if	and	connect()	method	declarations	..	9

2.2.4	Scenario	3	‐	monitor3	with	analys_if	queue	and	common	connect()	method	11

Scenario	4	–	Buggy	example	where	subscriber2	modifies	the	transaction	13

UVM	analysis_port.write()	versus	analysis_imp	write()	method	...	14

3.	UVM	Port	Fundamentals	..	15

3.1	UVM	port	connection	chains	..	15

3.1.1	UVM	Ports	..	15

3.1.2	UVM	Exports	...	15

3.1.3	UVM	Imps	...	15

3.1.4	Unfortunate	port	naming	convention	..	15

3.1.5	Port‐Export‐Imp	chains	...	16

3.1.6	UVM	Port	&	Export	interchangability?	..	17

3.1.7	UVM	Port	&	Export	usage	guidelines	...	18

3.2	uvm_port_base	connect()	method	...	19

3.3	Scope	of	port	discussion	in	this	paper	...	19

4.	UVM	analysis		ports,	exports	and	imps	...	20

4.1	uvm_analysis_port	‐		broadcast	port...	20

4.1.1	Why	is	the	transaction	copy()	method	so	important?	..	20

4.2	uvm_analysis_export	–	transfer	port	..	20

4.3	uvm_analysis_imp	–	termination	port	...	20

4.4	port,	export,	imp	confusion	..	21

4.4.1	Driver	–	Car	/	Port	‐	Export	..	21

4.4.2	Export,	imp	confusion	...	21

5.	Declaring	and	constructing	ports	&	TLM	FIFOs	..	22

5.1	How	are	analysis	ports	and	TLM	FIFOs	declared?	...	22

5.2	Where	are	TLM	ports	and	TLM	FIFOs	constructed?	...	23

5.3	uvm_analysis_imp	port	usage	options	...	24

SNUG	2018	
	

Page	3	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

6.	uvm_subscriber	...	25

6.1	pure	virtual	write	function	...	25

6.2	multiple	uvm_analysis_imp	ports	on	the	same	component	...	25

7.	SystemVerilog	mailbox	...	25

7.1	Mailbox	–vs‐	queue	..	25

8.	TLM	FIFOs	..	26

8.1	uvm_tlm_fifo_base	...	26

8.2	uvm_tlm_fifo	..	28

8.2.1	uvm_tlm_fifo	new()‐constructor	&	size	...	28

8.2.2	uvm_tlm_fifo	put()	&	try_put()	methods...	29

8.2.3	uvm_tlm_fifo	get()	&	try_get()	methods	..	30

8.2.4	uvm_tlm_fifo	disadvantage	...	30

8.3	uvm_tlm_analysis_fifo	...	31

8.4	Quick‐summary	of	uvm_tlm_analysis_fifo	–vs‐	uvm_tlm_fifo	..	31

9.	`uvm_analysis_imp_decl(SFX)	macro	...	32

9.1	How	many	ports	are	allowed	on	a	scoreboard?	..	33

10.	Example	with	typical	analysis/copy()	problems	...	34

11.	Summary	&	Conclusions	...	34

12.	Acknowledgements	...	35

13.	References	...	35

	
	 	

SNUG	2018	
	

Page	4	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

Table	of	Figures	
Figure	1	‐	Monitor	&	subscribers	–	Simulation	output	..	9

Figure	2	‐	Monitor	&	subscribers	–	Buggy	simulation	output	..	13

Figure	3	‐	Common	analysis	port	connections	–	recommended	connections	..	15

Figure	4	‐	Analysis	paths	‐	first	set	of	three	paths	...	16

Figure	5	‐	Analysis	paths	‐	second	set	of	paths	‐	just	one	path	..	17

Figure	6	‐	NOT	Recommended	–	analysis	ports	&	no	analysis	exports	(but	it	works!)	17

Figure	7	‐	NOT	Recommended	–	analysis	exports	&	1	analysis	port	per	analysis	source	(but	it	
works!)	...	18

Figure	8	‐	UVM	analysis	ports	–	recommended	usage	block	diagram	..	18

Figure	9	‐	UVM	analysis	exports	&	imps	–	recommended	usage	block	diagram	...	18

Figure	10	‐	uvm_tlm_fifo_base	ports	...	26

Figure	11	‐	uvm_tlm_fifo	put()	and	get()	method	behavior	..	30

Figure	12	‐	uvm_tlm_analysis_fifo	–	most	common	usage	...	31

Figure	13	‐	uvm_tlm_fifo	–vs‐	uvm_tlm_analysis_fifo	usage	..	32

	

Table	of	Tables	
Table	1	‐	uvm_tlm_fifo_base	port	names	and	port	name	aliases	...	27

Table	2	‐	uvm_tlm_fifo_base	methods		and	usage	notes	...	28
	
	 	

SNUG	2018	
	

Page	5	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

1.	Introduction	‐	Satellite	TV	Example	
Those	 familiar	with	 satellite	 TV	 know	 that	 programs	 are	 broadcast	 as	 scheduled	 and	 the	 viewer	
either	needs	to	watch	the	program	live	as	it	is	being	broadcast,	or	they	need	to	setup	a	Digital	Video	
Recorder	(DVR)	to	record	the	program	for	later	viewing.		

The	satellite	will	broadcast	the	program	as	scheduled	whether	there	are	1,000's	of	viewers	or	no	
viewers	at	all.	The	broadcast	has	been	scheduled	and	it	will	happen	on	schedule.	

If	a	viewer	neglects	to	setup	a	DVR	to	record	a	desired	program	and	the	viewer	turns	the	TV	on	15	
minutes	after	the	program	has	started,	the	viewer	cannot	request	that	the	satellite	start	over	and	re‐
broadcast	the	desired	program	from	the	start	for	these	two	reasons:	(1)	the	viewer	has	no	way	to	
communicate	to	the	satellite	the	desire	to	re‐start	a	program,	and	(2)	other	viewers	would	object	to	
programs	being	restarted	while	they	were	watching	a	program	live.		

It	should	also	be	noted	that	the	viewer	of	a	live	broadcast	cannot	modify	the	Satellite	version	of	the	
broadcast	program	in	real	time.	If	the	viewer	has	the	right	equipment	and	software,	the	viewer	might	
splice	the	recorded	program	or	censor	unwanted	language	and	content,	but	those	edits	have	to	be	
done	on	the	local	copy	of	the	program	and	not	on	the	live	satellite	broadcast	of	the	program.	

The	uvm_analysis_port	is	a	broadcast	port	that	is	very	analogous	to	this	satellite	TV	example.	

Since	 UVM	 analysis	 paths	 do	 not	 broadcast	 transactions	 over	 the	 airwaves,	 it	 is	 instructive	 to	
understand	how	classes	are	assembled	to	allow	new	subscribers	to	be	added	to	an	analysis	broadcast	
source	with	little	modification	to	the	existing	environment.	Despite	the	fact	that	viewers	of	Satellite	
programs	 do	 not	 modify	 broadcast	 programs,	 engineers	 are	 frequently	 guilty	 of	 modifying	 the	
original	transaction	and	such	modifications	can	cause	subtle	problems	that	are	difficult	to	debug.	This	
paper	will	show	many	analysis	features	that	engineers	should	consider	when	using	analysis	ports.	

2.	Observer	pattern	&	analysis	path	basics	
The	UVM	analysis	path	is	an	example	of	a	software	design	pattern	known	as	the	observer	pattern.	

2.1	Observer	pattern	definition	

A	concise	definition	of	the	observer	pattern	is	found	in	Wikipedia.	

"The	observer	pattern	is	a	software	design	pattern	in	which	an	object,	called	the	subject,	maintains	
a	 list	 of	 its	 dependents,	 called	observers,	 and	 notifies	 them	 automatically	 of	 any	 state	 changes,	
usually	by	calling	one	of	their	methods."[3]	

2.2	Simple	SystemVerilog	analysis	path	examples	

We	have	found	that	most	examples	of	analysis	paths	are	overly	complex	and	difficult	to	understand.	
The	 multi‐part	 scenarios	 shown	 in	 this	 section	 are	 an	 over‐simplification	 of	 the	 analysis	 path	
implementation	in	SystemVerilog	and	are	not	fully	UVM	compliant,	but	their	simplicity	make	them	
easy	to	comprehend	and	being	simple	allows	an	engineer	to	have	a	conceptual	understanding	of	how	
the	uvm_analysis_port	path	works.	

Four	scenarios	will	be	presented	to	demonstrate	how	analysis	paths	(observer	patterns)	work.		

In	 all	 four	 scenarios,	 the	 transaction,	 analysis_if	 and	 subscribers	 remain	 unchanged.	 Also	
unchanged	is	the	fact	that	the	top	module	declares	all	of	the	subscriber	handles	and	has	to	new()‐
construct	each	subscriber.	The	top	module	in	each	scenario	will	show	impotant	differences	after	the	
subscribers	are	constructed.	

SNUG	2018	
	

Page	6	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

The	scenario	differences	are	visible	in	the	monitors	and	latter	part	of	the	top	modules.	

In	the	first	scenario,	monitor1	has	to	declare	all	of	the	subscribers	and	call	their	respective	write()	
methods	 by	 explicitly	 referencing	 the	 handle	 names.	 The	 top1	 module	 has	 to	 copy	 all	 of	 the	
constructed	 subscriber	 handles	 to	 the	 monitor1	 subscriber	 handles,	 which	 required	 the	 top1	
module	to	know	the	internal	handle	names	of	each	subscriber.	

In	 the	second	scenario,	monitor2	defines	connect[#]()	methods	 for	each	subscriber	so	 that	 the	
top2	module	only	has	to	know	there	are	connect()	methods	without	being	required	to	know	the	
subscriber	handle	names.	

In	the	first	two	scenarios,	each	subscriber	required	a	separate	declaration,	separate	calls	to	write()	
methods	and	the	top	module	had	to	either	copy	each	subscriber's	handle	name	to	the	corresponding	
handle	names	in	the	monitor,	or	had	to	call	a	connect()	method	that	was	unique	to	each	subscriber.	
Adding	more	subscribers	requires	lots	of	extra	code.	

In	 the	 third	 scenario,	 monitor3	 has	 a	 declared	 queue	 of	 analysis_if	 handles	 and	 a	 common	
connect()	method	that	pushes	a	new	handle	onto	the	queue.	The	run()	task	simply	uses	a	foreach	
loop	to	pull	each	handle	off	of	the	queue	and	call	the	write()	method	defined	in	each	subscriber.	
From	this	point	forward,	whenever	the	top3	module	adds	a	new	subscriber,	no	modifications	will	be	
necessary	 inside	 of	 the	 monitor.	 This	 is	 possible	 because	 each	 new	 subscriber	 that	 extends	 the	
analysis_if,	must	provide	an	implementation	of	the	commonly	named	virtual	write()	method.	

In	the	fourth	scenario,	subscriber2	modifies	the	transaction	values	and	we	observe	that	since	each	
subscriber	has	a	handle	to	a	common	transaction,	that	subscriber3	sees	the	modified	transaction	
and	not	the	original	broadcast	transaction.	This	demonstrates	why	subscribers	should	never	modify	
the	original	transaction	but	should	take	a	copy	before	doing	any	transaction	modifications.	

2.2.1	Scenario	common	files	

The	files	in	this	section	are	common	to	all	four	of	the	subsequent	scenarios.	

