
	

	 	

	

	
World Class SystemVerilog & UVM Training

Finite	State	Machine	(FSM)	Design	&	Synthesis	using	
SystemVerilog	-	Part	I	

	 	 	

	 Clifford	E.	Cummings	 Heath	Chambers	

	

	
	 Sunburst	Design,	Inc.	 HMC	Design	Verification,	Inc.	

	 Provo,	UT,	USA	 Albuquerque,	NM,	USA	

	

	 www.sunburst‐design.com	 	

	
ABSTRACT	
There	 are	 at	 least	 seven	 different	 Finite	 State	Machine	 (FSM)	 design	 techniques	 that	 are	
commonly	taught,	one	with	combinatorial	outputs	and	six	with	registered	outputs.	This	paper	
will	 describe	 four	 of	 the	 FSM	 design	 techniques:	 (1)	 1‐Always	 Block	 Style	with	 registered	
outputs,	(2)	2‐Always	Block	Style	with	combinatorial	outputs,	(3)	3‐Always	Block	Style	with	
registered	outputs,	and	(4)	4‐Always	Block	Style	with	registered	outputs	
This	paper	establishes	measurement	techniques	to	determine	good	coding	styles	and	also	shows	
synthesis	results	for	ASIC	designs.	
Multiple	benchmark	FSM	designs	are	used	to	measure	coding	style	and	synthesis	efficiency.	
The	other	three	FSM	design	styles	will	be	described	in	follow‐on	papers.	
	 	

SNUG-2019
Silicon Valley, CA

Voted Best Presentation
1st Place

SNUG	2019	
	

Page	2	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

Table	of	Contents	
Finite	State	Machine	(FSM)	Design	&	Synthesis	using	SystemVerilog	‐	Part	I	...	1

