
	

	 	

	

	
World Class SystemVerilog & UVM Training

SystemVerilog	Virtual	Classes,	Methods,	Interfaces	and	
Their	Use	in	Verification	and	UVM	

	

	
 Clifford E. Cummings Heath Chambers
	 Sunburst Design, Inc. HMC Design Verification
 cliffc@sunburst-design.com hmcdvi@msn.com
 Provo, UT, USA Albuquerque, NM, USA
 www.sunburst-design.com

ABSTRACT	

This	paper	describes	SystemVerilog	virtual	classes,	virtual	methods	and	virtual	interfaces,	how	they	can	
be	used	in	verification	and	how	they	are	used	in	UVM.	This	paper	then	describes	how	virtual	methods	
enable	polymorphism	for	use	in	verification	including	the	concepts	of	upcasting	and	downcasting.	This	
paper	also	describes	pure	virtual	methods	and	why	the	pure	keyword	is	useful,	including	an	example	
from	the	UVM	base	classes.	This	paper	includes	useful	guidelines	regarding	the	use	of	virtual	classes,	
methods	and	interfaces.	 	

SNUG-2018
Silicon Valley, CA

Voted Best Presentation
2nd Place

SNUG	2018	
	

Page	2	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

Table	of	Contents	
1. Introduction	...	4

1.1 Tools	and	OS	versions	..	4

2. Classes	..	4

3. Virtual	classes	...	4

4. Methods	...	5

5. Virtual	Methods	..	5

6. Extended	and	derivative	classes	...	7

7. Upcasting	&	Downcasting	..	7

8. Pure	virtual	methods	..	16

8.1 UVM	pure	virtual	method	example	...	17

9. Virtual	Interfaces	..	19

9.1 Virtual	Interfaces	vs	Static	Interfaces	..	21

9.2 Virtual	Interface	Usage	in	UVM	...	22

10. Summary	&	Conclusions	...	25

11. Acknowledgements	..	25

12. References	..	26

13. Author	&	Contact	Information	...	26

	
	 	

SNUG	2018	
	

Page	3	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

Table	of	Figures	
Figure	1	‐	UVM	virtual	do_compare()	method	included	in	the	uvm_object	base	class	 5

Figure	2	‐	UVM	transaction	classes	 7

Figure	3	‐	Declare	two	base	class	handles	and	two	extended	class	handles	 9

Figure	4	‐	Construct	the	b1	base	class	and	set	the	a	value	 10

Figure	5	‐	Illegal	to	copy	or	$cast	a	base	class	handle	to	an	extended	class	handle	 10

Figure	6	‐	Construct	the	e1	extended	class	and	set	the	a	and	data	values	 11

Figure	7	‐	Copy	the	e1	extended	object	handle	to	the	b2	base	class	handle	 11

Figure	8	‐	Re‐construct	the	e1	extended	class	object	‐	b1	still	points	to	the	old	e1	object	 12

Figure	9	‐	The	b2	base	handle	cannot	be	used	to	access	extended	object	data	or	methods	 12

Figure	10	‐	$cast	the	b2	handle	to	the	e2	handle	‐	This	is	now	legal	 13

Figure	11	‐	UVM	do_copy()	virtual	method	 13

Figure	12	‐	Non‐virtual	class	must	override	a	pure	virtual	method	from	a	virtual	class	 16

Figure	13	‐	Non‐virtual	class	not	require	to	override	a	pure	virtual	method	if	overridden	in	a	virtual	
class	 17

Figure	14.	Virtual	Interface	Block	Diagram	 19

	
	
	

Table	of	Examples	
Example	1	–	test_classes	package	 8

Example	2	‐	Upcasting	and	downcasting	test	module	 9

Example	3	‐	do_copy()	method	implemented	with	downcasting	 14

Example	4	‐	Transaction	example	with	do_copy()	implemented	using	downcasting	 15

Example	5	‐	Partial	uvm_subscriber	code	 18

Example	6	‐	Partial	common	scoreboard	predictor	code	 18

Example	7	‐	Interface	Instantiation	and	Connection	 20

Example	8	‐	Virtual	Interface	Declaration	and	Assignment	 20

Example	9	‐	Virtual	Interface	Accesses	 21

Example	10	‐	OVM	Style	Virtual	Interface	Connection	 23

Example	11	‐	UVM	Style	Virtual	Interface	Connection	 24

	 	

SNUG	2018	
	

Page	4	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

1. Introduction	
Virtual	 classes,	 virtual	methods	 and	 virtual	 interfaces	 are	 important	 tools	 in	 the	 construction	 of	
powerful	 verification	 environments.	 The	 Accellera	 2003	 SystemVerilog	 Standard[9]	 added	 these	
capabilities	 to	 the	 Verilog/SystemVerilog	 language,	 and	 they	 officially	 became	 part	 of	 the	 IEEE	
SystemVerilog	language	starting	with	the	IEEE	Std	1800‐2005[3].		

The	Universal	Verification	Methodology	(UVM)[6]	is	a	class	library	and	methodology	that	takes	full	
advantage	 of	 virtual	 classes,	 methods	 and	 interfaces.	 UVM	 does	 not	 add	 any	 new	 keywords	 or	
capabilities	to	the	SystemVerilog	language,	but	uses	existing	capabilities	to	put	together	a	powerful	
verification	methodology.	If	a	simulator	supports	the	full	SystemVerilog	class‐based	capabilities,	an	
engineer	can	run	UVM	without	any	additional	licenses.	

To	 fully	 understand	 how	UVM	works,	 engineers	 need	 to	 understand	 the	 SystemVerilog	 "virtual"	
features	described	in	this	paper.	

1.1 Tools	and	OS	versions	

The	examples	in	this	paper	were	run	using	the	following	Linux	and	Synopsys	tool	versions:	

64‐bit	Linux	laptop:	CentOS	release	6.5	

VCS	version	K‐2015.09‐SP1_Full64	

Running	vcs	required	the	command	line	switch	-full64	

Without	the	-full64	command	line	switch,	VCS	compilation	would	fail	with	the	message:	
g++: /home/vcs/linux/lib/ctype-stubs_32.a: No such file or directory
make: *** [product_timestamp] Error 1
Make exited with status 2

2. Classes	
SystemVerilog	 classes	 can	 have	 data	 members	 (often	 called	 properties	 in	 other	 class‐based	
languages)	 and	 methods	 (or	 built‐in	 subroutines).	 The	 SystemVerilog	 class	 method	 types	 are	
function,	void	function	 and	task.	When	considering	which	method	 type	 to	use,	 engineers	
should	 generally	 use	 function	 and	 void	 function	 methods	 unless	 the	 method	 consumes	
simulation	time,	then	a	task	should	be	used.	All	three	method	types	can	call	a	function	or	void	
function,	but	task	methods	can	only	be	called	another	task,	so	if	task	methods	are	used,	only	
another	task	can	call	them.	A	quick	scan	of	the	UVM	class	libraries	shows	that	only	UVM	methods	
that	consume	time	are	declared	as	task	methods.	

Guideline	#1:	 Class	methods	should	be	function	and	void	function.	Only	use	task	when	the	
method	consumes	simulation	time.	

3. Virtual	classes	
A	virtual	class	 is	 a	 class	 declaration	 that	 has	 the	virtual	 keyword	 preceding	 the	class	
keyword.		