The	transaction	(trans1)	that	is	passed	around	these	scenarios	has	two	randomizable	fields,	addr	
and	data,	and	both	fields,	through	the	post_randomize()	method,	are	automatically	printed	each	
time	the	transaction	is	randomized.	The	trans1	class	is	shown	in	Example	1.	

	
class trans1;
 rand bit [7:0] addr;
 rand bit [7:0] data;

 function void post_randomize();
 $display("\nRandomized trans1 values addr=%2h data=%2h", addr, data);
 endfunction
endclass

Example	1	‐	transaction	class	with	built‐in	post_randomize()	method	to	print	randomized	transaction	values	

A	virtual	analysis_if	base	class,	shown	in	Example	2,	is	declared	with	a	pure	virtual	write()	
method.	Any	class	that	extends	the	analysis_if	class	will	be	required	to	provide	a	write()	method	
implementation.	 In	 these	 examples	 there	 will	 be	 three	 subscribers	 that	 are	 extensions	 of	 the	
analysis_if	class.	This	is	similar	in	concept	to	a	uvm_analysis_imp	inside	of	a	uvm_subscriber.	
Since	there	is	a	pure	virtual	write()	method	defined	in	the	analysis_if.	Any	class	that	extends	
the	analysis_if	(uvm_subscriber)	is	required	to	use	the	exact	same	prototype	(function	header)	
and	provide	the	actual	implementation.	The	implementations	in	this	example	will	be	simple	display	

SNUG	2018	
	

Page	7	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

commands	to	show	the	transaction	that	was	received.	

virtual class analysis_if;
 pure virtual task write(trans1 t);
endclass

Example	2	‐	virtual	analysis_if	base	class	and	pure	virtual	write()	method	definition	

For	these	scenarios,	three	subscribers,	shown	in	Example	3,	Example	4	and	Example	5,	have	been	
extended	from	the	analysis_if	virtual	class.	All	three	have	a	write()	method	implementation	that	
displays	 which	 subscriber[#]	 issued	 the	 message	 and	 the	 current	 contents	 of	 the	 transaction.		
subscriber2	 in	 Example	 4	 includes	BUG	 code	 to	modify	 the	 transaction	when	 the	 simulation	 is	
compiled	with	+define+BUG.	The	behavior	of	the	bug	is	described	later	in	this	section.	

class subscriber1 extends analysis_if;
 virtual task write(trans1 t);
 $display("subscriber1: ",
 "received addr=%2h data=%2h", t.addr, t.data);
 endtask
endclass

Example	3	‐	Subscriber	#1		with	write()	method	to	do	$display	

	
class subscriber2 extends analysis_if;
 virtual task write(trans1 t);
 $display("subscriber2: ",
 "received addr=%2h data=%2h", t.addr, t.data);

 `ifdef BUG
 t.addr = 8'hFF;
 t.data = 8'h00;
 $display("subscriber2: ",
 "set addr=%2h data=%2h", t.addr, t.data);
 `endif

 endtask
endclass

Example	4	‐	Subscriber	#2		with	write()	method	to	do	$display	–	includes	BUG	testing	code	

	 	
class subscriber3 extends analysis_if;
 virtual task write(trans1 t);
 $display("subscriber3: ",
 "received addr=%2h data=%2h", t.addr, t.data);
 endtask
endclass

Example	5	‐	Subscriber	#3		with	write()	method	to	do	$display	

2.2.2	Scenario1	‐	monitor1	with	separate	analysis_if	declarations	–	no	connect()	methods	

In	 the	 first	 scenario,	monitor1,	 shown	 in	 Example	 6,	 declares	 three	analysis_if	 handles	with	
handle	 names	ap1,	ap2	 and	ap3.	 	 The	monitor1	 class	 also	 has	 a	run()	 task	method	 that,	when	
executed,		will	call	ap1.write(),	ap2.write()	and	ap3.write().	

	

SNUG	2018	
	

Page	8	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

class monitor1;
 analysis_if ap1;
 analysis_if ap2;
 analysis_if ap3;

 task run();
 trans1 t = new();
 repeat(5) begin
 void'(t.randomize());
 $display("monitor: ",
 "**BROADCAST** addr=%2h data=%2h", t.addr, t.data);
 ap1.write(t);
 ap2.write(t);
 ap3.write(t);
 end
 endtask
endclass

Example	6	‐	monitor1	with	separate	analysis_if	declarations	–	no	connect()	methods	

The	 top1	 module,	 shown	 in	 Example	 7,	 	 declares	 and	 new()–constructs	 the	 monitor1,	
subscriber1,	subscriber2	 and	subscriber3	 class	 objects,	 then	 copies	 the	 subscriber	handles	
sub1,	sub2	and	sub3	to	the	respective	analysis_if	(ap)	handles	declared	in	monitor1.	

	
module top1;
 import tb_pkg::*;

 monitor1 mon;
 subscriber1 sub1;
 subscriber2 sub2;
 subscriber3 sub3;

 initial begin
 mon = new();
 sub1 = new();
 sub2 = new();
 sub3 = new();
 mon.ap1 = sub1;
 mon.ap2 = sub2;
 mon.ap3 = sub3;
 mon.run();
 end
endmodule

Example	7	‐	top1	module	with	subscriber	handles	copied	to	ap	handles	in	monitor1	

	

When	 this	 simulation	 is	 run,	 the	monitor1	run()–task	 calls	 all	 the	write()	methods	 from	each	
ap[#]	object.	the	simulation	loops	5	times	(repeat(5)),	each	time	re‐randomizing	the	transaction.	
monitor1	then	broadcasts	the	transaction,	and	each	subscriber[#]	write()	method	receives	and	
displays	the	randomized	transaction	values.	Each	subscriber	re‐prints	 the	current	contents	of	 the	
transaction	since	each	subscriber	has	a	handle	to	the	same	broadcast	transaction.	
	 	

SNUG	2018	
	

Page	9	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

The	simulation	results	are	shown	in	Figure	1.	

	
Randomized trans1 values addr=f9 data=50
monitor: **BROADCAST** addr=f9 data=50
subscriber1: received addr=f9 data=50
subscriber2: received addr=f9 data=50
subscriber3: received addr=f9 data=50

Randomized trans1 values addr=e9 data=27
monitor: **BROADCAST** addr=e9 data=27
subscriber1: received addr=e9 data=27
subscriber2: received addr=e9 data=27
subscriber3: received addr=e9 data=27

Randomized trans1 values addr=1f data=18
monitor: **BROADCAST** addr=1f data=18
subscriber1: received addr=1f data=18
subscriber2: received addr=1f data=18
subscriber3: received addr=1f data=18

Randomized trans1 values addr=8f data=4d
monitor: **BROADCAST** addr=8f data=4d
subscriber1: received addr=8f data=4d
subscriber2: received addr=8f data=4d
subscriber3: received addr=8f data=4d

Randomized trans1 values addr=1e data=7e
monitor: **BROADCAST** addr=1e data=7e
subscriber1: received addr=1e data=7e
subscriber2: received addr=1e data=7e
subscriber3: received addr=1e data=7e

Figure	1	‐	Monitor	&	subscribers	–	Simulation	output	

Scenario	1	shows	that	a	common	transaction	can	be	broadcast	to	multiple	observers	or	subscribers.	
One	problem	with	 this	 scenario	 is	 that	each	 time	a	new	subscriber	 is	added	 to	 the	top1	module,	
another	analysis_if	port	must	be	declared	in	monitor1,	and	the	run()	task	must	add	another	call	
to	the	new	analysis_if	write()	method.		

Of	course	the	top1	module	would	also	need	to	declare,	new()‐construct	another	subscriber	 [#]	
and	copy	the	constructed	handle	to	the	new	monitor1	ap	[#]	handle.	Each	new	subscriber	requires	
two	existing	files	to	be	updated.	

In	this	scenario,	top1	needs	to	know	the	internal	handle	names	of	each	analysis_if.	It	would	be	
better	to	have	a	connect()	method	to	make	the	connections	and	hide	the	internal	analysis_if	
handle	names.	Scenario	2	will	add	the	desired	connect()	method.	

	

2.2.3	Scenario	2	‐	monitor2	with	separate	analysis_if	and	connect()	method	declarations	

In	the	second	scenario,	monitor2,	shown	in	Example	8,	declares	three	analysis_if	handles	with	
handle	names	ap1,	ap2	and	ap3.	

monitor2	also	has	added	a	connect()	method	for	each	individual	analysis_if.	

SNUG	2018	
	

Page	10	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

class monitor2;
 analysis_if ap1;
 analysis_if ap2;
 analysis_if ap3;

 function void connect1 (analysis_if port);
 ap1 = port;
 endfunction

 function void connect2 (analysis_if port);
 ap2 = port;
 endfunction

 function void connect3 (analysis_if port);
 ap3 = port;
 endfunction

 task run();
 trans1 t = new();
 repeat(5) begin
 void'(t.randomize());
 $display("monitor: ",
 "**BROADCAST** addr=%2h data=%2h", t.addr, t.data);
 ap1.write(t);
 ap2.write(t);
 ap3.write(t);
 end
 endtask
endclass

Example	8	‐	monitor2	with	separate	analysis_if	and	connect()	method	declarations	

It	is	starting	to	become	obvious	that	the	addition	of	each	new	analysis_if	subscriber	requires	the	
overhead	of	declaring	a	new	analysis_if	handle,	a	corresponding	connect()	method	and	a	call	to	
the	ap[#].write()	method.		In	scenario	3,	all	of	these	issues	will	be	addressed.	

module top2;
 import tb_pkg::*;

 monitor2 mon;
 subscriber1 sub1;
 subscriber2 sub2;
 subscriber3 sub3;

 initial begin
 mon = new();
 sub1 = new();
 sub2 = new();
 sub3 = new();
 mon.connect1(sub1);
 mon.connect2(sub2);
 mon.connect3(sub3);
 mon.run();
 end
endmodule

Example	9	‐	top2	module	with	calls	to	separate	connect()	methods	

SNUG	2018	
	

Page	11	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

The	top2	module,	shown	in	Example	9,	declares	and	new()–constructs	the	monitor1,	subscriber1,	
subscriber2	 and	subscriber3	 class	objects,	 then	calls	 the	monitor2	connect[#]()	method	 to	
copy	the	handles	sub1,	sub2	and	sub3	 to	the	respective	analysis_if	 (ap)	handles	declared	in	
monitor2.	The	top2	module	no	longer	needs	to	know	the	internal	ap[#]	handle	names.	

One	problem	that	existed	in	scenario	1	still	exists	with	this	scenario.	The	problem	is	that	each	time	a	
new	 subscriber	 is	 added	 to	 the	 top2	 module,	 another	 analysis_if	 port	 must	 be	 declared	 in	
monitor2,	and	the	run()	 task	must	add	another	call	 to	 the	new	analysis_if	write()	method.	
Scenario	2	also	requires	the	addition	of	a	new	connect()	method	for	each	new	analysis_if	handle.	

Of	course	the	top2	module	would	also	need	to	declare,	new()‐construct	another	subscriber	 [#]	
and	connect	the	constructed	handle	to	the	new	monitor2	ap[#]	handle.	Each	new	subscriber	still	
requires	two	existing	files	to	be	updated.	

When	the	simulation	is	run,	the	monitor2	run()–task	calls	all	the	write()	methods	from	each	ap[#]	
object.	 The	 simulation	 loops	 5	 times	 (repeat(5)),	 each	 time	 re‐randomizing	 the	 transaction.	
monitor2	then	broadcasts	the	transaction,	and	each	subscriber[#]	write()	method	receives	and	
displays	the	randomized	transaction	values.	Each	subscriber	re‐prints	 the	current	contents	of	 the	
transaction	since	each	subscriber	has	a	handle	to	the	same	broadcast	transaction.	

The	simulation	results	are	the	same	as	those	shown	in	Figure	1.	