1.	Introduction	...	6

2.	Important	design	goals	..	7

2.1	More	code	=	more	bugs	...	7

3.	FSM	Coding	Style	Metrics	...	8

4.	State	machine	types	..	8

4.1	Moore	‐vs‐	Mealy	..	8

4.2	Binary	‐vs‐	OneHot	encoding	..	9

5.	ASIC	‐vs‐	FPGA	Synthesis	..	9

6.	SystemVerilog	FSM	coding	styles	..	10

6.1	One	Always	Block	FSM	coding	style	‐	registered	outputs	...	10

6.2	Two	Always	Block	FSM	coding	style	‐	combinatorial	outputs	..	10

6.3	Three	Always	Block	FSM	coding	style	‐	registered	outputs	...	11

6.4	Four	Always	Block	FSM	coding	style	‐	registered	outputs	...	12

7.	SystemVerilog	FSM	Coding	Tips	&	Tricks	..	13

7.1	Logic	data	type	...	13

7.2	Assignments	using	'0	/	'1	/	'x	‐vs‐	1'b0	/	1'b1	/	1'bx	..	13

7.3	FSM	module	header	&	port	list	...	15

7.4	Enumerated	state	types	...	15

7.5	FMS	RTL	code	should	use	SystemVerilog	always_ff	and	always_comb	procedures	17

7.6	FSM	State	Register	..	17

7.7	Default	next='x	‐vs‐	default	next=state	...	18

7.8	Next	state	naming	convention	...	19

7.9	Next	assignments	placed	in	a	column	..	20

7.10	Loopback	next	state	assignments	...	21

7.11	Default	output	assignments	...	21

7.12	Nonblocking	Assignment	race	conditions?	...	22

8.	Benchmark	FSM	designs	..	23

8.1	FSM1	with	4	states,	2	outputs	and	2	inputs	..	25

8.2	FSM7	with	10	states,	1	output	and	2	inputs	..	27

8.3	FSM8	with	10	states,	3	outputs	and	2	inputs	..	33

8.4	Prep4	FSM	design	with	16	states,	8‐bit	output	and	8‐bit	input	...	35

9.	Comparisons	&	Summary	..	38

SNUG	2019	
	

Page	3	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

10.	Acknowledgements	...	39

11.	References	...	39

12.	Author	&	Contact	Information	..	41

 Tools	and	OS	versions	..	42

 FSM	benchmark	source	code	..	43

 FSM1	‐	fsm1_pkgs	for	abstract	and	binary	encoded	enums	43

 FSM1	‐	1	always	block	RTL	‐	NOT	Recommended	‐	Registered	Outputs	44

 FSM1	‐	2	always	block	RTL	‐	Recommended	‐	Combinatorial	Outputs	45

 FSM1	‐	3	always	block	RTL‐	NOT	Recommended	‐	Registered	Outputs	46

 FSM1	‐	4	always	block	RTL	‐	Recommended	‐	Registered	Outputs	47

 FSM7	‐	fsm7_pkgs	for	abstract	and	binary	encoded	enums	48

 FSM7	‐	1	always	block	RTL	‐	NOT	Recommended	‐	Registered	Outputs	49

 FSM7	‐	2	always	block	RTL	‐	Recommended	‐	Combinatorial	Outputs	51

 FSM7	‐	3	always	block	‐	Recommended	‐	Registered	Outputs	52

 FSM7	‐	4	always	block	RTL	‐	Recommended	‐	Registered	Outputs	53

 FSM8	‐	fsm8_pkgs	for	abstract	and	binary	encoded	enums	55

 FSM8	‐	1	always	block	RTL	‐	NOT	Recommended	‐	Registered	Outputs	56

 FSM8	‐	2	always	block	RTL	‐	Recommended	‐	Combinatorial	Outputs	59

 FSM8	‐	3	always	block	‐	Recommended	‐	Registered	Outputs	61

 FSM8	‐	4	always	block	RTL	‐	Recommended	‐	Registered	Outputs	63

 PREP4	‐	prep4_pkgs	for	abstract	and	binary	encoded	enums	65

 PREP4	‐	1	always	block	RTL	‐	NOT	Recommended	‐	Registered	Outputs	66

 PREP4	‐	2	always	block	RTL	‐	Recommended	‐	Combinatorial	Outputs	70

 PREP4	‐	3	always	block	‐	Recommended	‐	Registered	Outputs	73

 PREP4	‐	4	always	block	RTL	‐	Recommended	‐	Registered	Outputs	75

	

Table	of	Figures	
Figure	1	‐	Moore	&	Mealy	State	Machine	block	diagram	...	8

Figure	2	‐	Binary	‐vs‐	OneHot	state	diagrams	..	9

Figure	3	‐	Block	diagram	for	1‐always	block	coding	style	...	10

Figure	4	‐	Block	diagram	for	2‐always	block	coding	style	...	11

Figure	5	‐	Block	diagram	for	3‐always	block	coding	style	...	11

Figure	6	‐	Block	diagram	for	4‐always	block	coding	style	...	12

Figure	7	‐	FSM1	state	diagram	‐	used	for	example	code	...	13

SNUG	2019	
	

Page	4	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

Figure	8	‐	DesignVision	error	messages	from	bad	usage	of	always_ff	begin‐end	statements	18

Figure	9	‐	FSM	loopback	state	assignment	styles	..	21

Figure	10	‐	FSM1	state	diagram	..	25

Figure	11	‐	fsm1	‐	Coding	styles	effort	comparison	...	25

Figure	12	‐	fsm1	‐	Lines	of	code	..	26

Figure	13	‐	fsm1	‐	Coding	goals	summary	..	27

Figure	14	‐	FSM7	state	diagram	..	27

Figure	15	‐	fsm7	‐	Coding	styles	effort	comparison	...	28

Figure	16	‐	fsm7	‐	Lines	of	code	..	29

Figure	17	‐	fsm7	‐	Coding	goals	summary	..	29

Figure	18	‐	FSM7	state	diagram	‐	why	is	the	1‐always	block	style	so	verbose?	..	30

Figure	19	‐	FSM8	state	diagram	..	33

Figure	20	‐	fsm8	‐	Coding	styles	effort	comparison	...	33

Figure	21	‐	fsm8	‐	Lines	of	code	..	34

Figure	22	‐	fsm8	‐	Coding	goals	summary	..	35

Figure	23	‐	Prep4	state	diagram	...	35

Figure	24	‐	prep4	‐	Coding	styles	effort	comparison	...	36

Figure	25	‐	prep4	‐	Lines	of	code	..	37

Figure	26	‐	prep4	‐	Coding	goals	summary	..	37

	

	Table	of	Examples	
Example	1	‐	FSM1	module	header	and	port	list	example	..	15

Example	2	‐	FSM1:	fsm1_pkg_a.sv	with	abstract	enumerated	state_e	typedef	...	16

Example	3	‐	FSM1:	fs1_pkg_b.sv	encoded	state_e	typedef	w/logic	data	type	and	bit‐range	16

Example	4	‐	FSM1:	importing	fsm1_pkg::*;	(abstract	or	binary)	with	state/next	declaration	16

Example	5	‐	FSM	state	register	declaration	...	17

Example	6	‐	Bad	usage	of	always_ff	begin‐end	statements	...	18

Example	7	‐	Default	next='x	combinatorial	always_comb	procedure	for	FSM	designs	19

Example	8	‐	always_comb	next	assignments	in	a	neat	column	‐	Recommended	..	20

Example	9	‐	always_comb	next	assignments	following	contour	of	the	code	‐	NOT	Recommended	...	20

Example	10	‐	FSM	registered	output	assignments	using	an	always_ff	procedure	22

Example	11	‐	fsm7_1	‐	1‐always	block	style	output	assignments	for	each	transition	arc	32