Virtual	 classes	 cannot	 be	 constructed	 (new()‐ed)	 directly.	 Any	 attempt	 to	 new()–construct	 a	
virtual	class	object	will	give	a	compilation	error.	This	 is	 true	of	any	computer	 language	 that	
allows	the	equivalent	of	virtual	class	declarations.	

Virtual	classes	are	classes	 that	must	be	extended	 in	order	 to	use	 the	virtual	class	 functionality.	A	

SNUG	2018	
	

Page	5	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

virtual	class	could	be	a	top‐level	base	class	or	an	extension	of	another	virtual	class.		

Virtual	class	libraries	are	assembled	to	serve	as	templates	for	a	specific	purpose.	Most	of	the	classes	
in	the	UVM	class	library	are	defined	as	virtual	classes,	which	means	a	user	cannot	both	declare	
handles	of	the	UVM	base	classes	and	construct	a	local	object	of	the	same.	There	are	a	few	notable	
exceptions	in	the	UVM	class	library,	 including	the	uvm_sequencer	(which	is	sometimes	directly	
declared	 and	 constructed	 in	 UVM	 testbench	 examples)	 and	 the	 uvm_driver	 (which	 probably	
should	 have	been	 a	virtual	 class	 since	we	 can	 think	 of	 no	 useful	 examples	 that	 could	 directly	
construct	and	reasonably	use	the	uvm_driver	base	class	object).	

In	practice,	 almost	 all	 user‐defined	UVM	 testbenches	 are	built	 from	user‐defined	 classes	 that	 are	
extensions	 of	 the	 UVM	 component	 classes.	 All	 user‐defined	 transactions	 are	 extensions	 of	 the	
uvm_sequence_item	 virtual	 class	 and	 all	 user‐defined	 sequences	 are	 extensions	 of	 the	
uvm_sequence	virtual	class.	

The	UVM	base	class	library	is	a	set	of	template	files	that	the	user	extends	to	build	a	UVM	testbench	
and	set	of	 tests	 (transactions	and	sequences).	 If	a	user	had	 to	build	up	 the	entire	UVM	testbench	
environment	 from	scratch,	 it	would	never	happen.	There	 is	so	much	 functionality	 included	 in	 the	
UVM	base	classes	that	was	put	there	by	very	smart	verification	engineers	from	multiple	end‐user	and	
EDA	companies,	and	most	users	will	never	fully	understand	everything	that	the	UVM	class	library	
makes	possible.	

4. Methods	
Methods	in	classes	are	built‐in	subroutines	and	as	already	noted	they	are	defined	as	functions,	void	
functions	and	tasks.		

An	extended	class	can	override	the	base	class	methods,	but	when	an	extended	class	handle	is	assigned	
to	a	base	class	handle,	calling	the	method	using	the	base	class	handle	will	still	execute	the	original	
base‐class	method,	unless	the	base‐class	method	was	defined	to	be	a	virtual	method	(see	Section	5).	

A	common	misconception	is	that	virtual	class	methods	are	virtual	by	default,	but	that	is	not	true.	In	
order	to	define	a	virtual	method	in	a	virtual	class,	the	method	still	has	to	use	the	virtual	keyword.		

5. Virtual	Methods	
SystemVerilog	 class	 methods	 can	 be	 either	 non‐virtual	 or	 virtual.	 Virtual	 methods	 include	 the	
virtual	keyword	before	the	function	or	task	keyword.	Classes	with	non‐virtual	methods	fix	
the	method	code	to	the	class	object	when	constructed.	Virtual	method	functionality	is	set	at	run‐time,	
which	allows	extended	class	handles	to	be	assigned	to	base	class	handles	and	run‐time	method	calls	
using	the	base	class	handle	will	execute	the	extended	class	method	functionality.	This	is	a	powerful	
feature	that	is	called	polymorphism.	

Every	class	method	has	something	called	the	method	prototype,	which	is	basically	the	header	of	the	
function	 or	 task.	 The	 uvm_object	 base	 class	 includes	 the	 virtual	 function	 definition	
shown	in	Figure	1.	

	
virtual function bit do_compare (uvm_object rhs, uvm_comparer comparer);
 return 1;
endfunction

Figure	1	‐	UVM	virtual	do_compare()	method	included	in	the	uvm_object	base	class	

SNUG	2018	
	

Page	6	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

The	prototype	of	the	virtual	function	in	Figure	1	is	the	header	code:	

	
virtual function bit do_compare (uvm_object rhs, uvm_comparer comparer);

	

This	virtual	method	prototype	includes	five	required	elements:	(1)	the	return	type	is	bit	,	(2)	the	
argument	directions	for	both	arguments	are	input	(without	a	direction	keyword	in	SystemVerilog,	
input	is	the	default),	(3)	there	are	two	input	arguments,	(4)	the	argument	types	are	uvm_object	
and	uvm_comparer	,	(5)	the	argument	names	are	rhs	and	comparer	.	Any	method	extended	from	
this	virtual	function	must	use	these	same	exact	five	elements.	Extending	a	virtual	method	requires	
strict	method	argument	compatibility.	The	extended	virtual	method	prototype	must	be	identical	to	
the	 base	 class	 virtual	 method	 prototype.	 The	 easiest	 way	 to	 ensure	 that	 the	 extended	 method	
prototype	is	correct	is	to	copy	the	base	class	virtual	prototype	into	the	derivative	class.		

Because	virtual	method	prototypes	are	 identical	between	base	classes	and	derivative	classes,	 it	 is	
guaranteed	that	any	call	to	a	base	class	virtual	method	will	succeed,	even	if	a	derivative	handle	was	
assigned	to	the	base	class	handle.	

	

Guideline	#2:	 Declare	SystemVerilog	class	methods	to	be	virtual	methods	unless	there	is	a	
very	good	reason	to	prohibit	method‐polymorphism.	

	

A	quick	scan	of	UVM	class	library	methods	shows	that	the	vast	majority	of	methods	are	virtual	
methods.	

Although	not	a	common	practice,	a	base	class	can	have	a	non‐	virtual	method	and	an	extended	
class	can	override	 that	method	with	a	virtual	method.	On	 the	other	hand,	 if	a	base	class	has	a	
virtual	method,	it	is	not	possible	to	override	the	virtual	method	with	a	non‐	virtual	method	
in	an	extended	class.	Once	a	method	is	declared	to	be	virtual,	all	extended	overrides	of	that	method	
will	still	be	virtual,	with	or	without	the	virtual	keyword.	This	can	be	a	bit	confusing	since	we	
cannot	find	a	single	example	in	the	UVM	base	classes	where	an	overridden	virtual	method	in	an	
extended	class	uses	the	virtual	keyword.		

In	UVM,	although	not	universally	true,	it	is	a	pretty	good	assumption	that	all	extended	methods	are	
virtual	methods,	even	though	the	virtual	keyword	is	not	present.	

Many	 important	 uvm_object	 methods,	 such	 as	 copy(),	 do_copy(),	 compare(),	
do_compare(),	convert2string(),	etc.,	are	non‐virtual	methods.	Users	are	highly	discouraged	
from	overriding	the	copy()	,	compare()	and	similar	common	transaction	methods.	The	copy(),	
compare()	 and	 other	 common	 transaction	 methods	 call	 user‐defined	 do_copy(),	
do_compare(),	and	other	pre‐defined	do_method()	methods	which	are	called	by	the	copy(),	
compare(),	 etc.	methods.	 Users	 should	 not	 override	 the	 non‐do	 variety	 of	 these	methods	with	
virtual	 methods.	 See	 Cummings[1]	 for	 72	 pages	 of	 mind‐numbing	 fun	 that	 describes	 how	 these	
methods	and	field	macros	work!)	