2.2.4	Scenario	3	‐	monitor3	with	analys_if	queue	and	common	connect()	method	

Scenario	3	solves	the	problems	that	required	us	to	modify	monitor1	and	monitor2.	In	monitor3,	
shown	in	Example	10,	an	unbounded	queue	of	anlysis_if	ports	is	declared:	analysis_if ap[$];			

In	monitor3,	each	time	the	connect()	method	is	called,	a	new	subscriber	handle	is	push_back–
added	to	the	ap–queue.	

Also	in	monitor3,	when	the	run()	task	is	called,	a	foreach–loop	calls	each	of	the	write()	methods	
for	the	queued	subscriber	handles.	

class monitor3;
 analysis_if ap[$]; // queue of analysis_if ports

 // Each call to connect will push_back another
 // analysis_if port onto the ap-queue
 function void connect (analysis_if port);
 ap.push_back(port);
 endfunction

 task run();
 trans1 t = new();
 repeat(5) begin
 void'(t.randomize());
 $display("monitor: ",
 "**BROADCAST** addr=%2h data=%2h", t.addr, t.data);
 // Call the write method for each port on the ap-queue
 foreach(ap[i]) ap[i].write(t);
 end
 endtask
endclass

Example	10	‐	monitor3	with	analysis	queue	and	common	connect()	method	

These	 three	 improvements	 make	 it	 possible	 to	 add	 more	 subscribers	 without	 making	 multiple	

SNUG	2018	
	

Page	12	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

modifications	 to	 the	 monitor3	 class.	 This	 is	 roughly	 how	 uvm_analysis_ports	 and	
uvm_subscribers	work.	

The	top3	module,	shown	in	Example	11,	can	now	call	a	common	connect()	method	each	time	a	new	
subscriber	is	added	to	the	design.	

	 	
module top3;
 import tb_pkg::*;

 monitor3 mon;
 subscriber1 sub1;
 subscriber2 sub2;
 subscriber3 sub3;

 initial begin
 mon = new();
 sub1 = new();
 sub2 = new();
 sub3 = new();
 mon.connect(sub1);
 mon.connect(sub2);
 mon.connect(sub3);
 mon.run();
 end
endmodule

Example	11	‐	top3	module	with	calls	to	common	connect()	method	that	pushes	subscriber	handles	onto	queue	

	 	

SNUG	2018	
	

Page	13	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

Scenario	4	–	Buggy	example	where	subscriber2	modifies	the	transaction	

In	 scenario	 4,	 the	 simulation	 was	 run	 with	 the	 +define+BUG	 compilation	 switch	 to	 force	
subscriber2	to	modify	the	addr	and	data	fields	of	the	broadcast	transaction.	

As	can	be	seen	in	Figure	2,	after	subscriber2	modifies	the	addr	and	data	fields,	subscriber3	reads	
the	 fields	 from	 the	 referenced	 transaction	handle	and	displays	 the	updated	values.	subscriber3	
should	have	acted	upon	the	original	addr	and	data	fields.	

	
Randomized trans1 values addr=f9 data=50
monitor: **BROADCAST** addr=f9 data=50
subscriber1: received addr=f9 data=50
subscriber2: received addr=f9 data=50
subscriber2: set addr=ff data=00
subscriber3: received addr=ff data=00

Randomized trans1 values addr=e9 data=27
monitor: **BROADCAST** addr=e9 data=27
subscriber1: received addr=e9 data=27
subscriber2: received addr=e9 data=27
subscriber2: set addr=ff data=00
subscriber3: received addr=ff data=00

Randomized trans1 values addr=1f data=18
monitor: **BROADCAST** addr=1f data=18
subscriber1: received addr=1f data=18
subscriber2: received addr=1f data=18
subscriber2: set addr=ff data=00
subscriber3: received addr=ff data=00

Randomized trans1 values addr=8f data=4d
monitor: **BROADCAST** addr=8f data=4d
subscriber1: received addr=8f data=4d
subscriber2: received addr=8f data=4d
subscriber2: set addr=ff data=00
subscriber3: received addr=ff data=00

Randomized trans1 values addr=1e data=7e
monitor: **BROADCAST** addr=1e data=7e
subscriber1: received addr=1e data=7e
subscriber2: received addr=1e data=7e
subscriber2: set addr=ff data=00
subscriber3: received addr=ff data=00

Figure	2	‐	Monitor	&	subscribers	–	Buggy	simulation	output	

Broadcast	 transactions	 from	 an	 analysis_port	 should	 never	 be	 modified.	 This	 is	 why	 the	
transaction	copy()	command	is	so	vital	to	a	UVM	testbench	environment.	The	scoreboard	predictor	
should	make	 a	 copy	 of	 the	 broadcast	 transaction,	 then	 it	 reads	 the	 copied‐transaction	 inputs	 to	
calculate	the	predicted	output.	The	predicted	output	is	then	placed	into	the	copied	transaction	for	
comparison	to	the	actual	broadcast	transaction.	The	original	transaction	should	never	be	modified.	

Guideline:	Modifying	the	fields	of	an	analysis_port	broadcast	transaction	should	never	be	done.	
	 	

SNUG	2018	
	

Page	14	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

	 	

UVM	analysis_port.write()	versus	analysis_imp	write()	method	

In	 this	 simplified	 example,	 each	monitor	 had	 a	run()	method	 that	 called	 each	 of	 the	 subscriber	
write()	methods.		

In	UVM	the	uvm_analysis_port	calls	an	analysis_port.write(tr)	method	to	broadcast	a	tr	
transaction.	Each	uvm_analysis_imp	defines	a	write()	method	that	is	executed	when	the	analysis	
port	calls	the	write()	method.	There	are	pros	and	cons	to	this	naming	convention.		

The	 port.write()	 command	 actually	 reads	 each	 uvm_analysis_imp	 handle	 and	 then	 calls	 the	
write()	method	for	each	handle.	The	advantage	to	this	approach	is	that	an	engineer	only	needs	to	
remember	 that	 there	 is	 a	 write()	 command	 that	 broadcasts	 the	 transaction	 and	 a	 write()	
command	at	the	end	of	each	analysis	path	that	is	executed.	The	disadvantage	to	this	approach	is	that	
engineers	 often	 mistakenly	 think	 the	 port.write()	 command	 is	 an	 actual	 call	 to	 the	
uvm_analysis_imp	write()	method.	The	port.write()	method	could	have	been	named	anything,	
including	port.broadcast()	as	long	as	the	port.command()	 itself	called	the	respective	subscriber	
write()	methods.		

In	 short,	 port.write()	 is	 not	 the	 same	 as	 the	 subscriber	 write()	 methods.	 The	 port.write()	
method	 CALLS	 the	 subscriber	 write()	 methods.	 The	 port.write()	 command	 could	 have	 been	
named	 anything,	 but	 the	 developers	 of	 UVM	 decided	 to	 keep	 the	 broadcast	 and	 implementation	
method	names	the	same.	
	 	

SNUG	2018	
	

Page	15	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

3.	UVM	Port	Fundamentals	
The	UVM	Base	Class	Library	(BCL)	includes	base	port	classes	that	are	extended	to	define	the	TLM1	
(Transaction	Level	Model	1)	ports	that	are	used	in	UVM	verification	environments.	

3.1	UVM	port	connection	chains	

UVM	TLM	connections	include	chains	of	port(s)	–	(exports(s)(optional))	–	imp(s)(implementations).	

	

	
Figure	3	‐	Common	analysis	port	connections	–	recommended	connections	

	

3.1.1	UVM	Ports	

UVM	ports	initiate	transaction	activity	and	can	connect	to:	(1)	other	UVM	ports,	(2)	UVM	exports,	
and	(3)	UVM	imps.	

3.1.2	UVM	Exports	

UVM	exports	are	basically	transfer‐ports	that	can	connect	to:	(1)	other	UVM	exports,	and	(2)	UVM	
imps.		

3.1.3	UVM	Imps	

UVM	imps	(implementations)	terminate	a	chain	of	port(s)‐(export(s))‐imp.		

3.1.4	Unfortunate	port	naming	convention	

An	unfortunate	naming	convention	inside	of	UVM	makes	the	imp‐connections	rather	confusing.	UVM	
documentation	teaches	about	ports	connecting	to	exports	and	is	somewhat	vague	about	imps.	In	fact	
the	uvm_sequencer	base	class	includes	a	seq_item_export	handle	declaration,	but	this	so‐called	
"export"	handle	is	really	a	uvm_seq_item_pull_imp	port	type.	Similarly,	the	uvm_subscriber	base	
class,	 which	 is	 frequently	 extended	 to	 help	 create	 scoreboards	 and	 coverage	 collectors,	 has	 an	
analysis_export	 handle	 declaration,	 but	 this	 so‐called	 "export"	 handle	 is	 really	 a	
uvm_analysis_imp	port	type.	

SNUG	2018	
	

Page	16	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

3.1.5	Port‐Export‐Imp	chains	

Most	 port‐export‐imp	 chains	 only	 allow	 a	 single	 connection	 point.	 The	 driver‐sequencer	 is	 a	
common	example	in	UVM	where	the	driver	port	(seq_item_port)	connects	to	the	sequencer	export	
(seq_item_export	–	which	is	really	an	implementation	port).	

The	broadcast	port	type	in	UVM	is	the	uvm_analysis_port.	This	port	type	is	allowed	to	connect	to	
multiple	port‐export‐imp	chains,	each	of	which	must	terminate	with	a	uvm_analysis_imp.	

Figure	3	(on	page15)	shows	two	common	analysis	paths	that	are	used	in	a	UVM	testbench.	

The	 common	 sets	 of	 paths	 are	 shown	 in	 Figure	 4.	 The	 first	 analysis	 paths	 originate	 with	 a	
uvm_analysis_port	on	the	tb_monitor	that	broadcasts	to	another	uvm_analysis_port	on	the	
tb_agent,	which	then	branches	into	two	paths	with	the	first	path	(labeled	Path	#1)	terminating	at	
the	uvm_analysis_imp on	the	tb_cover	coverage	collector.	The	second	branch	from	the	tb_agent	
connects	to	the	uvm_analysis_export	on	the	tb_scoreboard.	The	uvm_analysis_export	on	the	
tb_scoreboard	then	branches	into	two	paths	with	the	first	path	(labeled	path	#2)	terminating	at	a	
uvm_analysis_imp	 port	 on	 the	 sb_predictor	 (extended	 from	 the	 uvm_subscriber),	 and	 the	
second	path	(labeled	path	#3)	connects	to	a	uvm_analysis_export	on	the	sb_comparator,	which	
then	 terminates	 at	 a	 uvm_analysis_imp	 on	 the	 uvm_tlm_analysis_fifo	 with	 handle	 name	
outfifo.	

	

	
Figure	4	‐	Analysis	paths	‐	first	set	of	three	paths	

	

	

The	 second	 analysis	 path	 is	 shown	 in	 Figure	 5	 on	 page	 9.	 The	 analysis	 path	 starts	 with	 a	
uvm_analysis_port	 on	 the	sb_predictor	 that	 connects	 to	 the	uvm_analysis_export	 on	 the	
sb_comparator	 and	 terminates	 at	 a	uvm_analysis_imp	 on	 the	uvm_tlm_analysis_fifo	with	
handle	name	expfifo.	

SNUG	2018	
	

Page	17	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

	

Figure	5	‐	Analysis	paths	‐	second	set	of	paths	‐	just	one	path	

3.1.6	UVM	Port	&	Export	interchangability?	

An	interesting	fact	about	analysis	ports	and	exports	is	that	they	are	largely	interchangeable,	except	
for	the	originating	uvm_analysis_port	that	is	responsible	for	broadcasting	the	transaction.		

Replacing	all	of	the	uvm_analysis_export(s)	(as	shown	in	Figure	3)	with	uvm_analysis_port(s)	
(as	shown	in	Figure	6)	does	not	change	the	behavior	of	the	UVM	testbench.	Replacing	the	exports	
with	non‐broadcasting	ports	just	changes	the	type	of	transfer	port.	The	simulation	continues	to	run	
the	same	as	it	did	in	Figure	3.	