Example	12	‐	File:	fsm1_pkg_a.sv	‐	fsm1_pkg	enumerated	typedef	..	43

Example	13	‐	File:	fsm1_pkg_b.sv	‐	fsm1_pkg	enumerated	typedef	..	43

SNUG	2019	
	

Page	5	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

Example	14	‐	fsm1_1x	‐	1‐always	block	with	registered	outputs	...	44

Example	15	‐	fsm1_2x	‐	2‐always	block	with	combinatorial	outputs	...	45

Example	16	‐	fsm1_3x	‐	3‐always	block	style	with	registered	outputs	..	46

Example	17	‐	fsm1_4x	‐	3‐always	block	style	with	registered	outputs	..	47

Example	18	‐	File:	fsm7_pkg_a.sv	‐	fsm7_pkg	enumerated	typedef	..	48

Example	19	‐	File:	fsm7_pkg_b.sv	‐	fsm7_pkg	enumerated	typedef	..	48

Example	20	‐	fsm7_1x	‐	1‐always	block	style	with	registered	outputs	..	50

Example	21	‐	fsm7_2x	‐	2‐always	block	style	with	combinatorial	outputs	..	51

Example	22	‐	fsm7_3x	‐	3‐always	block	style	with	registered	outputs	..	52

Example	23	‐	fsm7_4x	‐	4‐always	block	style	with	registered	outputs	..	54

Example	24	‐	File:	fsm8_pkg_a.sv	‐	fsm8_pkg	enumerated	typedef	..	55

Example	25	‐	File:	fsm8_pkg_b.sv	‐	fsm8_pkg	enumerated	typedef	..	55

Example	26	‐	fsm8_1x	‐	1‐always	block	style	with	registered	outputs	..	58

Example	27	‐	fsm8_2x	‐	2‐always	block	style	with	combinatorial	outputs	..	60

Example	28	‐	fsm8_3x	‐	3‐always	block	style	with	registered	outputs	..	62

Example	29	‐	fsm8_4x	‐	4‐always	block	style	with	registered	outputs	..	64

Example	30	‐	File:	prep4_pkg_a.sv	‐	prep4_pkg	enumerated	typedef	..	65

Example	31	‐	File:	prep4_pkg_b.sv	‐	prep4_pkg	enumerated	typedef	..	65

Example	32	‐	prep4_1x	‐	1‐always	block	style	with	registered	outputs	...	69

Example	33	‐	prep4_2x	‐	2‐always	block	style	with	combinatorial	outputs	..	72

Example	34	‐	prep4_3x	‐	3‐always	block	style	with	registered	outputs	...	74

Example	35	‐	prep4_4x	‐	4‐always	block	style	with	registered	outputs	...	77

	

Table	of	Tables	
Table	1	‐	Average	time	verification	engineers	spend	in	various	tasks	..	7

Table	2	‐	fsm1	‐	Synthesis	efficiency	comparison	table	..	26

Table	3	‐	fsm7	‐	Synthesis	efficiency	comparison	table	..	29

Table	4	‐	fsm8	‐	Synthesis	efficiency	comparison	table	..	34

Table	5	‐	prep4	‐	Synthesis	efficiency	comparison	table	..	36
	
	 	

SNUG	2019	
	

Page	6	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

1.	Introduction	
What	 could	 possibly	 be	 new	 about	 Finite	 State	 Machine	 (FSM)	 design?	 Hasn't	 this	 topic	 been	
completely	covered	by	existing	publications?	

Sunburst	Design	has	been	teaching	six	different	FSM	coding	styles,	plus	a	 few	minor	variants,	 for	
more	than	two	decades	and	the	last	paper	that	Cliff	did	on	this	topic	was	presented	in	2003.	Cliff	&	
Heath	have	made	many	new	observations	and	refinements	to	the	FSM	coding	techniques	and	we	have	
observed	synthesis	improvements	using	FSM	coding	styles.	Also,	FSM	synthesis	can	have	interesting	
differences	when	 synthesizing	 for	 ASICs	 and	 FPGAs.	 This	 paper	 shares	 fundamental	 FSM	 coding	
styles	along	with	newer	FSM	design	techniques	that	we	have	refined	in	the	15	years	since	Cliff's	last	
FSM	conference	paper.	

FSM	design	is	actually	a	very	large	topic.	The	seven	major	FSM	coding	styles	include	one	FSM	coding	
style	 with	 combinatorial	 outputs	 and	 six	 FSM	 coding	 styles	with	 registered	 outputs.	 Registering	
module	outputs	is	typically	recommended	by	synthesis	tool	vendors	as	it	helps	meet	timing	goals	
more	easily	without	using	multiple	different	input	and	output	timing	design	constraints.	Registered	
outputs	are	also	glitch‐free.	There	is	nothing	inherently	wrong	with	FSM	combinatorial	outputs	when	
glitching	outputs	are	used	internally	to	an	ASIC	or	FPGA	design	and	settle	before	the	next	active	clock	
edge	to	meet	register	setup	times,	which	can	be	proven	with	Static	Timing	Analysis	(STA)	tools,	so	
we	do	show	one	reasonable	FSM	coding	style	with	combinatorial	outputs.		