With	 this	 basic	 understanding	 of	 virtual	 methods,	 the	 question	 is,	 what	 makes	 virtual	 methods	
valuable	 and	why	 do	we	 care?	An	 important	 part	 of	 understanding	 the	 value	 of	 virtual	methods	
requires	the	user	to	understand	upcasting	and	downcasting	described	in	Section	7.	
	 	

SNUG	2018	
	

Page	7	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

6. Extended	and	derivative	classes	
An	 extended	 class	 uses	 the	extends	 keyword	 to	 extend	 the	 specified	 base	 class.	 If	 there	 is	 an	
extended	 class	 from	 another	 extended	 class,	 the	 second‐level	 extended	 class	 is	 referred	 to	 as	 a	
derivative	class,	or	a	derivative	of	the	base	class.	

An	example	from	the	UVM	class	library	is	shown	below.	

Figure	2	‐	UVM	transaction	classes

uvm_transaction	 is	 an	 extended	 class	 of	 the	 uvm_object	 base	 class.	 At	 the	 same	 time,	
uvm_transaction,	 uvm_sequence_item	 and	 uvm_sequence	 are	 all	 derivatives	 of	
uvm_object.	It	should	also	be	clear	that	uvm_sequence	is	both	an	extended	class	and	a	derivative	
class	of	uvm_sequence_item.	

7. Upcasting	&	Downcasting	
"Upcasting	is	casting	to	a	supertype,	while	downcasting	is	casting	to	a	subtype.	Upcasting	is	always	
allowed,	but	downcasting	involves	a	type	check	and	can	throw	a	ClassCastException."[7]	

To	paraphrase	this	description,	any	extended	or	derivative	class	handle	can	be	copied	to	a	base	class	
handle,	 but	 only	 some	 base	 class	 handles	 can	 be	 copied	 to	 an	 extended	 class	 handle	 and	
SystemVerilog	requires	a	type‐check	before	allowing	the	latter.	

Base	class	handles	can	only	access	data	members	and	methods	that	are	declared	in	the	base	class,	
even	if	an	extended	handle,	with	additional	data	members	and	methods,	is	copied	to	the	base	class	
handle.	Since	extended	classes	already	contain	the	base	class	data	members	and	methods,	it	is	given	
that	calling	methods	 in	 the	base	class	could	 find	an	equivalent	method	 from	the	extended	handle	
copied	to	the	base	handle.		

A	base	class	handle	cannot	be	copied	to	an	extended	class	handle.	Any	attempt	to	copy	a	base	handle	
to	an	extended	handle	will	cause	a	compilation	error	similar	to,	"**	Error:	Illegal	assignment		…	Types	
are	not	assignment	compatible."	
	 	

SNUG	2018	
	

Page	8	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

The	following	test_classes	package,	shown	in	Example	1,	contains	a	class	base	definition	and	
a	class	ext	definition.	The	class	definitions	in	this	package	are	used	in	the	test	module	shown	in	
Example	2.	

	
package test_classes;
 class base;
 bit [7:0] a;

 function void showit;
 $display("BASE(%m): a=%2d", a);
 endfunction

 function void seta(bit [7:0] din);
 a = din;
 endfunction

 function bit [7:0] geta();
 return(a);
 endfunction
 endclass

 class ext extends base;
 bit [7:0] data;

 // Inherit: base::bit [7:0] a;
 // Inherit: base:: function void seta(bit [7:0] din);
 // Inherit: base:: function bit [7:0] geta;

 function void showit; // Overrides base::showit
 $display(" EXT(%m): data=%2d a=%2d", data, a);
 endfunction

 function void setdata(bit [7:0] din);
 data = din;
 endfunction

 function bit [7:0] getdata();
 return(data);
 endfunction
 endclass
endpackage

Example	1	–	test_classes	package	

The	module	test	code	shown	in	Example	2	includes	a	few	lines	that	have	been	commented	out.	Each	
of	these	lines	caused	compilation	errors	as	described	in	the	comments	shown	at	the	end	of	the	same	
line.	This	example	shows	upcasting	and	downcasting	in	practice.	Snippets	of	this	code	along	with	
explanations	are	shown	in	Figure	3	‐	Figure	10.	

	
	

SNUG	2018	
	

Page	9	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

module test;
 import test_classes::*;
 base b1, b2;
 ext e1, e2;
 bit e1good, e2good;
 bit [7:0] m_data;

 initial begin
 b1 = new();
 b1.seta(4);
 b1.showit();
 // e1 = b1; // Error ... types not assignment compatible
 e1good = $cast(e1, b1); // ILLEGAL assignment - $cast fails-returns 0
 if (!e1good) $display("b1->e1 cast failed");
 e1 = new();
 e1.seta(2);
 e1.setdata(6);
 e1.showit();
 b2 = e1;
 b2.showit();
 e1 = new();
 e1.seta(9);
 e1.showit();
 // b2.setdata(9); // Error ... setdata() not in b2
 // m_data = b2.getdata(); // Error ... getdata() not in b2
 // e2 = b2; // Error ... types not assignment compatible
 e2good = $cast(e2, b2); // LEGAL assignment - $cast passes
 if (e2good) $display("b2->e2 cast PASSED!");
 e2.showit;
 end
endmodule

Example	2	‐	Upcasting	and	downcasting	test	module	

Figure	 3	 shows	 the	 declaration	 of	 two	base	 class	 handles	 (b1	 and	b2)	 and	 two	 extended	 class	
handles	(e1	and	e2).	These	handles	are	initially	null.	

Figure	3	‐	Declare	two	base	class	handles	and	two	extended	class	handles	

SNUG	2018	
	

Page	10	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

In	Figure	4,	the	b1	base	class	object	is	constructed,	and	the	a‐variable	is	set	to	4.	Then	the	showit()	
method	is	called	and	displays	the	output	shown	at	the	bottom	of	the	figure.	

Figure	4	‐	Construct	the	b1	base	class	and	set	the	a	value	

In	Figure	5,	an	attempt	was	made	to	copy	the	b1	base	class	handle	to	the	e1	extended	class	handle.	
This	is	an	illegal	attempt	at	downcasting	and	is	a	compilation	error.	Then	an	attempt	was	made	to	
$cast	the	b1	handle	to	the	e1	handle	but	the	$cast	fails,	so	the	if‐test	causes	the	displayed	failure	
message	at	the	bottom	of	the	figure	to	be	shown.	

	

Figure	5	‐	Illegal	to	copy	or	$cast	a	base	class	handle	to	an	extended	class	handle	

	 	

SNUG	2018	
	

Page	11	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

In	Figure	6,	the	e1	object	is	constructed	and	the	a‐value	and	data‐value	are	set,	then	the	contents	of	
the	e1	object	are	displayed	using	the	showit()	method	and	those	contents	are	shown	at	the	bottom	
of	the	figure.	