	
Figure	6	‐	NOT	Recommended	–	analysis	ports	&	no	analysis	exports	(but	it	works!)	

Similarly,	replacing	all	of	the	non‐broadcasting	uvm_analysis_port(s)	(as	shown	in	Figure	3)	with	
uvm_analysis_export(s)	 (as	 shown	 in	 Figure	 7)	 does	 not	 change	 the	 behavior	 of	 the	 UVM	
testbench.	Replacing	the	non‐broadcasting	ports	with	exports	just	changes	the	type	of	transfer	port.	
The	simulation	continues	to	run	the	same	as	it	did	in	Figure	3.	

SNUG	2018	
	

Page	18	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

	
Figure	7	‐	NOT	Recommended	–	analysis	exports	&	1	analysis	port	per	analysis	source	(but	it	works!)	

3.1.7	UVM	Port	&	Export	usage	guidelines	

We	do	not	 recommend	 randomly	 replacing	exports	with	ports	 and	ports	with	exports	 since	 the	
practice	is	confusing	to	most	UVM	verification	engineers.		

Guideline:	use	uvm_analysis_port(s)	for	component	outputs	that	are	forwarding	a	transaction	to	
other	ports	on	an	anlysis	path,	as	shown	in	Figure	8	

	

	
Figure	8	‐	UVM	analysis	ports	–	recommended	usage	block	diagram	

Guideline:	 use	uvm_analysis_export(s)	 or	uvm_analysis_imp	 for	 component	 inputs	 that	 are	
receiving	a	transaction	from	other	ports	on	an	anlysis	path,	as	shown	in	Figure	9.	

	

	
Figure	9	‐	UVM	analysis	exports	&	imps	–	recommended	usage	block	diagram	

SNUG	2018	
	

Page	19	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

3.2	uvm_port_base	connect()	method	

The	virtual	uvm_port_base	class	includes	multiple	methods,	virtual	and	non‐virtual,	that	are	
used	 to	 define	 the	TLM1	port	 types.	 Among	 the	methods	 in	 the	uvm_port_base	 is	 the	virtual	
connect()	method.	The	virtual	connect()	method	includes	46	lines	of	code	that	performs	certain	
important	inspections	to	ensure	that	the	TLM	connections	are	legal.		

The	connect()	method	includes	functionality	that	examines	the	UVM	testbench	code	to	make	sure	
that	a	UVM	export	is	not	connected	to	a	UVM	port.	The	port	must	connect	to	an	export.	Similarly,	the	
uvm_port_base	connect()	method	checks	to	make	sure	a	UVM	imp	is	not	connected	to	any	other	
port.	The	port	or	export	must	connect	to	a	final	imp.	

3.3	Scope	of	port	discussion	in	this	paper	

A	 full	 understanding	 of	 all	 of	 the	 different	 UVM	 port	 types,	 how	 they	 can	 be	 connected	 and	 the	
methods	 that	 are	 available	 to	 pass	 transactions	 between	 components	 using	 TLM1	 and	 TLM2	 is	
beyond	the	scope	of	this	paper.		

This	paper	focuses	on	the	use	of	the	analysis	port‐chains,	some	of	the	underlying	implementation	
basics	 and	 the	proper	use	 of	methods	within	 analysis‐chains.	 This	 paper	 also	describes	 common	
mistakes	that	are	made	with	analysis	chains	and	how	those	mistakes	manifest	themselves	in	a	UVM	
verification	environment.	The	proper	use	of	the	transaction	copy()	method	is	used	to	avoid	many	
analysis‐chain	problems,	and	is	discussed	in	this	paper.	
	 	

SNUG	2018	
	

Page	20	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

4.	UVM	analysis		ports,	exports	and	imps	
The	UVM	analysis	path	originates	with	a	uvm_analysis_port	that	broadcasts	a	transaction,	which	
can	pass	through	one	or	more	uvm_analysis_port(s)	and/or	uvm_analysis_export(s),	and	has	
one	 or	 more	 uvm_analysis_imp	 termination	 points.	 If	 a	 uvm_analysis_port	 connects	 to	 any	
uvm_analysis_export(s),	then	there	must	be	a	uvm_analysis_imp	at	the	end	of	each	analysis	path	
chain.	 It	 is	 legal	 for	 a	uvm_analysis_port	 to	 connect	 to	 other	uvm_analysis_port(s)	without	
connecting	to	any	uvm_analysis_export(s)	or	uvm_analysis_imp.	This	is	analogous	to	a	satellite	
broadcast	where	nobody	is	watching	or	recording	the	program.	The	satellite	does	not	query	to	find	
out	if	anybody	is	watching	the	broadcast	program	and	the	uvm_analysis_port	does	not	query	to	
find	out	if	there	are	any	uvm_analysis_imp	termination	points	on	the	UVM	analysis	path.	

Details	about	these	different	port	types	are	described	below.	

4.1	uvm_analysis_port	‐		broadcast	port	

As	already	noted,	the	uvm_analysis_port	 is	a	broadcast	port	that	broadcasts	a	transaction	from	
the	port	until	it	reaches	zero	or	more	uvm_analysis_imp	ports	where	the	transaction	is	either	used	
immediately	(in	0‐time),	or	a	copy	of	the	transaction	is	made	so	that	the	copy	can	be	manipulated	
over	time	without	modifying	the	original	broadcast	transaction.	This	is	why	the	transaction	copy()	
command	I	so	important	(see	Section	4.1.1).	

A	uvm_analysis_port	can	be	connected	to	other	uvm_analysis_ports,	uvm_analysis_exports	
and	uvm_analysis_imps,	but	there	is	only	one	uvm_analysis_imp	per	analysis	path.	

4.1.1	Why	is	the	transaction	copy()	method	so	important?	

Any	 component	 that	 needs	 to	 use	 the	 transaction	 over	 multiple	 cycles	 must	 take	 a	 copy	 of	 the	
transaction	because	the	broadcast	transaction	can	be	changed	at	any	time	and	there	is	no	way	for	a	
component	to	communicate	to	the	uvm_analysis_port	to	hold	the	original	transaction.		

Any	component	that	needs	to	modify	any	of	the	fields	of	the	transaction	must	also	take	a	copy	of	the	
transaction	because	there	may	be	many	components	that	are	accessing	the	broadcast	transaction;	
therefore,	modifying	the	fields	of	the	broadcast	transaction	will	cause	problems	for	other	subscribers	
that	needed	to	access	the	original	transaction	contents.	

Even	 if	 there	are	no	other	subscribers,	a	component	should	 take	a	copy	of	 the	 transaction	before	
modifying	any	fields,	since	another	component	might	later	be	added	to	the	analysis	path	and	it	would	
rely	on	an	original	unmodified	transaction.	

4.2	uvm_analysis_export	–	transfer	port	

The	 uvm_analysis_export	 is	 little	 more	 than	 a	 transfer‐point	 connection	 between	 the	
broadcasting	 	 uvm_analysis_port	 source	 and	 each	 uvm_analysis_imp	 termination	 point.	
uvm_analysis_export(s)	can	be	viewed	as	a	transfer	port.	

4.3	uvm_analysis_imp	–	termination	port	

A	uvm_analysis_imp	provides	the	required	write()	method	implementation	to	terminate	a	UVM	
analysis	 path.	 	 The	 verification	 engineer	 is	 required	 to	 override	 the	 write()	 method	 with	 an	
implementation	for	the	uvm_analysis_imp.	

SNUG	2018	
	

Page	21	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

4.4	port,	export,	imp	confusion	

When	 it	 comes	 to	 the	 behavior	 of	ports,	 exports	 (and	 imps),	 there	 is	 a	 great	 deal	 of	 confusion	
surrounding	these	names.	Ports	initiate	activity	by	executing	commands	while	exports	(and	imps)	
are	 the	 targets	of	 the	 commands	and	actually	provide	 the	 implementation	of	 the	 commands.	 For	
many	engineers	new	to	Transaction	Level	Modeling	 this	seems	backwards.	Many	believe	 that	 the	
initiator	is	the	export	and	the	target	should	be	the	port.	What	is	the	reasoning	behind	these	names?	
This	can	be	best	described	with	an	example.	

4.4.1	Driver	–	Car	/	Port	‐	Export	

Every	car	has	a	steering	wheel.	When	the	driver	turns	the	steering	wheel	in	the	clockwise	direction,	
the	car	turns	to	the	right.	When	the	wheel	is	moved	in	the	counter	clockwise	direction	the	car	turns	
to	the	left.	The	driver	does	not	necessarily	know	if	the	steering	is	accomplished	through	rack	and	
pinion	steering,	power	steering,	steer‐by‐wire	or	some	other	mechanism.	The	driver	just	knows	how	
to	turn	the	steering	wheel	to	make	the	car	turn	to	the	right	or	the	left.	

Every	car	has	an	accelerator	pedal.	When	the	driver	pushes	on	the	accelerator	pedal,	the	car	will	
accelerate.	When	the	driver	lets	up	on	the	pedal,	the	car	will	coast	and	slow	down.	The	driver	does	
not	know	 if	 the	acceleration	 is	accomplished	 through	a	carburetor,	 fuel	 injection	or	some	type	of	
electric	motor.	The	driver	just	knows	that	pushing	the	accelerator	pedal	will	increase	the	car	speed	
while	letting	up	on	the	pedal	will	cause	the	car	to	coast	and	slow	down.	

Every	car	has	a	brake	pedal.	When	the	driver	pushes	on	the	brake	pedal,	the	car	will	slow	down	and	
stop.	When	the	driver	lets	up	on	the	brake	pedal	the	car	will	start	to	move	and	can	now	be	accelerated.	
The	 driver	 does	 not	 know	 if	 the	 braking	 system	 uses	 disc	 brakes,	 drum	 brakes	 or	 some	 type	 of	
electronic	recovery	and	battery	charging	system.	The	driver	just	knows	that	depressing	the	brake	
pedal	slows	 the	car	or	brings	 it	 to	a	stop,	and	that	releasing	 the	brake	pedal	allows	the	car	 to	go	
forward	again.	

In	each	of	these	scenarios,	the	driver	issues	the	commands	but	does	not	have	the	ability	to	execute	
any	of	the	described	actions.	It	is	the	car	that	must	export	to	the	driver	the	capabilities	that	the	driver	
will	control,	but	 it	 is	the	car	that	has	the	actual	 implementation	of	each	of	the	required	functions.	
Similarly,	the	car	cannot	execute	any	of	the	commands	autonomously	but	must	wait	until	a	driver	
initiates	the	appropriate	commands.	The	driver	is	the	initiator‐port,	while	the	car	is	the	target‐export.	

Note,	the	driver	cannot	successfully	issue	any	command	that	is	not	exported	by	the	car.	The	driver	
might	try	to	place	a	hands‐free	call	over	the	automobile	Bluetooth	connection	to	the	driver's	mobile	
phone,	 but	 if	 the	 car	 does	 not	 export	 the	Bluetooth‐Phone	 control	 capability	 (because	 it	 is	 not	 a	
feature	 of	 that	 particular	 car),	 such	 a	 command	by	 the	 driver	will	 fail.	 The	driver	 can	 only	 issue	
commands	that	are	exported	to	the	driver	by	the	car.		

This	is	what	happens	with	TLM	connections.	The	port	can	only	execute	commands	that	are	exported	
by	the	connected	export	or	imp.	