Heath	 and	 Cliff	 generally	 recommend	 doing	 FSM	 design	 with	 registered	 outputs	 and	 there	 are	
multiple	FSM	coding	styles	that	achieve	that	goal.	

The	seven	different	coding	styles	that	we	commonly	teach	are:	

 2‐always	block	coding	style	with	combinatorial	outputs.		
 1‐always	block	coding	style	with	registered	outputs.	
 3‐always	block	coding	style	with	registered	outputs.	
 4‐always	block	coding	style	with	registered	outputs	(new	style	not	previously	shown).	
 Indexed	OneHot	coding	style	with	registered	outputs.	
 Parameter	OneHot	coding	style	with	registered	outputs.	
 Output	encoded	coding	style	with	registered	outputs.	

This	 topic	 is	 large	enough	 that	 it	 is	our	 intent	 to	break	documentation	on	 these	 styles	 into	 three	
papers	with	this	being	the	first.	This	paper	will	cover	the	first	four	coding	styles	listed	above	with	the	
remaining	three	coding	styles	and	sub‐variations	to	be	covered	in	subsequent	papers.		

In	 the	process	of	writing	 this	paper,	we	discovered	 that	 the	1‐always	block	coding	style	 typically	
infers	a	design	that	is	somewhat	smaller	and	faster	than	our	preferred	3‐always	block	coding	style.	
We	found	that	creating	a	4‐always	block	FSM	design	could	achieve	the	same	synthesis	results	as	the	
1‐always	block	style	while	still	being	a	much	more	concise	coding	style	than	the	1‐always	block	style.	
The	reasons	for	these	claims	and	the	4‐always	block	coding	style	are	included	in	this	paper.	
	 	

SNUG	2019	
	

Page	7	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

2.	Important	design	goals	
Harry	Foster	of	Mentor,	A	Siemens	Business,	has	conducted	industry	trend	studies	using	the	Wilson	
Research	 Group,	which	we	 believe	 are	 the	 best	 and	most	 reliable	 studies	 in	 our	 industry.	 These	
studies	have	shown	design	and	verification	trends	for	ASIC	&	FPGA	design	since	the	year	2010.	In	the	
year	 2010,	 Cliff	 Cummings	 and	 Harry	 Foster	 conducted	 Assertion	 Based	 Verification	 seminars	
worldwide	 and	 in	 those	 seminars,	 Harry	 consistently	 claimed	 that	 the	 activity	 that	 was	 most	
responsible	for	putting	a	project	behind	schedule	was	debug	time.	

	
Table	1	-	Average	time	verification	engineers	spend	in	various	tasks	

The	Wilson	Research	Group	Studies	from	2010[6],	2012[7],	2014[8][9],	2016[10][11]	and	2018[12]	
all	showed	that	debug	time	consistently	consumed	the	most	verification	engineering	time.	Since	2014	
as	shown	in	Table	1,	debugging	has	taken	on	average	~95%	more	effort	than	any	other	verification	
task.	

It	is	clear	from	these	studies	that	any	coding	habit	that	helps	to	minimize	debug	time	is	an	important	
habit	to	develop.	The	RTL	coding	guidelines	shared	in	this	paper	help	to	reduce	debug	time.	

2.1	More	code	=	more	bugs	

It	has	often	been	said	that	more	lines	of	code	equals	more	bugs.	A	quick	online	search	could	not	find	
definitive	sources	for	this	claim	but	in	all	of	the	sources	referenced,	none	made	the	counter	claim	and	
many	sources	gave	reasoned	arguments	why	the	claim	that		more_lines	=	more_bugs	makes	sense	
[19][20][21][22][23][24][25][26].	

For	these	reasons,	we	believe	that	concise	coding	styles	that	follow	defensive	coding	guidelines	to	
either	avoid	bugs	or	to	enable	early	detection	are	of	greatest	value	in	RTL	design	in	general	and	FSM	
design	in	particular.	Throughout	this	paper	we	will	emphasize	where	we	have	used	concise	coding	
styles	and	styles	that	help	to	easily	identify	bugs.	
	 	

SNUG	2019	
	

Page	8	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

3.	FSM	Coding	Style	Metrics	
In	order	to	judge	what	makes	a	good	coding	style,	we	selected	the	following	goals	that	can	be	used	to	
judge	the	various	coding	styles:	

1. The	FSM	coding	style	should	be	easily	modifiable	to	change	state	encodings	and	FSM	styles.	
2. The	coding	style	should	be	concise.	
3. The	coding	style	should	be	easy	to	code	and	understand.	
4. The	coding	style	should	help	facilitate	debugging	
5. The	coding	style	should	yield	efficient	synthesis	results	
6. The	coding	style	should	be	easy	to	change	due	to	FSM	modifications	including	modifying	the	

number	of	inputs	and	outputs.	