Figure	6	‐	Construct	the	e1	extended	class	and	set	the	a	and	data	values	

	
In	Figure	7,	the	e1	extended	object	handle	is	copied	to	the	b2	base	class	handle.	It	is	always	
possible	to	copy	an	extended	handle	to	a	base	class	handle	because	base	class	data	members	and	
methods	have	been	inherited	by	the	extended	class,	so	it	is	possible	to	use	the	base	class	handle	to	
call	inherited	base	class	data	members	and	methods.	This	is	upcasting	and	is	always	legal.	

Figure	7	‐	Copy	the	e1	extended	object	handle	to	the	b2	base	class	handle	

SNUG	2018	
	

Page	12	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

In	Figure	8,	the	e1	object	is	re‐constructed	and	the	a‐value	is	set,	while	the	data‐variable	retains	its	
default	value	of	0.	Then	the	contents	of	the	e1	object	are	displayed	using	the	showit()	method	and	
those	contents	are	shown	at	the	bottom	of	the	figure.	

Note	that	the	old	e1	object	still	exists	and	is	pointed	to	by	the	b2	class	handle.		

Figure	8	‐	Re‐construct	the	e1	extended	class	object	‐	b1	still	points	to	the	old	e1	object	

It	can	be	seen	in	Figure	9	that	any	attempt	to	access	the	extended	class	data	variable	or	any	
attempt	to	call	the	extended	methods	will	cause	a	compiler	error.	The	data	variable,	setdata()	
and	getdata()	methods	all	exist	in	the	object	pointed	to	by	the	b2	handle,	but	a	base	class	handle	
does	not	know	about	extended	members	and	methods,	so	the	compiler	will	not	allow	the	base	
handle	to	make	the	commented‐out	access	commands.	

Figure	9	‐	The	b2	base	handle	cannot	be	used	to	access	extended	object	data	or	methods	

	

SNUG	2018	
	

Page	13	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

In	Figure	10,	an	attempt	is	made	to	again	copy	a	base	class	handle	(b2)	to	an	extended	class	handle	
(e2),	but	this	is	still	illegal	and	flagged	as	a	compiler	error.	

But	in	Figure	10,	it	is	now	legal	to	$cast	the	b2	base	class	handle	to	the	e2	extended	class	handle,	
because	the	$cast	operation	first	checks	to	see	if	the	object	pointed	to	by	b2	is	an	extended	object,	
and	once	the	compiler	confirms	that	the	base	handle	is	indeed	pointing	to	an	extended	object	the	b2	
base	handle	can	now	be	copied	($cast)	 to	 the	e2	extended	handle.	This	 is	an	example	of	 legal	
downcasting,	as	described	at	the	beginning	of	Section	7.	

Figure	10	‐	$cast	the	b2	handle	to	the	e2	handle	‐	This	is	now	legal	

How	do	engineers	use	this	capability	in	a	UVM	testbench?	One	common	example	is	when	overriding	
the	do_copy()	method	in	the	user's	transaction	class	definition.		

User	 defined	 transaction	 classes	 are	 typically	 extensions	 or	 derivatives	 of	 the	
uvm_sequence_item	class,	and	as	was	shown	in	Figure	2,	uvm_sequence_item	is	a	derivative	
of	uvm_object;	 therefore,	 user	 defined	 transactions	 are	 also	 derivatives	 of	uvm_object.	 This	
means	that	any	user	defined	object	transaction	handle	can	be	copied	or	passed	to	a	uvm_object	
handle,	as	is	the	case	when	overriding	the	do_copy()	method.		

The	do_copy()	method	as	defined	in	uvm_object	is	shown	in	Figure	11.	

	
virtual function void uvm_object::do_copy (uvm_object rhs);
 return;
endfunction

Figure	11	‐	UVM	do_copy()	virtual	method	

	 	

SNUG	2018	
	

Page	14	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

When	overriding	the	do_copy()	method,	 it	 is	 important	to	declare	a	handle	of	the	user's	defined	
transaction	class	type	(in	this	example,	trans	tr).	When	the	do_copy()	method	is	called	with	a	
user	 defined	 transaction	 handle,	 it	 is	 upcast	 to	 the	 uvm_object	 type.	 Any	 attempt	 to	 access	
transaction	fields	from	the	rhs	handle	will	fail	because	the	rhs	handle	is	of	the	uvm_object	base	
class	type,	but	the	tr	object	fields	are	still	there,	just	not	accessible.	To	gain	access	to	the	object	fields,	
the	rhs	handle	needs	to	be	downcast	to	the	transaction	type	($cast(tr, rhs);).	The	copy()	
defined	in	uvm_object	calls	the	do_copy()	method	and	by	defining	the	do_copy()	method	to	
$cast	 the	argument	handle	rhs	 to	 the	desired	trans	handle	tr	 ,	we	know	that	any	call	 to	 the	
transaction	tr.copy(new_tr)	method	will	succeed	in	copying	the	fields	of	the	new_tr	handle	to	
the	local	fields	of	the	trans	tr	object,	where	new_tr	is	the	handle	of	another	object	of	the	same	
transaction	type.	

	
function void do_copy (uvm_object rhs);
 trans tr;
 super.do_copy(rhs);
 $cast(tr, rhs);
 field_1 = tr.field_1;
 field_2 = tr.field_2;
 ...
endfunction

Example	3	‐	do_copy()	method	implemented	with	downcasting	

When	a	user	overrides	the	virtual	do_copy()	or	do_compare()	methods,	it	is	required	to	declare	
a	local	transaction	handle	in	the	functions	and	downcast	the	uvm_object	rhs	handle	to	the	locally	
declared	transaction	handle.		

Many	industry	UVM	testbench	examples	name	the	local	transaction	handle	rhs_	,	but	we	believe	this	
is	 confusing	 and	 therefore	 a	 poor	 practice.	 Using	 rhs_	 means	 that	 casting	 is	 done	 in	 the	 form	
$cast(rhs_, rhs);	and	then	fields	are	referenced	as	rhs_.field_1	,	etc.	It	is	easy	to	confuse	
the	uvm_object	rhs	 handle	 with	 the	 transaction	 class	rhs_	 handle.	We	 believe	 it	 is	 a	 better	
practice	to	make	sure	the	local	transaction	handle	has	a	very	distinct	non‐	rhs	handle	name	such	as	
tr	,	to	avoid	confusion	about	which	handle	is	being	referenced	inside	the	method.			

Guideline	3:	 Declare	local	transaction	handles	using	distinct	names	such	as	tr	and	avoid	local	
transaction	handle	names	such	as	rhs_.	

Partial	do_copy()	and	do_compare()	trans	class	methods	with	trans	tr	handle	declarations	
and	$cast(tr, rhs);	downcasting	commands	are	shown	at	the	beginning	of	Section	7.	

	
	

SNUG	2018	
	

Page	15	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

class trans extends uvm_sequence_item;
 ...
 int f1;
 ...
 virtual function void do_copy (uvm_object rhs);
 trans tr;
 //----------------------------------
 super.do_copy(rhs);
 $cast(tr, rhs);
 f1 = tr.f1;
 ...
 endfunction

 virtual function bit do_compare (uvm_object rhs, uvm_comparer comparer);
 trans tr;
 bit eq;
 //----------------------------------
 eq = super.do_compare(rhs, comparer);
 $cast(tr, rhs);
 eq &= comparer.compare_field_int("f1", f1, tr.f1);
 ...
 return(eq);
 endfunction
 ...
Endclass

Example	4	‐	Transaction	example	with	do_copy()	implemented	using	downcasting	

	 	

SNUG	2018	
	

Page	16	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

8. Pure	virtual	methods	
SystemVerilog‐2009[4]	added	the	pure	keyword	to	the	SystemVerilog	language.	The	pure	keyword	
is	only	legal	in	a	virtual	class.	The	pure	keyword	is	not	legal	in	a	non‐virtual	class.	