4.4.2	Export,	imp	confusion	

The	UVM	documentation	describes	all	connections	as	port‐export	connections,	but	in	reality,	it	is	an	
imp	(implementation	export)	that	provides	the	actual	exported	functionality.	Two	examples	found	
in	common	UVM	testbenches	include:	

Driver	seq_item_port	connects	to	the	sequencer	seq_item_export.	

1. seq_item_port	is	just	the	handle	name	of	the	uvm_seq_item_pull_port	(port)	
2. seq_item_export	is	just	the	handle	name	of	the	uvm_seq_item_pull_imp	(imp‐lementation)	

SNUG	2018	
	

Page	22	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

The	UVM	subscriber	component	has	a	built‐in	analysis_export,	which	 is	 really	 just	 the	handle	
name	for	a	uvm_analysis_imp	(imp‐lementation).	

The	UVM	documentation	seemingly	tries	to	hide	the	existence	of	imps	by	giving	them	"export"	handle	
names	 instead	of	"imp"	handle	names.	We	personally	believe	 it	 is	a	mistake	to	declare	 imps	with	
"export"	handle	names	but	that	is	how	the	UVM	base	classes	are	defined	so	an	engineer	just	has	to	
understand	this	naming	inconsistency.	

5.	Declaring	and	constructing	ports	&	TLM	FIFOs	
TLM	FIFO	is	an	important	component	that	is	used	for	testbench	synchronization,	especially	in	a	UVM	
scoreboard.	TLM	FIFOs	are	built	from	SystemVerilog	mailboxes.	Mailboxes	are	described	in	Section		
7.	TLM	FIFOs	are	described	in	Section	8.		

Ports	and	TLM	FIFOs	are	UVM	base	classes	that	are	NOT	registered	with	the	factory	and	are	used	
directly	in	a	UVM	testbench.	Because	they	are	not	registered	with	the	factory	and	because	they	are	
used	directly,	they	are	new()‐constructed	and	not	factory	::type_id::create‐ed.	

5.1	How	are	analysis	ports	and	TLM	FIFOs	declared?	

The	 declaration	 of	 the	 different	 analysis	 port	 types	 has	 a	 subtle	 difference.	 An	 example	
uvm_analysis_port	is	declared	with	the	transaction	type	parameter	displayed	near	the	top	of	the	
tb_monitor	class	shown	in	Example	12.	The	declaration	requires	the	transaction‐type	parameter.	
In	this	example,	the	tb_monitor	broadcasts	a	transaction	using	the	ap.write()	command	in	the	
run_phase().	

	
class tb_monitor extends uvm_monitor;
 ...
 uvm_analysis_port #(trans1) ap;
 ...
 function void build_phase(uvm_phase phase);
 ...
 ap = new("ap", this); // build the analysis port
 ...

 task run_phase(uvm_phase phase);
 ...
 ap.write(tr);

Example	12	‐	tb_monitor	with	uvm_analysis_port	declaration	and	ap.write()	command	

	 	

SNUG	2018	
	

Page	23	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

An	example	uvm_analysis_export	is	declared	with	the	transaction	type	parameter	displayed	near	
the	top	of	the	tb_scoreboard	class	shown	in	Example	13.	The	declaration	requires	the	transaction‐
type	 parameter.	 The	 uvm_analysis_export	 is	 typically	 connected	 to	 other	
uvm_analysis_port(s),	uvm_analysis_export(s)	 and	possibly	 one	uvm_analysis_imp.	 There	
are	now	methods	that	need	to	be	excuted	to	propagate	transactions	on	the	uvm_analysis_export.	

	
class tb_scoreboard extends uvm_scoreboard;
 ...
 uvm_analysis_export #(trans1) axp;
 sb_predictor prd;
 sb_comparator cmp;
 ...
 function void build_phase(uvm_phase phase);
 axp = new("axp", this);
 prd = sb_predictor::type_id::create("prd", this);
 cmp = sb_comparator::type_id::create("cmp", this);
 endfunction

 function void connect_phase(uvm_phase phase);
 axp.connect (prd.analysis_export);
 axp.connect (cmp.axp_out);
 endfunction
 ...

Example	13	‐	tb_scoreboard	with	uvm_analysis_export	declaration	and	connection	to	other	analysis‐type	ports	

The	uvm_analysis_imp,	unlike	the	uvm_analysis_port	and	uvm_analysis_export	declarations,	
is	 required	 to	 declare	 TWO	 parameters,	 the	 transaction	 type	 and	 the	 class	 name.	 An	 example	
uvm_analysis_imp	is	displayed	near	the	top	of	the	sb_predictor	class	shown	in	Example	14.	The	
declared	uvm_analysis_imp	must	be	built	and	must	override	the	write()	method	to	provide	the	
required	implementation.	

	
class sb_predictor extends uvm_component;
 ...
 uvm_analysis_imp #(trans1, sb_predictor) analysis_export;
 uvm_analysis_port #(trans1) results_ap;
 ...
 function void build_phase(uvm_phase phase);
 ...
 analysis_export = new("analysis_export", this);
 results_ap = new("results_ap", this);
 endfunction

 function void write(trans1 t);
 ...
 results_ap.write(exp_tr);
 ...

Example	14	‐	sb_predictor	with	uvm_analysis_imp	declaration	and	write()	method	

5.2	Where	are	TLM	ports	and	TLM	FIFOs	constructed?	

The	 construction	 of	 TLM	 ports	 and	 TLM	 FIFOs	 can	 either	 be	 done	 in	 the	 component	 new()	
constructor,	or	in	the	build_phase()	method.		

SNUG	2018	
	

Page	24	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

The	UVM	Class	Refence[4]	 has	 examples	 of	 constructing	ports	 and	TLM	FIFOs	 in	 the	 component	
new()‐constructor	(e.g.	Section	14.	TLM1	Interfaces,	Ports,	Exports	and	Transport	 Interfaces,	and	
Section	 16.	 Analysis	 Ports)	 and	 in	 the	 build_phase()	 (e.g.	 Section	 14.	 TLM1	 Interfaces,	 Ports,	
Exports	and	Transport	Interfaces	(same	example)).	

Aside	from	the	ports,	all	components	are	built	in	the	build_phase()	method	to	allow	runtime,	build‐
this,	 factory	 lookup	and	creation	of	components	registered	with	 the	 factory.	Since	ports	and	TLM	
FIFOs	are	not	 registered	with	 the	 factory,	 they	do	not	have	 to	be	 created	 in	 the	build_phase()	
method.		

That	 being	 said,	 we	 prefer	 to	 new()‐construct	 ports	 and	 FIFOs	 in	 the	 build_phase()	 of	 a	
component.	We	believe	it	makes	more	sense	to	put	all	building	of	factory‐selected	components,	as	
well	as	ports	and	TLM	FIFO	components	in	a	single	place	for	easy	examination.		

Removing	new()‐construction	of	ports	and	TLM	FIFOs	from	the	constructor	also	means	that	90%+	
of	all	component	constructors	can	use	the	same	 identical,	boring,	 three	 lines	of	new()‐constuctor	
code:	

	
function new (string name, component parent);
 super.new(name, parent);
endfunction

In	short,	it	does	not	matter	whether	ports	and	FIFOs	are	placed	in	the	component	new()‐constructor	
or	in	the	component	build_phase(),	but	we	prefer	to	put	them	in	the	build_phase().	

5.3	uvm_analysis_imp	port	usage	options	

When	terminating	an	analysis	path,	there	are	three	options.	

Option	#1:	is	to	explicitly	declare	uvm_analysis_imp	ports	inside	of	components.		This	option	has	
three	important	requirements:	

(1) Unlike	 the	 uvm_analysis_port	 and	 uvm_analysis_export	 port	 declarations,	 the	
uvm_analysis_imp	declaration	requires	two	parameters,	the	transaction	type	and	the	name	
of	the	class	where	the	uvm_analysis_imp	is	declared.	

(2) The	uvm_analysis_imp	must	be	built	in	either	the	build_phase()	(our	preference)	or	in	
the	component	new()‐constructor.	

(3) The	class	with	the	uvm_analysis_imp	declaration	must	override	the	write()	method	and	
provide	an	implementation	for	that	same	method.	

Option	#2:	is	to	declare	a	component	that	is	an	extension	of	the	uvm_subscriber	base	class.	This	
alternative	includes	a	pre‐declared	and	constructed	uvm_analysis_imp.	The	user	is	only	required	
to	 override	 the	 write()	 method	 and	 provide	 an	 implementation	 for	 that	 same	 method.	 The	
uvm_subscriber	is	described	in	Section	6.		

Option	 #3:	 is	 to	 declare	 and	 build	 a	 uvm_tlm_analysis_fifo	 and	 then	 connect	 the	
uvm_tlm_analysis_fifo	 to	 a	 uvm_analysis_export	 on	 the	 component.	 The	
uvm_tlm_analysis_fifo	has	already	pre‐declared	a	uvm_analysis_imp	port	with	corresponding	
write()	method	to	store	the	transaction	into	the	uvm_tlm_analysis_fifo.	

	 	

SNUG	2018	
	

Page	25	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

6.	uvm_subscriber	
The	uvm_subscriber	base	class	is	appropriately	named.	A	subscriber	is	connected	either	directly	or	
indirectly	 to	 a	 uvm_analysis_port	 and	 provides	 the	 write()	 method	 required	 by	 a	
uvm_analysis_imp.	

6.1	pure	virtual	write	function	

The	pure	keyword	is	only	legal	in	a	virtual	class.	A	pure	virtual	method	is	a	method	that	is	only	
a	prototype	 in	 the	virtual	 class	 (only	 the	method	header)	and	 requires	 that	 the	extended	class	
actually	provide	the	method	implementation.	The	uvm_subscriber	virtual	class	includes	a	pure	
virtual	write()	method.	Any	class	that	extends	the	uvm_subscriber	must	override	the	write()	
method	with	an	actual	implementation.	

6.2	multiple	uvm_analysis_imp	ports	on	the	same	component	

Each	 uvm_analysis_imp	 requires	 a	 function	 called	 write().	 When	 there	 are	 multiple	
uvm_analysis_imp(s)	on	 the	same	component,	each	must	have	 its	own	write()	method,	but	of	
course,	each	component	class	scope	is	only	allowed	to	have	one	method	named	write().	So	what	
can	be	done	if	more	than	one	uvm_analysis_imp	is	required	on	the	same	component?	A	solution	to	
this	problem	is	shown	in	Section	9.		

7.	SystemVerilog	mailbox	
The	 SystemVerilog	 language	 added	 the	 mailbox	 keyword	 and	 a	 mailbox	 is	 a	 special	 type	 of	
SystemVerilog	queue	or	FIFO	that	is	very	useful	in	verification	environments.		

A	circular	queue	is	a	sequentially	accessed	memory	with	write	and	read	pointers	that	wrap	back	to	
zero	when	 the	 queue	 depth	 is	 reached,	 thus	 allowing	 the	 reuse	 of	 each	memory	 location	 as	 the	
pointers	"wrap"	back	to	location	zero.	

FIFOs	are	circular	queues	designed	with	a	fixed	number	of	addressable	words	or	entries.	FIFOs	also	
have	full	and	empty	flags	to	indicate	when	all	of	the	available	locations	have	either	been	filled	or	all	
of	the	available	locations	are	empty.	

A	SystemVerilog	queue	can	have	a	bounded	size,	like	a	FIFO,	or	be	unbounded	in	size,	which	is	the	
default.	A	SystemVerilog	queue	can	be	manipulated	using	a	queue‐specific	algebra	in	SystemVerilog	
(see	IEEE	Std	1800‐2012[2]	section	7.10.1),	or	they	can	be	manipulated	using	queue‐specific	built‐in	
methods	(see	section	7.10.2).		