These	metrics	will	be	evaluated	for	each	coding	style	and	tabulated	at	the	end	of	this	paper.	 	

4.	State	machine	types	
There	are	two	principle	state	machine	classifications	that	apply	to	all	state	machine	designs.	

4.1	Moore	-vs-	Mealy	

A	Moore	state	machine	is	classified	as	an	FSM	where	the	outputs	are	only	a	function	of	the	present	
state,	while	Mealy	state	machines	have	one	or	more	outputs	that	are	a	function	of	the	present	state	
and	one	or	more	FSM	inputs.	

	
Figure	1	-	Moore	&	Mealy	State	Machine	block	diagram	

Moore	state	machines	are	favored	in	industry	because	the	outputs	have	a	full	cycle	to	settle	through	
the	combinatorial	logic	and	are	therefore	easier	to	meet	required	cycle	times.	Mealy	outputs	allow	
an	input	to	appear	after	the	cycle	has	started,	and	the	input	must	still	traverse	the	combinatorial	logic	
and	meet	setup	time	for	the	Mealy	output.	If	the	design	absolutely	requires	an	input	to	make	it	on‐
chip	after	the	active	clock	edge,	pass	through	logic	and	appear	on	the	output	all	within	one	cycle,	
those	are	the	designs	that	typically	use	a	Mealy	output.		

Using	a	play	on	words,	it	is	said	that,	"Moore	is	Less"	meaning	that	Moore	state	machines	are	only	
dependent	on	the	current	state	while	Mealy	State	Machines	are	dependent	on	the	current	state	and	
one	or	more	inputs.	

In	general,	we	avoid	Mealy	FSM	designs	unless	absolutely	necessary.	

SNUG	2019	
	

Page	9	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

4.2	Binary	-vs-	OneHot	encoding	

The	second	major	classification	is	whether	the	state	encoding	of	the	FSM	designs	are	binary	(also	
referred	to	as	highly	encoded)	or	if	they	are	OneHot.		

There	are	multiple	binary	encoded	styles	but	what	they	have	in	common	is	that	they	typically	use	
fewer	flip‐flops	to	create	unique	binary	encodings	for	each	state	in	the	FSM	design	than	OneHot	FSM	
designs.		

OneHot	encoding	uses	one	flip‐flop	for	each	state	in	the	state	machine	and	when	the	state	machine	is	
in	that	state,	that	flip‐flop	is	"hot"	or	equal	to	"1"	while	the	rest	of	the	states	are	equal	to	"0."	Since	
transitioning	from	one	state	to	another	only	requires	that	the	previous	hot	flip‐flop	be	set	to	0	and	
the	new	hot	flip‐flop	be	set	to	1,	the	combinatorial	logic	to	transition	between	states	is	typically	very	
simple.	As	will	be	explained	in	Section	5.		OneHot	FSM	designs	are	typically	inferred	automatically	by	
FPGA	synthesis	tools.	

	
Figure	2	-	Binary	-vs-	OneHot	state	diagrams	

5.	ASIC	-vs-	FPGA	Synthesis	
There	are	two	important	differences	between	ASIC	&	FPGA	design.		

For	ASICs,	the	general	rule	is	that	"silicon	is	free	and	flip‐flops	cost."	Adding	another	nand	gate	to	a	
combinatorial	path	typically	does	not	add	much	delay	to	the	path,	but	every	flip‐flop	adds	blocks	of	
clocked	logic,	which	do	consume	space.	

For	FPGAs,	the	general	rule	is	that	"flip‐flops	are	free	and	combinatorial	logic	costs."	FPGAs	typically	
have	more	flip‐flops	than	are	needed	for	most	designs	so	using	the	extra	flip‐flops	does	not	add	more	
silicon	to	the	design,	while	the	speed	of	an	FPGA	is	largely	determined	by	the	size	of	the	combinatorial	
logic.	If	the	combinatorial	logic	fits	into	one	Look	Up	Table	(LUT)	the	logic	is	fast.	If	the	combinatorial	
logic	requires	two	LUTs	to	implement	the	combinatorial	function,	then	there	is	one	lookup	delay,	one	
or	more	trace	delays,	and	a	second	lookup	delay,	which	typically	causes	the	combinatorial	logic	delay	
to	be	more	than	twice	as	long	as	a	one‐LUT	combinatorial	implementation.	

Since	OneHot	FSM	designs	typically	require	smaller	combinatorial	logic	(as	discussed	in	Section	4.2	
),	 FPGA	 synthesis	 tools	 synthesize	 OneHot	 State	 Machines	 for	 smaller	 FSM	 designs	 by	 default,	
regardless	of	the	state	encoding	included	in	the	RTL	code.	For	this	reason,	FPGA	synthesis	tools	are	
sometimes	more	forgiving	when	it	comes	to	optimizing	synthesis	coding	styles.	As	long	as	the	FPGA	
synthesis	tool	recognizes	that	the	RTL	code	will	infer	an	FSM,	the	synthesis	tool	creates	a	very	good	
OneHot	FSM	design	and	largely	ignores	the	coding	style	used	by	the	RTL	designer.	