Pure	virtual	methods	serve	two	important	purposes:	
(1) Pure	virtual	methods	can	only	be	a	method	prototype.	Pure	virtual	methods	are	a	place‐

holder.	
(2) Pure	virtual	methods	must	be	overridden	in	a	non‐virtual	class.	

To	summarize	these	purposes,	pure	virtual	methods	create	a	method	place‐holder	that	imposes	the	
requirement	that	it	must	be	implemented	in	the	non‐virtual	class.		

As	a	pure	virtual	method	placeholder,	the	pure	virtual	method	in	a	virtual	class	imposes	
the	following	restrictions:	

(1) The	pure	virtual	method	can	only	be	a	prototype.	
(2) The	pure	virtual	method	cannot	have	a	body,	it	is	not	allowed	to	have	any	of	the	

implementation	code.	
(3) The	pure	virtual	method	is	NOT	even	allowed	to	have	an	"end"	keyword	

(endfunction	/	endtask).	

Question:	If	a	virtual	class	declares	a	pure	virtual	method,	does	the	first	derivative	non‐virtual	class	
have	to	override	the	pure	method?	If	no	other	derivative	virtual	classes	have	overridden	the	pure	
method	with	an	implementation,	the	answer	is	yes.	This	is	shown	in	Figure	12.		

Figure	12	‐	Non‐virtual	class	must	override	a	pure	virtual	method	from	a	virtual	class	

	
	 	

SNUG	2018	
	

Page	17	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

If	a	derivative	extended	virtual	class	has	overridden	the	pure	method	with	an	implementation,	the	
first	derivative	non‐virtual	class	does	not	have	to	override	the	pure	method.	This	is	shown	in	Figure	
13.		

Figure	13	‐	Non‐virtual	class	not	require	to	override	a	pure	virtual	method	if	overridden	in	a	virtual	class	

8.1 UVM	pure	virtual	method	example	

One	 common	 place	 where	 UVM	 verification	 engineers	 encounter	 pure	 virtual	 methods	 is	 in	 the	
uvm_subscriber.	This	UVM	base	class	is	often	extended	to	create	a	coverage	collector	component	
and	is	sometimes	used	to	help	create	components	that	are	part	of	a	testbench	scoreboard.	

The	 uvm_subscriber	 has	 a	 built‐in	 uvm_analysis_imp	 port	 with	 port	 name	
analysis_export.	 To	 use	 the	 uvm_analysis_imp	 port	 requires	 a	 write	 function,	 so	 the	
uvm_subscriber	also	includes	the	declaration	of	a	pure virtual function write (…)	

Extending	the	uvm_subscriber	to	create	a	testbench	coverage	collector	means	that	the	coverage	
collector	inherits	the	uvm_analysis_imp	port	and	requires	verification	engineers	to	implement	
the	write()	function.	
	 	

SNUG	2018	
	

Page	18	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

Partial	code	from	the	uvm_subscriber	base	class	is	shown	in	Example	5.	

	
virtual class uvm_subscriber #(type T=int) extends uvm_component;

 typedef uvm_subscriber #(T) this_type;

 // Port: analysis_export
 uvm_analysis_imp #(T, this_type) analysis_export;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 analysis_export = new("analysis_imp", this);
 endfunction

 // Function: write
 //
 // A pure virtual method that must be defined in each subclass. Access
 // to this method by outside components should be done via the
 // analysis_export.

 pure virtual function void write(T t);
endclass

Example	5	‐	Partial	uvm_subscriber	code	

Example	6	shows	part	of	a	scoreboard	predictor,	commonly	used	 in	a	UVM	scoreboard.	Since	the	
sb_predictor extends	the	uvm_subscriber,	the	predictor	is	required	to	override	the	write	
method	with	a	full	implementation.	

	
class sb_predictor extends uvm_subscriber #(trans1);
 `uvm_component_utils(sb_predictor)

 // Inherit the uvm_analysis_imp port declared in uvm_subscriber
 // uvm_analysis_imp #(T, this_type) analysis_export;

 ...

 // MUST override the write method
 function void write(trans1 t);
 ...
 endfunction
endclass

Example	6	‐	Partial	common	scoreboard	predictor	code	

Since	the	sb_predictor	is	a	parametereized	class	of	type	trans1,	the	write()	method	must	
also	use	trans1	as	the	input	type.	The	type	T	parameter	of	the	uvm_subscriber	was	the	input	
type	of	 the	write()	method	(as	shown	in	Example	5),	so	whatever	type	 is	used	in	the	extended	
sb_predictor	must	also	be	the	input	type	of	the	write()	function	(as	shown	in	Example	6).	

Guideline	#4:	 Declare	a	pure	method	whenever	it	is	important	to	force	a	derivative	class	to	
implement	the	method,	as	is	done	by	the	uvm_subscriber	virtual	class.	

	 	

SNUG	2018	
	

Page	19	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

9. Virtual	Interfaces	
Virtual	interfaces	are	class	data	member	handles	that	point	to	an	interface	instance.		This	allows	a	
dynamic	class	object	to	communicate	with	a	Design	Under	Test	(DUT)	module	instance	without	using	
hierarchical	references	to	directly	access	the	DUT	module	ports	or	internal	signals.		This	is	important	
given	two	facts:	(1)	class	definitions	are	typically	gathered	into	one	or	more	packages,	and	(2)	items	
that	 are	 defined	 inside	 of	 a	 package	 are	 not	 permitted	 to	make	 hierarchical	 references	 to	 items	
outside	of	that	package.	This	SystemVerilog	package	restriction	exists	because	the	package	might	be	
used	in	a	design	that	does	not	include	the	hierarchical	paths	that	might	be	referenced	in	the	package.	

In	Figure	14,	it	can	be	seen	that	the	class	methods	access	the	virtual	interface	(using	the	normal	dot	
notation,	<virtual	interface>.<signal>).		Since	the	virtual	interface	is	pointing	at	the	interface	instance,	
the	class	methods	are	in	effect	accessing	the	interface	instance.		With	the	DUT	instance	connected	to	
the	interface	instance,	the	class	methods	are	indirectly	accessing	the	DUT	instance	without	using	a	
hierarchical	reference	outside	of	the	class.		

	

Figure	14.	Virtual	Interface	Block	Diagram	

To	successfully	use	a	virtual	interface	there	are	three	requirements:	
 An	instantiated	interface	must	be	correctly	connected	to	the	module	instance.	
 A	virtual	interface	handle	must	be	declared	in	a	class.	
 An	assignment	must	be	made	to	set	the	class	virtual	interface	handle	to	point	to	the	module	

interface	instance.	
	 	