7.1	Mailbox	–vs‐	queue	

SystemVerilog	added	both	the	queue	and	mailbox	dynamic	types,	which	did	not	previously	exist	in	
Verilog.	As	will	be	described	later,	the	uvm_tlm_fifo	and	uvm_tlm_analysis_fifo	both	use	the	
mailbox	and	not	the	queue	because	the	mailbox	offers	an	important	blocking	feature	that	is	used	in	
UVM	scoreboards.		

Both	the	queue	and	mailbox	can	be	declared	to	be	unbounded,	which	is	to	say	that	both	can	hold	an	
unlimited	number	of	entries,	or	both	can	be	declared	to	be	bounded,	which	is	to	say	the	declaration	
can	indicate	the	maximum	number	of	entries	allowed	in	each.	

Both	 have	 put()	 and	 try_put()	 methods	 where	 the	 put()	 method	 is	 a	 built‐in	 task	 and	 the	
try_put()	 is	a	built‐in	function.	 Since	a	queue	or	mailbox	 can	be	bounded,	 they	might	be	 full	

SNUG	2018	
	

Page	26	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

forcing	the	put()	command	to	block	for	a	period	of	time	until	the	queue	or	mailbox	has	space	to	
allow	a	new	entry	to	be	added	(when	a	corresponding	get()	or	try_get()	has	removed	an	item	
from	the	queue	or	mailbox).	The	try_put()	command	is	a	function	that	completes	in	0‐time	by	
either	 successfully	 placing	 a	 new	 item	 on	 the	 queue	 or	 mailbox	 and	 returning	 status	 that	 the	
try_put()	command	succeeded,	or	the	try_put()	 fails	because	a	bounded	queue	or	mailbox	 is	
already	 full,	 in	which	 case	 the	try_put()	 command	 returns	 a	 "fail"	 status	 of	0.	 If	 the	 queue	 or	
mailbox	is	unbounded,	both	the	put()	and	try_put()	commands	will	always	succeed	with	the	only	
difference	being	 that	 the	try_put()	 command	will	 return	 status	 to	 indicate	 that	 the	try_put()	
operation	succeeded	(returns	a	positive	value	of	1).	

The	try_put()	method	can	be	called	by	either	a	task	or	function	since	it	completes	in	0‐time,	while	
a	put()	method	can	only	be	called	by	a	task	since	the	put()	command	might	block	and	consume	
simulation	time.	

8.	TLM	FIFOs	
There	are	two	types	of	built‐in	TLM	FIFOs	in	UVM,	(1)	uvm_tlm_fifo,	described	in	Section	8.2	,	and	
(2)	uvm_tlm_analysis_fifo,	described	in	Section	0.	Both	of	these	TLM	FIFOs	are	derivatives	of	the	
uvm_tlm_fifo_base	 class,	 descrbed	 in	 Section	 8.1	 TLM	 FIFOs	 are	 valuable	 synchronization	
structures	 that	 are	 commonly	 used	 in	 UVM,	 especially	 in	 scoreboards.	 We	 find	 the	
uvm_tlm_analysis_fifo	to	typically	be	more	valuable	in	a	UVM	scoreboard.			

8.1	uvm_tlm_fifo_base	

The	uvm_tlm_fifo_base	 virtual	 class	 in	 the	UVM	Base	Class	Library	 (BCL)	defines	 four	ports,	 a	
build_phase()	 method	 and	 17	 additional	 virtual	 methods.	 The	 purpose	 of	 the	
uvm_tlm_fifo_base	 class	 is	 to	 reserve	 method	 prototypes	 to	 be	 used	 by	 the	 uvm_tlm_fifo,	
extended	 from	 the	 uvm_tlm_fifo_base,	 and	 the	 uvm_tlm_analysis_fifo,	 extended	 from	 the	
uvm_tlm_fifo.	 Although	 legal,	 verification	 engineers	 typically	 do	 not	 extend	 the	
uvm_tlm_fifo_base	class.	

	
Figure	10	‐	uvm_tlm_fifo_base	ports	

SNUG	2018	
	

Page	27	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

As	 can	be	 seen	 in	 Figure	10,	 the	uvm_tlm_fifo_base	 class	 has	 two	 input	ports	 and	 two	output	
analysis	ports.	The	input	ports	have	many	aliased	names	while	the	output	uvm_analysis_port(s)	
only	have	the	names	get_ap	and	put_ap.	
The	port	types	and	aliased	names	for	those	ports	are	shown	in	Table	1.	The	reserved	method	names	
and	notes	about	method	implementation	are	shown	in	Table	2.		
	
	
	

Table	1	‐	uvm_tlm_fifo_base	port	names	and	port	name	aliases	

Port	type	 Port	name	or	alias	 Port	commonly	used	in	
uvm_tlm_fifo	or	
uvm_tlm_analysis_fifo?	

uvm_put_imp put_export

blocking_put_export

non_blocking_put_export	

No	

uvm_get_peek_imp	 get_peek_export
blocking_get_export

non_blocking_get_export

get_export

blocking_peek_export

non_blocking_peek_export

peek_export

blocking_get_peek_export

non_blocking_get_peek_export

No	

uvm_analysis_port put_ap No	

uvm_analysis_port get_ap No	

	

	
	 	

SNUG	2018	
	

Page	28	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

Table	2	‐	uvm_tlm_fifo_base	methods		and	usage	notes	

Virtual	empty	
method	

Note	 Native	
mailbox	
method?	

Implemented	by	
uvm_tlm_fifo?	

Implemented	by	
uvm_tlm_analysis_fifo?	

put()	 blocks	 Yes	 Yes	 Yes	

get()	 blocks	 Yes	 Yes	 Yes	

peek() blocks	 Yes	 Yes	 Yes	

try_put() returns	bit	 Yes	 Yes	 Yes	

try_get() returns	bit	 Yes	 Yes	 Yes	

try_peek() returns	bit	 Yes	 Yes	 Yes	

can_put() returns	bit	 No	 Yes	 Yes	

can_get() returns	bit	 No	 Yes	 Yes	

can_peek() returns	bit	 No	 Yes	 Yes	

build_phase() UVM	phase	 UVM	phase	 	 	

flush() clears	fifo	 No	 Yes	 Yes	

ok_to_put() returns	
uvm_tlm_event	

Not	
implemented	

Not	
implemented	

Not	implemented	

ok_to_get() returns	
uvm_tlm_event	

Not	
implemented	

Not	
implemented	

Not	implemented	

ok_to_peek() returns	
uvm_tlm_event	

Not	
implemented	

Not	
implemented	

Not	implemented	

is_empty() returns	bit	 No	 Yes	 Yes	

is_full() returns	bit	 No	 Yes	 Yes	

size() returns	int	 No	 Yes	 Yes	

used() returns	int	 Yes	 Yes	 Yes	

8.2	uvm_tlm_fifo	

The	uvm_tlm_fifo	can	be	used	in	UVM	scoreboard	design.	The	uvm_tlm_fifo	 is	 internally	built	
using	a	SystemVerilog	mailbox	and	is	defined	with	a	default	depth	of	 just	1	transaction,	which	is	
nearly	useless,	but	this	can	be	changed	and	is	alsmost	always	changed	when	the	uvm_tlm_fifo	is	
new()‐constructed.	

8.2.1	uvm_tlm_fifo	new()‐constructor	&	size	

The	new()	constructor	for	the	uvm_tlm_fifo	takes	three	arguments,	name,	parent	and	size.	The	
size	argument	has	the	default	depth	of	1.	Setting	the	size	argument	to	0	causes	the	uvm_tlm_fifo	
to	 have	 unbounded	 depth,	 and	 setting	 the	 size	 to	 0	 is	 generally	 recommended	 for	 scoreboard	
designs.	Note,	the	uvm_tlm_analysis_fifo,	described	in	Section	0has	a	default	size	already	set	to	
0,	which	is	generally	ideal	for	verification	purposes.	

SNUG	2018	
	

Page	29	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

The	 tb_scoreboard	 in	 Example	 15	 declares	 two	 uvm_tlm_fifo(s)	 to	 hold	 expected	 and	 actual	
transactions.	Both	are	new()‐constructed	with	an	unbounded	size	value	of	0,	and	both	are	written	to	
using	void‐casted	try_put()	methods.	The	write_prd()	 (write‐predictor)	method	also	 takes	a	
copy	of	the	broadcast	transaction	before	predicting	and	storing	the	correct	output	values	into	the	
expected	transaction	(etr).	

class tb_scoreboard extends uvm_scoreboard;
 `uvm_component_utils(tb_scoreboard)
 ...
 uvm_tlm_fifo #(trans1) expfifo;
 uvm_tlm_fifo #(trans1) outfifo;
 ...

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 ...
 expfifo = new("expfifo", this, 0); // Unbounded tlm_fifo
 outfifo = new("outfifo", this, 0); // Unbounded tlm_fifo
 endfunction

 function void write_prd(trans1 tr);
 ...
 etr.copy(tr); // create copy of tr object
 ...
 void'(expfifo.try_put(etr));
 endfunction

 function void write_out(trans1 tr);
 void'(outfifo.try_put(tr));
 endfunction

 task run_phase(uvm_phase phase);
 forever begin
 expfifo.get(exp_tr);
 outfifo.get(out_tr);
 ...

Example	15	‐	tb_scoreboard	that	uses	two	uvm_tlm_fifo(s)	

8.2.2	uvm_tlm_fifo	put()	&	try_put()	methods	

Since	 the	uvm_tlm_fifo	 is	 extended	 from	 the	uvm_tlm_fifo_base,	 the	uvm_tlm_fifo	 has	 two	
input	ports	and	two	uvm_analysis_port(s).	Although	it	is	possible	to	connect	to	any	of	these	ports,	
they	are	frequently	left	unconnected	in	a	scoreboard	design.	

The	 put()	 and	 try_put()	 methods	 store	 transactions	 into	 the	 uvm_tlm_fifo	 mailbox.	 These	
commands	also	broadcast	the	same	transaction	out	of	the	put_ap	as	shown	in	Figure	11.	The	put_ap	
uvm_analysis_port	is	rarely	used.	

Setting	 the	 uvm_tlm_fifo	 size	 to	 0	 means	 that	 the	 put()	 and	 try_put()	 methods	 both	
automatically	succeed,	with	the	latter	returning	a	status	value,	which	will	always	indicate	that	the	
try_put()	action	succeeded.	

Generally	when	calling	the	try_put()	method	on	an	unbounded	uvm_tlm_fifo	a	void‐cast	is	used	
to	throw	away	the	return	value	(as	shown	in	Example	15).	

SNUG	2018	
	

Page	30	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

Since	 the	 write()	 method	 defined	 for	 a	uvm_analysis_imp	 is	 a	 function,	 only	 the	 try_put()	
method	 can	be	used	 to	write	 to	 the	mailbox	 even	 though	both	would	 succeed	 for	 an	unbounded	
uvm_tlm_fifo.1	

	
Figure	11	‐	uvm_tlm_fifo	put()	and	get()	method	behavior	

8.2.3	uvm_tlm_fifo	get()	&	try_get()	methods	

The	get()	and	try_get()	methods	retrieve	transactions	from	the	uvm_tlm_fifo	mailbox.	These	
commands	also	broadcast	the	same	transaction	out	of	the	get_ap	as	shown	in	Figure	11.	The	get_ap	
uvm_analysis_port	is	rarely	used.	

get()	is	a	blocking	task	that	waits	until	there	is	a	transaction	in	the	mailbox	of	the	uvm_tlm_fifo	
to	be	retrieved.	The	blocking	get()	command	is	ideal	for	use	in	a	scoreboard	comparator	since	it	
waits	 (blocks)	 until	 a	 transaction	 is	 available	 to	 retrieve.	 There	 is	 no	 equivalent	 blocking	get()	
method	defined	 for	 the	SystemVerilog	queue,	which	 is	why	 the	uvm_tlm_fifo	 is	 a	better	 choice	
instead	of	using	a	queue	in	a	scoreboard	comparator.	