SNUG	2019	
	

Page	10	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

FPGA	 synthesis	 tools	 frequently	 have	 a	 special	 setting	 (typically	 a	 GUI	 switch)	 to	 turn	 off	 the	
automatic	creation	of	OneHot	FSM	designs.	OneHot	FPGA	designs	will	be	described	in	the	Part	II	FSM	
paper.

6.	SystemVerilog	FSM	coding	styles	
The	four	FSM	coding	styles	discussed	in	this	paper	are	the	1‐always	block	with	registered	outputs,	2‐
always	block	with	combinatorial	outputs,	3‐always	block	with	registered	outputs	and	4‐always	block	
with	 registered	 outputs.	 OneHot	 and	 Output	 Encoded	 FSM	 coding	 styles	 will	 be	 discussed	 in	
subsequent	publications.	

6.1	One	Always	Block	FSM	coding	style	-	registered	outputs	

The	1‐always	block	FSM	coding	 style	 can	be	viewed	as	a	 single	always_ff	 procedure	 (shown	 in	
Figure	3)	that	handles	the	state	register,	the	next	state	assignments	and	the	outputs	that	belong	to	
the	next	state	 for	each	transition	arc.	The	trick	used	 in	 this	coding	style	 is	 to	recognize	 that	 the	
output	assignments	are	for	the	state	you	are	going	to	next	and	not	for	the	current	state	being	tested	
in	the	case	statement.	The	1‐always	block	coding	style	requires	designers	to	set	the	outputs	for	each	
transition	 arc	 to	 that	state	 and	not	 just	 once	 for	 that	state.	 This	 is	why	 this	 coding	 style	 is	 so	
verbose.	On	the	positive	side,	the	synthesis	results	are	typically	better	than	the	2‐always	block	and	
3‐always	block	coding	styles	since	the	next	state	and	next‐outputs	are	being	generated	in	parallel	
in	the	single	always_ff	procedure.	The	fix	for	the	3‐always	block	synthesis	inefficiency	is	to	split	the	
final	always_ff	into	separate	always_comb	for	next‐outputs	and	to	register	those	outputs	in	a	final	
always_ff	procedure,	thus	creating	the	4‐always	block	coding	style	as	shown	in	section	6.4	.	

	
Figure	3	-	Block	diagram	for	1-always	block	coding	style	

	

6.2	Two	Always	Block	FSM	coding	style	-	combinatorial	outputs	

The	2‐always	block	FSM	coding	style	can	be	viewed	as	an	always_ff	state	register	(just	3	lines	of	

SNUG	2019	
	

Page	11	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

code)	 followed	 by	 an	 always_comb	 procedure	 to	 represent	 the	 combined	 next	 state	 logic	 and	
combinatorial	 output	 logic.	 Optionally,	 the	 outputs	 can	 be	 separated	 from	 the	 always_comb	
procedure	 and	 placed	 into	 a	 separate	 always_comb	 procedure	 or	 into	 one	 or	 more	 continuous	
assignment	statements.	

	

	
Figure	4	-	Block	diagram	for	2-always	block	coding	style	

6.3	Three	Always	Block	FSM	coding	style	-	registered	outputs	

The	3‐always	block	FSM	coding	style	can	be	viewed	as	an	always_ff	state	register	(just	3	lines	of	
code)	followed	by	an	always_comb	procedure	to	represent	the	next	state	combinatorial	logic	and	
an	always_ff	procedure	to	calculate	and	register	the	next	outputs.			

	
Figure	5	-	Block	diagram	for	3-always	block	coding	style	

SNUG	2019	
	

Page	12	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

The	trick	used	in	this	coding	style	is	to	recognize	that	the	output	assignments	are	the	"next"	output	
assignments	and	not	the	output	assignments	for	the	current	state,	so	the	final	always_ff	procedure	
will	use	a	case	statement	to	test	the	next	state,	not	the	current	state.	Since	the	outputs	are	calculated	
from	the	next	state	logic,	this	can	add	extra	logic	when	synthesized	as	the	next	state	was	already	
calculated	 from	 input	 conditions.	 This	means	 that	 there	 is	 one	 block	 of	 combinatorial	 logic	 that	
calculates	the	next	state	and	that	feeds	a	second	block	of	combinatorial	logic	to	calculate	the	next	
outputs,	which	can	create	larger	and	slower	combinatorial	logic.	In	the	1‐always	block	coding	style,	
the	inputs	and	state	variables	are	used	to	calculate	both	the	next	state	and	next	outputs	in	parallel,	
which	can	reduce	the	size	and	delay	through	the	combinatorial	next	output	logic.	This	inefficiency	
will	be	addressed	in	the	4‐always	block	coding	style	described	in	the	next	section.	