Class	Object	 Top	Module

Virtual	Interface	 Interface	Instance

Methods	 DUT	

SNUG	2018	
	

Page	20	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

Example	 7	 shows	 the	 interface	 instantiated	 as	 dif	 and	 hierarchically	 connected	 to	 the	 module	
instance	dut	to	satisfy	the	first	requirement	above	(this	is	a	common	style	of	connecting	an	interface	
to	a	module	instance	for	use	with	a	non‐UVM	class	based	test	environment).		If	the	module	had	used	
the	interface	as	a	port,	the	connection	of	the	interface	to	the	module	instantiation	is	shown	in	the	
commented	out	instantiation	at	the	bottom.	

	

Example	7	‐	Interface	Instantiation	and	Connection	

Example	8	shows	the	second	two	requirements.		First	is	the	declaration	of	the	virtual	interface,	vif,	
inside	of	the	Testbench	class.		Second	is	the	assignment	of	the	interface	instance	handle,	dif,	to	
the	virtual	interface,	vif,	using	the	new()	constructor	of	the	class.		This	is	a	relatively	common	non‐
UVM	style	of	connecting	the	virtual	interface	to	the	interface	instance	(section	9.2	will	show	the	UVM	
style).	

	
Example	8	‐	Virtual	Interface	Declaration	and	Assignment	

module top();
 …
 // The actual instantiation of the Interface (note: this is the
 // only physical copy of the interface in the environment).
 dut_if dif(.*);

 // DUT instantiation with hierarchical port connections with the
 // .* at the end to do port-type checking for connection errors.
 simple_dut dut(.clk(dif.clk), .rst_n(dif.rst_n),
 .valid(dif.valid), .in_char(dif.in_char),
 .ack(dif.ack), .out_char(dif.out_char), .*);

 // If the DUT used the interface as a port rather than a discreet
 // port list, then the instantiation would be similar to this.
 // simple_dut dut(.lif(dif), .*);
 …
endmodule

class Testbench;
 …
 // The virtual interface declaration.
 virtual dut_if vif;

 // When constructing the testbench object, take the passed in
 // handle to the actual interface instance and assign it to the
 // virtual interface of the testbench.
 function new (virtual dut_if nif);
 vif = nif;
 endfunction
 …
endclass

module top();
 …
 // The testbench class object handle and construction.
 Testbench tb = new(dif);
 …
endmodule

SNUG	2018	
	

Page	21	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

Once	the	virtual	interface	is	connected	correctly,	the	class	objects	can	communicate	with	the	module	
instance	by	accessing	the	signals	inside	of	the	interface	that	are	connected	to	the	module,	as	shown	
in	Example	9.	

	
Example	9	‐	Virtual	Interface	Accesses	

9.1 Virtual	Interfaces	vs	Static	Interfaces	

When	dealing	with	interfaces,	there	are	three	different	perspectives	that	should	be	considered.		The	
first	two	are	static	in	nature	and	are	constructed	and	connected	during	compile/elaboration	of	the	
design	and	environment.		The	third	is	created	and	assigned	dynamically	during	run‐time.	

The	first	is	the	static	interface	instance	itself.		This	was	shown	as	the	instantiation	of	dif	in	Example	
7,	which	 is	created	during	compilation/elaboration	and	cannot	be	changed	during	run‐time.	 	The	
instantiation	of	an	interface	is	the	only	place	that	an	actual	interface	exists.	All	other	references	to	an	
interface	are	handles	pointing	to	the	actual	interface	instantiation.	

The	 second	 is	 the	 static	 handle	 to	 an	 interface	 from	 a	module	 port	 list.	 	 This	was	 shown	 in	 the	
commented	out	module	instantiation	in	Example	7	where	the	port	lif	was	connected	to	the	static	
handle	dif.		This	handle	is	set	and	connected	to	the	port	statically	during	compilation/elaboration	
and	cannot	be	changed	during	run‐time.	

The	third	is	the	dynamic	virtual	interface	within	classes.		The	creation	and	setting	of	the	vif	virtual	
interface	was	shown	in	Example	8	and	the	access	of	interface	signals	was	show	in	Example	9.		This	
dynamic	field	is	set	and	used	during	run‐time.		Since	it	is	dynamic,	an	environment	could	be	designed	
that	had	multiple	interfaces	instantiated,	but	only	one	virtual	interface	that	pointed	at	the	different	
interface	instances	at	different	times	during	run‐time	(this	is	just	being	mentioned	as	a	theoretical	
possibility,	not	as	a	 recommendation	as	 it	would	probably	create	a	very	complex	and	convoluted	
environment	that	would	be	a	nightmare	to	create	and	maintain	effectively).	

Notice	 that	 the	 instance	 name	 of	 an	 interface	 instantiation	 is	 used	 to	 represent	 both	 the	 actual	
instance	and	a	handle.	 	The	handle	 is	 treated	as	a	static	handle	when	 it	 is	connected	to	a	module	

class Testbench;
 …
 task run_test();
 vif.rst_n <= '0;
 vif.valid <= '0;
 @(negedge vif.clk);
 vif.rst_n = '1;
 @(negedge vif.clk);

 // Drive the test string into the DUT.
 foreach (test_str[i]) begin
 vif.in_char = test_str[i];
 vif.valid = '1;
 @(negedge vif.clk);
 vif.valid = '0;
 end

 repeat (3) @(negedge vif.clk);
 $finish(2);
 endtask

endclass

SNUG	2018	
	

Page	22	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

instance	port	and	as	a	dynamic	handle	when	passed	into	a	class	to	set	a	virtual	interface	handle.	

9.2 Virtual	Interface	Usage	in	UVM	

Since	 UVM	 is	 a	 class‐based	 verification	 methodology	 and	 it	 is	 recommended	 to	 group	 the	
environment	into	a	package.	One	or	more	virtual	interfaces	are	required	for	the	UVM	testbench	to	
access	the	DUT.		The	UVM	driver	and	UVM	monitor	are	typically	the	only	two	locations	that	need	to	
access	the	DUT,	so	they	are	the	only	two	locations	within	UVM	that	require	a	virtual	interface.	

The	most	common	UVM	style	of	instantiating	and	connecting	the	virtual	interface	to	the	DUT	was	
shown	in	Example	7	using	the	named	port	connections	that	hierarchically	connect	to	the	 internal	
signals	of	the	interface.	

Where	the	UVM	differs	from	the	basic	virtual	interface	usage,	 is	 in	the	connection	of	the	interface	
instance	to	the	virtual	interface.	 	There	are	three	ways	to	do	this	connection	and	the	first	two	are	
generally	not	recommended.	

The	first	way	that	is	not	recommended	was	shown	in	Example	8	by	passing	the	interface	handle	into	
the	new()	constructor	of	the	class.		This	style	in	UVM	creates	spaghetti‐like	coding	as	you	have	to	
pass	the	interface	handle	to	each	level	of	the	UVM	component	structure	until	you	get	it	to	the	driver	
and	monitor	where	they	are	actually	used.	

The	second	way,	which	is	no	longer	recommended,	is	the	older	OVM	style	using	a	wrapper	class	and	
the	config	object	table	to	store	and	retrieve	that	wrapper.		This	style	was	required	in	OVM	and	will	
still	work	for	UVM,	but	is	not	recommended	for	UVM	since	it	requires	the	creation	of	an	extra	wrapper	
class	 for	 the	sole	purpose	of	storing	 the	 interface	handle	 inside	of	a	class	object	 that	can	 then	be	
stored	 into	 a	 uvm_object	 (config	 object)	 table	 using	 the	 now‐deprecated1	
set_config_object() / get_config_object()	 commands.	 The	 wrapper	 class	 was	
necessary	because	a	static	interface	handle	cannot	be	directly	placed	into	a	class‐based	storage	table.	
	 	