Engineers	who	try	to	use	a	queue	in	a	scoreboard	comparator	typically	have	to	either	do	sampling	or	
use	event	triggers	to	wait	until	there	is	a	queued	transaction	that	can	be	properly	extracted.		

8.2.4	uvm_tlm_fifo	disadvantage	

Placing	 a	 uvm_tlm_fifo	 into	 an	 analysis	 path	 has	 the	 disadvantage	 that	 the	 scorebard	 must	
somewhere	implement	a	uvm_analysis_imp	write()	method	to	receive	the	broadcast	transaction	
and	 then	 does	 the	void'(try_put(etr))	 to	 store	 the	 transaction	 into	 the	uvm_tlm_fifo.	 The	
uvm_tlm_analysis_fifo	 described	 in	 the	 next	 section	 removes	 the	 need	 to	 implement	 the	
write()	method	to	execute	the	try_put()	command.	

																																																													

	
1	Note:	one	of	the	EDA	vendors	used	to	allow	(and	may	still	allow)	the	put()	method	to	be	called	
from	 the	 uvm_analysis_imp	 write()	 method	 when	 the	 uvm_tlm_fifo	 was	 declared	 to	 be	
unbounded,	because	the	put()	method	would	execute	in	0‐time	and	succeed.	The	other	EDA	vendors	
properly	 disallowed	 the	 put()	 method	 since	 it	 should	 not	 be	 legal	 to	 call	 a	 put()	 task	 from	 a	
write()	 function.	We	 recommend	 that	 engineers	 not	 use	 a	 put()	 method	 with	 an	 unbounded	
uvm_tlm_fifo	even	if	your	chosen	vendor	allows	the	operation.	

SNUG	2018	
	

Page	31	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

8.3	uvm_tlm_analysis_fifo	

The	uvm_tlm_analysis_fifo	extends	the	uvm_tlm_fifo	(described	in	Section	8.2)	and	therefore	
inherits	all	of	the	ports	and	capabilities	of	the	uvm_tlm_fifo.	

The	uvm_tlm_analysis_fifo	has	five	ports;	the	same	four	ports	defined	in	the	uvm_tlm_fifo	as	
described	 in	 Section	 8.2	 	 plus	 one	 additional	 uvm_analysis_imp	 port	 with	 handle	 name	
analysis_export	as	shown	in	Figure	12.	The	four	uvm_tlm_fifo	inherited	ports	are	rarely	used	
in	a	UVM	scoreboard.	

	
Figure	12	‐	uvm_tlm_analysis_fifo	–	most	common	usage	

The	 uvm_tlm_analysis_fifo	 is	 ideal	 to	 store	 transactions	 that	 were	 broadcast	 from	 a	
uvm_analysis_port.	 Within	 an	 analysis	 path,	 the	 uvm_tlm_analysis_fifo	 has	 two	 distinct	
advantages	over	the	uvm_tlm_fifo:	(1)	by	default,	the	uvm_tlm_analysis_fifo	has	unbounded	
size,	which	is	perfect	for	UVM	scoreboard	development,	and	(2)	the	uvm_tlm_analysis_fifo	has	a	
built‐in	 uvm_analysis_imp	 port	 with	 corresponding	 write()	 method	 to	 store	 the	 broadcast	
transaction.		

Unlike	the	uvm_tlm_fifo,	the	uvm_tlm_analysis_fifo	has	an	extra	uvm_analysis_imp	port	that	
must	 be	 connected	 inside	 of	 the	 scoreboard.	 Section	 8.4	 describes	 and	 graphically	 shows	 the	
differences	between	using	the	uvm_tlm_fifo	versus	the	uvm_tlm_analysis_fifo	in	a	scoreboard	
design.	

8.4	Quick‐summary	of	uvm_tlm_analysis_fifo	–vs‐	uvm_tlm_fifo	

Most	 UVM	 scoreboards	 are	 most	 efficiently	 implemented	 using	 unbounded	 TLM	 FIFOs.	 The	
uvm_tlm_analysis_fifo	 is	unbounded	by	default,	which	is	perfect	for	scoreboard	development.	
The	uvm_tlm_fifo	must	be	new()‐constructed	with	a	size	=	0	 to	become	unbounded.	This	 is	a	
minor	advantage	to	using	the	uvm_tlm_analysis_fifo.	

The	 biggest	 advantage	 of	 the	 uvm_tlm_analysis_fifo	 over	 the	 uvm_tlm_fifo	 is	 that	 the		
uvm_tlm_analysis_fifo	 has	 a	 built‐in	 uvm_analysis_imp	 port	 with	 corresponding	 built‐in	
write()	 method	 to	 capture	 transactions	 that	 were	 broadcast	 from	 an	 analysis	 port.	 This	 is	 an	
extremely	useful	advantage	over	the	uvm_tlm_fifo	and	saves	a	great	deal	of	work	in	developing	a	
UVM	scoreboard.	

SNUG	2018	
	

Page	32	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

These	differences	are	shown	graphically	in	Figure	13.	

	
Figure	13	‐	uvm_tlm_fifo	–vs‐	uvm_tlm_analysis_fifo	usage	

Comparing	 the	 usage	 requirements	 of	 the	 uvm_tlm_fifo	 to	 the	 uvm_tlm_analysis_fifo	 in	 a	
scoreboard,	as	shown	in	Figure	13,	is	described	below:	

(1) The	 uvm_tlm_fifo	 typically	 requires	 the	 declaration	 and	 construction	 of	 a	 separate	
uvm_analysis_imp	 (or	 uvm_subscriber	 with	 built‐in	 uvm_analysis_imp)	 and	 then	
requires	 the	 implementation	 of	 a	 corresponding	 write()	 method,	 which	 uses	 a	
void'(try_put())	 call	 to	 store	 the	 transaction	 into	 the	 uvm_tlm_fifo.	 Of	 course	 the	
separate	uvm_tlm_fifo	must	also	be	declared	and	constructed.	

(2) The	 uvm_tlm_analysis_fifo	 typically	 requires	 the	 declaration	 and	 construction	 of	
separate	 uvm_analysis_export	 and	 the	 uvm_tlm_analysis_fifo.	 The	
uvm_analysis_export	 port	 is	 then	 connected	 to	 the	 uvm_tlm_analysis_fifo.	 The	
uvm_tlm_analysis_fifo	already	has	the	required	uvm_analysis_imp	and	corresponding	
write()	method.	

9.	`uvm_analysis_imp_decl(SFX)	macro	
If	there	are	multiple	uvm_analysis_imp(s)	in	a	component,	the	user	must	define	multiple	uniquely	
named	uvm_analysis_imp_SFX	ports	with	corresponding	write_SFX	()	methods.	

UVM	has	a	macro	to	define	new	uvm_analysis_imp	ports	with	unique	port‐suffix	names	and	unique	
write‐method‐suffix	names.	The	macro	is	`uvm_analysis_imp_decl(SFX).	This	macro	is	typically	
used	for	each	uvm_analysis_imp	port	on	a	multi‐uvm_analysis_imp	component.	

The	first	two	lines	of	Example	16	use	the	`uvm_analysis_imp_decl(SFX)	macros.	The	SFX	values	
can	be	numbers	or	characters	and	can	include	the	"_"	as	shown	in	this	example	or	omit	the	"_".	This	
example	uses	suffix	values	of	"	_prd	"	for	"predictor"	and	"	_out	"	for	"output."	

Using	the	 `uvm_analysis_imp_decl(SFX)	macros	will	define	two	new	uvm_analysis_imp	port	
types	that	must	include	the	suffix	values	declared	in	the	macros.	In	this	example,	the	port	types	are	
uvm_analysis_imp_prd	and	uvm_analysis_imp_out.	The	macros	also	create	two	new	write()	
methods	that	must	include	the	suffix	values	declared	in	the	macros.	In	this	example,	the	write	method	

SNUG	2018	
	

Page	33	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

names	are	write_prd()	and	write_out()	and	these	are	the	corresponding	write	methods	for	the	
uvm_analysis_imp_prd	and	uvm_analysis_imp_out	ports	respectively.	

Note	that	the	uvm_analysis_imp_SFX	handle	names	are	not	required	to	use	the	SFX	values,	but	we	
believe	 it	 is	 a	 good	 idea	 to	 use	 the	 suffix	 names	 as	 part	 of	 the	 handle	 names	 to	 reduce	 coding	
confusion.	

	
`uvm_analysis_imp_decl(_prd)
`uvm_analysis_imp_decl(_out)

class tb_scoreboard extends uvm_scoreboard;
 `uvm_component_utils(tb_scoreboard)

 ...

 uvm_analysis_imp_prd #(trans1, tb_scoreboard) ap_prd;
 uvm_analysis_imp_out #(trans1, tb_scoreboard) ap_out;

 ...

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 ap_prd = new("ap_prd", this);
 ap_out = new("ap_out", this);
 ...
 endfunction

 function void write_prd(trans1 tr);
 ...

 function void write_out(trans1 tr);
 ...

Example	16	‐	tb_scoreboard	with	two	`uvm_analysis_imp_decl(SFX)	macros,	ports	and	write()	methods	

9.1	How	many	ports	are	allowed	on	a	scoreboard?	

We	have	talked	to	a	surprisingly	large	number	of	engineers	who	were	under	the	impression	that	a	
scoreboard	could	have	only	one	or	two	ports	of	any	type	and	that	they	had	to	use	the	same	transaction	
type	on	the	2‐port	variety.	This	is	not	true.	

UVM	 scoreboards	 can	 have	 any	 number	 of	 ports,	 exports	 and	 imps	 and	 the	 ports	 can	 be	
parameterized	to	any	number	of	transaction	types.		

It	 is	 true	 that	 most	 block‐level	 scoreboards	 only	 have	 one	 or	 two	 input‐port	 types	 to	 sample	 a	
common	transcation	and	to	perform	simple	calculations	of	expected	values	to	compare	against	actual	
sampled	output	values,	but	for	larger	UVM	enviironments,	it	is	not	uncommon	to	have	multiple	ports	
that	are	parameterized	to	multiple	 transaction	 types	and	then	allow	the	scoreboard	 to	perform	a	
transfer	 function	 on	 one	 of	 the	 transactions	 before	 comparing	 specific	 fields	 between	 multiple	
transaction	types.	

UVM	 even	 has	 a	 uvm_algorithmic_comparator	 documented	 in	 the	 UVM	 Class	 Reference[4]	
(Section	18.2)	that	is	designed	for	this	purpose.	The	uvm_algorithmic_comparator	is	described	as	
a	comparator	that:	

	

SNUG	2018	
	

Page	34	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

"compares two streams of transactions; however, the transaction streams might be of
different type objects. This device will use a user written transformation function to
convert one type to another before performing a comparison."

10.	Example	with	typical	analysis/copy()	problems	
Consider	a	UVM	testbench	example	that	appeared	to	be	working	but	that	had	hidden	problems	for	
months.	Once	we	discovered	that	there	was	a	problem,	it	still	took	hours	to	identify	the	cause	and	fix	
the	 problem.	 We	 want	 to	 help	 the	 reader	 to	 avoid	 the	 same	 time	 consuming	 mistakes.	 You're	
welcome!	