6.4	Four	Always	Block	FSM	coding	style	-	registered	outputs	

While	writing	this	paper,	we	discovered	that	the	1‐always	block	coding	style	required	much	more	
code	but	typically	gave	better	synthesis	results	than	the	3‐always	block	coding	style.	This	was	a	bit	
of	a	surprise	until	we	realized	that	the	next‐output	combinatorial	logic	of	the	3‐always	block	coding	
style	is	fed	by	another	block	of	combinatorial	logic	that	was	used	to	calculate	the	next	state.	The	1‐
always	 block	 coding	 style	 generated	 the	 next	 state	 and	 next‐outputs	 in	 parallel,	 in	 the	 same	
combinatorial	block	of	logic.		

We	found	that	creating	a	4‐always	block	coding	style	where	the	combinatorial	nextout	values	are	
created	from	an	always_comb	procedure	that	simultaneously	examines	the	registered	state	outputs	
along	with	the	FSM	inputs,	would	generally	give	the	same	optimized	synthesis	results	as	the	1‐always	
block	coding	style	with	far	fewer	lines	of	code.	The	first	always_ff	and	always_comb	procedures	
are	identical	to	the	3‐always	block	coding	style.	The	third	always_ff	procedure	from	the	3‐always	
block	coding	style	is	split	into	an	always_comb	procedure	to	calculate	the	next‐output	logic	and	an	
always_ff	procedure	to	register	the	next‐outputs.	These	optimizations	improved	synthesis	results	
to	match	the	results	observed	with	the	1‐always	block	style.	

	
Figure	6	-	Block	diagram	for	4-always	block	coding	style	

SNUG	2019	
	

Page	13	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

7.	SystemVerilog	FSM	Coding	Tips	&	Tricks	
As	of	the	year	2019	and	after	15	years	of	SystemVerilog	FSM	coding,	we	have	compiled	some	of	our	
favorite	 FSM	 coding	 tips	 and	 tricks.	 You	 do	 not	 have	 to	 follow	 any	 of	 these	 tips	 and	 tricks	 to	
implement	a	working	and	synthesis‐efficient	FSM	design,	but	we	have	found	them	to	be	useful	and	
advantages	of	using	each	trick	will	be	explained.	Users	are	encouraged	to	implement	their	favorite	
tricks	from	this	list	and	feel	free	to	share	back	with	us	some	of	your	favorite	tricks.	

Many	of	these	tricks	fall	into	the	category	of	"less	is	better."	We	find	it	easier	to	visualize	a	design	that	
is	concise	and	where	more	of	the	design	can	be	viewed	without	additional	scrolling	on	a	computer	
screen	or	flipping	of	printed	pages.	For	us,	a	well	formatted	and	concise	design	earns	extra	points.	

To	help	explain	the	tips	&	tricks,	we	will	use	the	following	very	simple	Moore	state	machine	with	four	
states,	two	inputs	and	two	outputs.	

	
Figure	7	-	FSM1	state	diagram	-	used	for	example	code	

7.1	Logic	data	type	

For	SystemVerilog	RTL	coding,	designers	should	follow	this	guideline:	

Declare	all	data	types	to	be	of	type	logic	unless	there	are	multiple	drivers	on	the	signal,	then	
use	the	wire	data	type.	

The	 three	most	 common	 sources	 for	 valid	multi‐driver‐signal	 designs	 are	 bus	 crossbars,	 OneHot	
multiplexers	 and	 bidirectional	 buses,	 all	 of	 which	 are	 becoming	 increasingly	 scarce	 in	 modern	
hardware	design.	Any	logic	that	includes	three‐state	logic	is	strongly	discouraged	in	contemporary	
ASIC	designs	and	almost	non‐existent	in	modern	FPGA	designs.		

The	strong	advantage	of	the	logic	data	type	is	that	if	a	designer	ever	mistakenly	makes	multiple	
assignments	to	the	same	signal,	 the	simulation	compiler	will	catch	and	report	 the	error	before	an	
engineer	ever	simulates	or	synthesizes	the	design.	Catching	the	error	before	simulation	saves	debug	
time.	

Checklist	item:	Engineers	should	generally	declare	all	FSM	ports	and	all	FSM	internal	signals	to	be	
of	type	logic.	

7.2	Assignments	using	'0	/	'1	/	'x	-vs-	1'b0	/	1'b1	/	1'bx	

SystemVerilog	introduced	a	very	convenient	shorthand	to	assign	all	0's,	all	1's	or	all	X's	to	a	scalar	
signal	or	a	vector	bus.	The	notation	is	to	assign	'0 (all	zeros),	'1	(all	ones)	and	'x	(all	X's).	Although	

SNUG	2019	
	

Page	14	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

this	is	a	small	enhancement,	it	is	useful	for	multiple	reasons.	