																																																													

	
1	set_config_object()	and	get_config_object()	commands	were	deprecated	in	UVM	1.2.	These	commands	were	replaced	by	
the	uvm_config_db#(…)::set(…)	and	uvm_config_db#(…)::get(…)	commands.	

SNUG	2018	
	

Page	23	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

Example	10	shows	how	the	wrapper	class	has	to	be	created,	its	virtual	interface	pointed	to	the	actual	
interface,	and	then	the	wrapper	class	object	is	stored	inside	of	the	config	object	table	before	the	call	
to	run_test().		Then	in	the	driver	and	monitor	classes	(Example	10	only	shows	the	driver,	but	the	
monitor	would	use	the	same	coding),	the	wrapper	object	must	be	retrieved	from	the	config	object	
table	and	downcast	from	the	uvm_object	class	back	into	the	wrapper	class	before	the	stored	virtual	
interface	handle	can	be	retrieved	and	assigned	to	the	local	vif	handle.		This	assignment	is	typically	
done	in	the	build_phase()	method	and	once	it	 is	done,	the	testbench	has	access	to	the	virtual	
interface	for	the	driver	and	monitor	classes	to	indirectly	communicate	with	the	DUT.	

	
Example	10	‐	OVM	Style	Virtual	Interface	Connection	

	 	

module top;
 …
 dut_if dif;
 dut_if_wrapper w; // dut_if_wrapper is derived from uvm_object

 initial begin
 w = new(dif);
 set_config_object("*", "vif", w, 0);
 run_test();
 end
endmodule

class dut_if_wrapper extends uvm_object;
 virtual dut_if vif;

 function new (virtual dut_if nif);
 vif = nif;
 endfunction
endclass

class tb_driver extends uvm_driver #(trans1);
 …
 virtual dut_if vif;
 …
 function void build_phase(uvm_phase phase);
 super.build_phase(phase);

 uvm_object obj;
 dut_if_wrapper w;
 //-------------------------------
 if (!get_config_object("vif", obj, 0))
 `uvm_fatal("NOVIF",{"virtual interface must be set for:",
 get_full_name(),".vif"});
 if (!$cast(w, obj))
 `uvm_fatal("NOVIF",{"bad dut_if_wrapper handle for",
 get_full_name()});
 vif = w.vif;
 endfunction
 …
endclass

top	module	with	interface	
and	interface	wrapper	

dut_if_wrapper	class	
definition	

tb_driver	class	that	
accesses	the	wrapper	class	
to	retrieve	the	interface	

handle	

SNUG	2018	
	

Page	24	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

The	 third,	 and	 recommended,	way	 to	 set	 virtual	 interfaces	 in	UVM	 is	 a	 cleaner	and	easier	 to	use	
approach	as	it	basically	does	the	wrapper	handling	automatically.	Example	11	first	shows	that	the	
actual	interface	handle,	dif,	is	stored	into	the	uvm_config_db	at	string	location	"vif"	using	the	
set()	command	just	before	the	run_test()	call	in	the	top	level	module.		Then	it	shows	the	use	of	
the	get()	function	of	the	uvm_config_db	to	retrieve	the	virtual	interface	handle	from	the	same	
"vif"	location	and	assign	it	to	the	local	vif	virtual	interface	handle	in	the	driver	class	(the	same	
code	will	be	used	inside	of	the	monitor	class).	

	
Example	11	‐	UVM	Style	Virtual	Interface	Connection	

This	 third	 technique	 eliminates	 the	 need	 to	 create	 a	 separate	 wrapper	 class	 to	 store	 the	 static	
interface	handle,	and	eliminates	the	need	to	declare	a	uvm_object	base	class	handle	and	downcast	
that	handle	to	a	wrapper	handle	before	retrieving	the	virtual	interface	handle.	

Guideline	#5:	 Use	 uvm_config_db#(virtual dut_if)::set(…)	and	
		 uvm_config_db#(virtual dut_if)::get(…)	commands	
to	store	and	retrieve	an	interface	for	use	by	a	UVM	testbench.	

	 	

module top;
 …
 dut_if dif;
 …
 initial begin
 uvm_config_db#(virtual dut_if)::set(null, "*", "vif", dif);
 run_test();
 end
endmodule

class tb_driver extends uvm_driver #(trans1);
 …
 virtual dut_if vif;
 …
 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 // Get the virtual interface handle that was stored in the
 // uvm_config_db and assign it to the local vif field.
 if (!uvm_config_db#(virtual dut_if)::get(this, "", "vif", vif))
 `uvm_fatal("NOVIF", {"virtual interface must be set for: ",
 get_full_name(), ".vif"});
 endfunction
 …
endclass

SNUG	2018	
	

Page	25	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

10. Summary	&	Conclusions	
This	paper	gave	a	quick	introduction	to	classes,	class	extension,	class	methods,	virtual	classes	and	
virtual	methods.	

A	guideline	for	choosing	how	to	implement	class	methods	was	given:	

Guideline	#1:	 Class	methods	should	be	function	and	void	function.	Only	use	task	when	the	
method	consumes	simulation	time.	

This	 paper	 described	 how	 virtual	 methods	 are	 frequently	 used	 in	 UVM	 and	 how	 upcasting	 and	
downcasting	work	and	are	also	used	in	UVM.	This	lead	to	the	second	guideline:	

Guideline	#2:	Declare	SystemVerilog	class	methods	to	be	virtual	methods	unless	there	is	a	very	
good	reason	to	prohibit	method‐polymorphism.	

UVM	uses	the	important	virtual	methods	do_copy()	,	do_compare()	and	other	virtual	methods	
that	are	called	by	the	copy()	,	compare()	and	other	standard	transaction	methods,	which	require	
that	 the	 uvm_object	 method	 prototypes	 be	 copied	 and	 used.	 The	 prototype	 methods	 take	
uvm_object	handles	as	inputs,	which	upcasts	all	transaction	handles	into	uvm_object	handles.	
These	methods	 require	 the	 user	 to	 declare	 handles	 of	 the	 transaction	 type	 and	 to	 downcast	 the	
handles	inside	of	these	methods	to	recover	the	transaction	data	members.	This	paper	described	why	
it	might	be	confusing	to	declare	transaction	handles	named	rhs_	and	recommended	that	distinct	
names	be	given	to	the	local	transaction	handles	in	these	methods.	

Guideline	#3:	 Declare	local	transaction	handles	using	distinct	names	such	as	tr	and	avoid	local	
transaction	handle	names	such	as	rhs_.	

This	paper	also	discussed	the	keyword	pure	and	how	it	is	used	in	virtual	classes	to	impose	a	strict	
method	prototype	requirement	that	also	eventually	requires	a	derivative	class	to	implement	the	full	
method.	A	uvm_subscriber	class	example	was	included	to	show	how	this	is	commonly	used	in	
UVM	testbenches.	

Guideline	#4:	 Declare	a	pure	method	whenever	it	is	important	to	force	a	derivative	class	to	
implement	the	method,	as	is	done	by	the	uvm_subscriber	virtual	class.	