We	had	a	training	lab	that	had	a	scoreboard	with	two	uvm_analysis_imp	ports	to	demonstrate	the	
multi‐imp	port	solution	described	in	Section	9.	The	write_prd()	method	took	the	transaction	and	
calculated	the	expected	output	values	and	wrote	them	back	to	the	transaction	and	put	them	into	the	
expected	 uvm_tlm_fifo.	 The	 write_out()	 method	 simply	 put	 the	 transaction	 into	 the	 actual	
output	uvm_tlm_fifo.	The	scoreboard	comparison	logic	then	compared	the	expected	outputs	to	the	
actual	 outputs	 to	 determine	 if	 each	 simulation	 vector	 passed	 or	 failed.	 Once	 the	 testbench	 was	
working	we	thought	we	were	done.		

Some	months	 later	we	decided	to	add	a	 feature	 to	 the	 lab.	We	asked	engineers	 to	break	 the	DUT	
(Design	Under	Test)	and	observe	the	reported	errors	to	see	if	they	made	sense	relative	to	the	bug.	
Much	to	our	surprise,	 the	testbench	continued	to	report	 that	 the	tests	passed.	We	broke	the	DUT	
more,	and	the	testbench	still	continued	to	pass.	We	traced	the	signals	on	the	DUT	and	noticed	that	
the	expected	wrong	outputs	were	being	generated	but	the	testbench	output	continued	to	show	and	
report	valid	outputs.	

We	finally	figured	out	that	the	write_prd()	calculate‐expected	function	was	using	the	transaction	
inputs	 to	modify	 the	 outputs	 of	 the	 broadcast	 transaction	before	 putting	 them	 into	 the	 expected	
uvm_tlm_fifo.	 This	 meant	 that	 the	 original	 transaction	 now	 had	 corrected	 outputs	 that	 had	
overwritten	 the	 erroneous	 DUT	 outputs	 so	 the	 transaction	 that	 was	 put	 in	 the	 actual	 output	
uvm_tlm_fifo	 had	 been	 corrected	 and	 the	 testbench	 reported	 no	 failures	 while	 showing	 the	
updated	output	values.		

This	 is	 why	 any	 subscriber	 that	 intends	 to	 modify	 a	 transaction	 should	 first	 take	 a	 copy	 of	 the	
transaction	and	use	the	inputs	of	the	copied	transaction	to	calculate	the	outputs	to	be	placed	back	
into	the	copied	transaction.	

Guideline:	once	the	UVM	testbench	is	working,	break	the	DUT	to	see	if	the	UVM	testbench	can	catch	
the	bug.	This	will	show	you	if	you	have	the	same	problem	that	we	described	in	this	section.	

11.	Summary	&	Conclusions	
The	 uvm_analysis_port	 is	 a	 port	 that	 broadcasts	 transactions	 to	 zero	 or	 more	 destinations,	
typically	called	subscribers.	The	end	of	each	analysis	path	subscriber	chain	is	a	uvm_analysis_imp	
that	must	provide	an	implementation	by	overwriting	the	imp's	write()	method.	

Each	component	that	subscribes	to	a	common	transaction	analysis	path	has	a	handle	to	a	common	
transaction.	Any	component	that	needs	to	modify	any	of	the	transaction	fields	should	first	take	a	copy	
of	the	transaction	and	only	modify	the	fields	of	the	copied	transaction.	This	is	the	primary	reason	to	
have	a	copy()	method	defined	within	the	transaction.	Failure	to	make	a	local	copy	of	the	transaction	
can	have	adverse	effects	on	other	components	that	reference	the	common	transaction.	Modifying	the	
fields	of	an	analysis_port	broadcast	transaction	should	never	be	done.		

SNUG	2018	
	

Page	35	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

We	demonstrated	in	Section	3.1.6	that	most	uvm_analysis_port(s)	and	uvm_analysis_export(s)	
are	 interchangeable.	 Even	 though	 they	 are	 interchangeable,	 use	 uvm_analysis_port(s)	 for	
component	 outputs	 that	 are	 forwarding	 a	 transaction	 to	 other	 ports	 on	 an	 anlysis	 path	 and	 use	
uvm_analysis_export(s)	 or	 uvm_analysis_imp	 for	 component	 inputs	 that	 are	 receiving	 a	
transaction	from	other	ports	on	an	anlysis	path.	

For	 scoreboard	 development,	 setting	 the	 FIFO	 size	 to	 0	 is	 generally	 recommended	 and	 the	
uvm_tlm_analysis_fifo,	described	in	Section	8.3	already	has	a	default	size	set	to	0,	

If	there	are	multiple	uvm_analysis_imp(s)	in	a	component,	the	user	must	define	multiple	uniquely	
named	 uvm_analysis_imp_SFX	 ports	 with	 corresponding	 write_SFX()	 methods.	 This	 is	 most	
easily	 accomplished	 by	 using	 the	 `uvm_analysis_imp_decl(_SFX)	 macros	 to	 create	 new	
uvm_analysis_imp	port	types	with	corresponding	write()	methods.	

We	mentioned	that	 the	uvm_analysis_imp_SFX	handle	names	do	not	require	the	use	of	 the	SFX	
values,	but	we	believe	it	is	a	good	idea	to	use	the	same	suffix	names	as	part	of	the	handle	names	to	
reduce	coding	confusion.	

Finally,	prove	that	your	scoreboard	analysis	paths	are	working	correctly.	Once	the	UVM	testbench	
appears	to	be	working,	break	the	DUT	to	see	if	the	UVM	testbench	can	catch	the	bug.	This	is	a	good	
correctness	indicator	for	your	UVM	testbench.	

One	of	our	paper	reviewers,	Jeff	Vance,	mentioned	another	option	that	he	has	seen	in	practice	that	is	
worth	considering.	We	described	the	use	of	the	uvm_subscriber	in	Section	6.	Another	option	is	to	
declare	multiple	uvm_subscriber	 instances	 inside	a	component.	 	 I.e.,	 the	scoreboard	declares	an	
array	of	subscribers,	and	passes	a	handle	that	points	to	itself	(the	scoreboard)	to	each	subscriber.	
Then	 each	 subscriber	 can	 have	 an	 extended	 write()	 method	 that	 pushes	 transactions	 to	 the	
scoreboard	queues.	The	advantage	being,	all	these	port	connection	details	are	encapsulated	and	it	is	
easy	to	add	or	remove	connections	by	just	adding/removing	subscribers.	But	it	requires	defining	an	
extended	subscriber	class.	We	thank	Jeff	for	sharing	this	interesting	technique.	We	did	not	have	time	
to	try	this	ourselves	but	it	certainly	appears	to	be	a	worthy	technique.	

12.	Acknowledgements	
We	acknowledge	our	colleagues	Jeff	Vance,	Kelly	Larson,	Don	Mills,	David	Lee	and	Dan	Chaplin	for	
their	 reviews	 and	 suggested	 improvements	 to	 this	 paper	 and	 the	 presentation	 slides.	 Their	
contributions	 helped	 identify	 areas	 that	 needed	 additional	 explanation	 and	modifications	 to	 the	
presentation	 slides	 and	 their	 ordering	 to	 make	 this	 difficult	 topic	 easier	 to	 understand.	We	 are	
grateful	for	their	insightful	and	generous	contributions.	

13.	References	
[1] Clifford	 E.	 Cummings,	 "OVM/UVM	 Scoreboards	 ‐	 Fundamental	 Architectures,"	 SNUG	 (Synopsys	 Users	

Group)	2013	(Silicon	Valley,	CA).	Also	available	at	www.sunburst‐design.com/papers	

[2] "IEEE	Standard	For	SystemVerilog	‐	Unified	Hardware	Design,	Specification	and	Verification	Language,"	
IEEE	Computer	Society	and	the	IEEE	Standards	Association	Corporate	Advisory	Group,	IEEE,	New	York,	
NY,	IEEE	Std	1800™‐2012	

[3] "Observer	pattern,"	Wikipedia	article.	https://en.wikipedia.org/wiki/Observer_pattern	

[4] "Universal	Verification	Methodology	(UVM)	1.2	Class	Reference,"	Accellera	Systems	Initiative	Inc.,	1370	
Trancas	Street	#163,	Napa,	CA	94558,	USA.,	June	2014	

	

SNUG	2018	
	

Page	36	 UVM	Analysis	Port	Functionality	and	
Rev	1.0	 Using	Transaction	Copy	Commands	

14.	Author	&	Contact	Information	
Cliff	Cummings,	President	of	Sunburst	Design,	Inc.,	is	an	independent	EDA	consultant	and	trainer	
with	36	years	of	ASIC,	FPGA	and	system	design	experience	and	26	years	of	SystemVerilog,	synthesis	
and	methodology	training	experience.	

Mr.	Cummings	has	presented	more	than	100	SystemVerilog	seminars	and	training	classes	in	the	past	
15	years	and	was	the	featured	speaker	at	the	world‐wide	SystemVerilog	NOW!	seminars.		

Mr.	 Cummings	 participated	 on	 every	 IEEE	 &	 Accellera	 SystemVerilog,	 SystemVerilog	 Synthesis,	
SystemVerilog	 committee	 from	 1994‐2012,	 and	 has	 presented	 more	 than	 40	 papers	 on	
SystemVerilog	&	SystemVerilog	related	design,	synthesis	and	verification	techniques.	

Mr.	 Cummings	 holds	 a	 BSEE	 from	 Brigham	 Young	 University	 and	 an	 MSEE	 from	 Oregon	 State	
University.	

Sunburst	 Design,	 Inc.	 offers	 World	 Class	 Verilog	 &	 SystemVerilog	 training	 courses.	 For	 more	
information,	visit	the	www.sunburst‐design.com	web	site.	

Email	address:	cliffc@sunburst‐design.com	

	

Heath	Chambers	is	President	of	HMC	Design	Verification,	Inc.,	a	company	that	specializes	in	design	
and	verification	consulting	and	high	 tech	 training.	Mr.	Chambers	 is	a	 consultant	with	22	years	of	
Verilog	Experience	15	years	of	SystemVerilog	experience,	18	years	of	consulting	and	verification	lead	
experience	for	multiple	projects	and	has	been	an	instructor	for	Sunburst	Design	since	the	year	2000.	
Heath	has	18	years	of	SystemVerilog,	Verilog,	synthesis	and	UVM	Verification	methodology	training	
experience	 for	 Sunburst	 Design,	 Inc.,	 and	 was	 previously	 a	 contract	 Specman	 Basic	 Training	
instructor	 for	 Verisity.	 Heath	 has	 ASIC	 and	 system	 verification,	 firmware,	 and	 self‐test	 design	
experience	 and	 is	 capable	 of	 answering	 the	 very	 technical	 questions	 asked	 by	 experienced	
verification	engineers.	

Mr.	 Chambers,	was	 a	member	of	 the	 IEEE	1364	Verilog	 and	 IEEE	1800	SystemVerilog	 Standards	
Groups	 from	 2000	 to	 2012,	 and	 has	 helped	 to	 develop	 and	 improve	 Sunburst	 Design	 Verilog,	
SystemVerilog,	UVM	and	synthesis	training	courses.	

Mr.	Chambers	specializes	in	verification	of	ASICs	and	systems	using	top‐down	design	methodologies	
and	 is	 proficient	 in	 SystemVerilog,	Verilog,	UVM,	 'e',	 C,	 and	Perl.	Mr.	 Chambers	 specializes	 in	 the	
Questa,	Cadence,	Synopsys	simulation	tools.		

Before	 becoming	 an	 independent	 Consultant,	 Mr.	 Chambers	 worked	 for	 Hewlett‐Packard	 doing	
verification	of	multi‐million	gate	ASICs	and	systems	containing	multiple	chips.	Mr.	Chambers	was	the	
lead	verification	engineer	for	the	last	two	projects	he	worked	on	before	leaving	the	company.		

Mr.	Chambers	holds	a	BSCS	from	New	Mexico	Institute	of	Mining	and	Technology.	

Email	address:	hmcdvi@msn.com	

	

Last	Updated:	October	2018	