This	paper	also	showed	how	virtual	interfaces	are	used	to	drive	signals	from	a	class‐based	testbench	
to	a	real	testbench	interface	and	that	the	real	interface	signals	touch	the	pins	of	the	DUT,	effectively	
allowing	the	class‐driven	signals	to	touch	the	DUT	pins	in	a	testbench.	

It	 was	 also	 shown	 that	 the	 new	 uvm_config_db#(…)::set(…)	 and	
uvm_config_db#(…)::get(…)	 commands	 greatly	 simplify	 the	 process	 of	 connecting	 a	 class	
based	testbench	to	a	DUT.	

Guideline	#5:	 Use	 uvm_config_db#(virtual dut_if)::set(…)	and	
		 uvm_config_db#(virtual dut_if)::get(…)	commands	
to	store	and	retrieve	an	interface	for	use	by	a	UVM	testbench.	

11. Acknowledgements	
We	 are	 grateful	 to	 our	 colleagues	 John	 Dickol,	 Don	 Mills	 and	 Jeff	 Vance	 for	 their	 reviews	 and	
suggested	 improvements	 to	 this	 paper.	 Their	 contributions	 have	 ensured	 the	 presented	material	
includes	explanations	and	insight	that	we	would	have	otherwise	neglected	to	include.	

SNUG	2018	
	

Page	26	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

12. References	
[1] Clifford	E.	Cummings,	“UVM	Transaction	‐	Definitions,	Methods	and	Usage,”	SNUG	2014	(Silicon	Valley).	

Available	at	www.sunburst‐design.com/papers	

[2] IEEE	Standard	Verilog	Hardware	Description	Language,	IEEE	Computer	Society,	IEEE,	New	York,	NY,	IEEE	
Std	1364‐2001.	

[3] "IEEE	Standard	For	 SystemVerilog:	Unified	Hardware	Design,	 Specification	and	Verification	Language,"	
IEEE	Computer	Society	and	the	IEEE	Standards	Association	Corporate	Advisory	Group,	IEEE,	New	York,	
NY,	IEEE	Std	1800™‐2005	

[4] "IEEE	Standard	For	SystemVerilog	‐	Unified	Hardware	Design,	Specification	and	Verification	Language,"	
IEEE	Computer	Society	and	the	IEEE	Standards	Association	Corporate	Advisory	Group,	IEEE,	New	York,	
NY,	IEEE	Std	1800™‐2009	

[5] "IEEE	Standard	For	SystemVerilog	‐	Unified	Hardware	Design,	Specification	and	Verification	Language,"	
IEEE	Computer	Society	and	the	IEEE	Standards	Association	Corporate	Advisory	Group,	IEEE,	New	York,	
NY,	IEEE	Std	1800™‐2012	

[6] "IEEE	 Standard	 For	 Universal	 Verification	 Methodology	 Language	 Reference	 Manual,"	 IEEE	 Computer	
Society	Sponsored	by	the	Design	Automation	Standards	Committee,	IEEE,	New	York,	NY,	IEEE	Std	1800.2™‐
2017	

[7] https://stackoverflow.com/questions/23414090/what‐is‐the‐difference‐between‐up‐casting‐and‐down‐
casting‐with‐respect‐to‐class	

[8] https://www.tutorialcup.com/cplusplus/upcasting‐downcasting.htm	

[9] "SystemVerilog	 3.1	 –	 Accellera’s	 Extensions	 to	 Verilog®,"	 2003,	 Accellera	 Organization,	 Inc.,	 Napa,	 CA	
94558	

13. Author	&	Contact	Information	
Cliff	Cummings,	President	of	Sunburst	Design,	Inc.,	is	an	independent	EDA	consultant	and	trainer	
with	36	years	of	ASIC,	FPGA	and	system	design	experience	and	26	years	of	SystemVerilog,	synthesis	
and	methodology	training	experience.	

Mr.	Cummings	has	presented	more	than	100	SystemVerilog	seminars	and	training	classes	in	the	past	
15	years	and	was	the	featured	speaker	at	the	world‐wide	SystemVerilog	NOW!	seminars.		

Mr.	 Cummings	 participated	 on	 every	 IEEE	 &	 Accellera	 SystemVerilog,	 SystemVerilog	 Synthesis,	
SystemVerilog	 committee	 from	 1994‐2012,	 and	 has	 presented	 more	 than	 40	 papers	 on	
SystemVerilog	&	SystemVerilog	related	design,	synthesis	and	verification	techniques.	

Mr.	 Cummings	 holds	 a	 BSEE	 from	 Brigham	 Young	 University	 and	 an	 MSEE	 from	 Oregon	 State	
University.	

Sunburst	 Design,	 Inc.	 offers	 World	 Class	 Verilog	 &	 SystemVerilog	 training	 courses.	 For	 more	
information,	visit	the	www.sunburst‐design.com	web	site.	

Email	address:	cliffc@sunburst‐design.com	

	

Heath	Chambers	is	President	of	HMC	Design	Verification,	Inc.,	a	company	that	specializes	in	design	
and	verification	consulting	and	high	 tech	 training.	Mr.	Chambers	 is	a	 consultant	with	22	years	of	
Verilog	Experience	15	years	of	SystemVerilog	experience,	18	years	of	consulting	and	verification	lead	
experience	for	multiple	projects	and	has	been	an	instructor	for	Sunburst	Design	since	the	year	2000.	
Heath	has	18	years	of	SystemVerilog,	Verilog,	synthesis	and	UVM	Verification	methodology	training	

SNUG	2018	
	

Page	27	 	SystemVerilog	Virtual	Classes,	Methods,	Interfaces	 	
Rev	1.0	 ‐	Their	Use	in	Verification	and	UVM	

experience	 for	 Sunburst	 Design,	 Inc.,	 and	 was	 previously	 a	 contract	 Specman	 Basic	 Training	
instructor	 for	 Verisity.	 Heath	 has	 ASIC	 and	 system	 verification,	 firmware,	 and	 self‐test	 design	
experience	 and	 is	 capable	 of	 answering	 the	 very	 technical	 questions	 asked	 by	 experienced	
verification	engineers.	

Mr.	 Chambers,	was	 a	member	of	 the	 IEEE	1364	Verilog	 and	 IEEE	1800	SystemVerilog	 Standards	
Groups	 from	 2000	 to	 2012,	 and	 has	 helped	 to	 develop	 and	 improve	 Sunburst	 Design	 Verilog,	
SystemVerilog,	UVM	and	synthesis	training	courses.	

Mr.	Chambers	specializes	in	verification	of	ASICs	and	systems	using	top‐down	design	methodologies	
and	 is	 proficient	 in	 SystemVerilog,	Verilog,	UVM,	 'e',	 C,	 and	Perl.	Mr.	 Chambers	 specializes	 in	 the	
Questa,	Cadence,	Synopsys	simulation	tools.		

Before	 becoming	 an	 independent	 Consultant,	 Mr.	 Chambers	 worked	 for	 Hewlett‐Packard	 doing	
verification	of	multi‐million	gate	ASICs	and	systems	containing	multiple	chips.	Mr.	Chambers	was	the	
lead	verification	engineer	for	the	last	two	projects	he	worked	on	before	leaving	the	company.		

Mr.	Chambers	holds	a	BSCS	from	New	Mexico	Institute	of	Mining	and	Technology.	

Email	address:	hmcdvi@msn.com	

	

Last	Updated:	June	2018	

	