First,	assigning	'0	instead	of	1'b0	is	more	concise,	albeit	by	only	two	characters	so	this	is	not	the	
compelling	reason	to	use	this	style.		

A	 better	 reason	 is	 that	 the	 notation	 1'b0	 is	 somewhat	 confusing	 and	 when	 the	 code	 is	 quickly	
scanned	it	is	easy	to	mistake	this	assignment	for	a	"1"	while	the	shorter	'0	conveys	no	such	confusion.	

So	why	not	just	use	0	or	1	to	make	an	assignment?	Assigning	0	or	1	 is	acceptable	and	common	in	
Verilog	designs	and	they	typically	work	just	fine,	but	assigning	0	is	really	assigning	32‐bits	of	0	while	
assigning	1	 is	 really	 assigning	31‐bits	 of	0	with	 LSB	 equal	 to	1	 and	Verilog	 quietly	 truncates	 the	
leading	31	bits	when	this	is	assigned	to	a	1‐bit	variable.	This	is	fine	unless	the	code	is	run	through	a	
linting	tool,	which	frequently	reports	a	warning	that	32	bits	are	being	assigned	to	a	1‐bit	variable.	
The	assignment	works	fine	but	the	warning	is	both	annoying	and	distracting	so	engineers	often	add	
waivers	to	their	linting	tools	to	ignore	this	warning.		

Coding	'0	/	'1	/	'x	assigns	as	many	0's,	1's	or	X's	as	are	required	to	fill	 the	left‐hand‐side	(LHS)	
variable	 or	 wire	 that	 is	 being	 assigned,	 so	 there	 is	 never	 any	 linting	 tool	 warning	 related	 to	
mismatched	sizes	when	making	these	new	SystemVerilog	assignments.	

Also	when	assigning	X's	using	the	older	Verilog	style,	one	must	indicate	how	many	X‐bits	are	required	
for	the	assignment	while	'x	will	fill	the	assigned	variable	with	as	many	X's	as	are	needed.	This	avoids	
bugs	that	might	be	introduced	when	widths	are	changed	later	in	the	design.	

We	use	'0	/	'1	/	'x	for	all	of	our	FSM	designs,	and	for	that	matter,	for	all	of	our	SystemVerilog	designs	
that	do	not	require	a	non‐repeated	fill	pattern.	For	more	unusual	assignment	patterns,	we	still	use	
the	 older	 Verilog	 style	 to	 indicate	 the	 bit‐pattern	 and	 how	many	 bits	 are	 required,	 for	 example	
8'b0110_1100	or	8'h6C.	

Checklist	item:	Where	ever	possible,	use	the	SystemVerilog	'0	/	'1	/	'x	to	make	assignments.	

7.2.1	Caution	using	'0	/	'1	/	'x	

Although	we	recommend	using	these	new	assignment	styles,	 there	are	 two	points	of	caution	that	
engineers	should	understand.	

First,	assigning	'1	will	assign	all	1's	and	not	all	0's	followed	by	a	single	1.	If	you	assign	data[7:0]='1	
then	data	will	be	equal	to	8'hFF,	not	8'h01.	'1	does	indeed	assign	all	1's.	

Second,	when	'0	/	'1	/	'x	are	placed	inside	of	concatenation,	they	are	only	1‐bit	assignments	and	
they	do	not	fill	the	remaining	bits	with	the	pattern.	If	you	assign	data[7:0]={'1, 4'hA}	the	result	
will	be	that	data	is	equal	to	8'h1A	and	NOT	8'hFA.	The	reason	that	the	'1	does	not	fill	the	leading	
bits	is	because	what	if	multiple	'1	/	'0	assignments	are	included	in	the	same	concatenation?	Where	
is	the	fill	operation	supposed	to	occur?	Consider	the	following	examples:	

	
data[15:0] = {'1, 4'hA, '0};
// Which bits should be leading 1's and which bits should be trailing 0's?
data[15:0] = {'0, '1, '0};
// Which bits should be leading 1's, middle 0's and trailing 1's?

There	were	too	many	opportunities	for	confusion	by	adding	'0	/	'1	/	'x	/	'z	to	concatenation,	so	
the	 SystemVerilog	 Standards	 Group	 decided	 that	 when	 this	 shorthand	 notation	 was	 used	 in	
concatenation	that	the	notation	would	only	expand	to	a	single	bit	each.		In	the	above	examples,	the	
values	expand	as	shown	below.	

SNUG	2019	
	

Page	15	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

	
data[15:0] = {'1, 4'hA, '0};
// is equal to 16'b0000_0000_0011_0100 or 16'h0034
data[15:0] = {'0, '1, '0};
// is equal to 16'b0000_0000_0000_0010 or 16'h0002

	

7.3	FSM	module	header	&	port	list	

The	FSM	module	header	and	port	list	should	be	coded	using	the	Verilog‐2001	concise	port	list	style.	
All	ports	should	be	declared	to	be	of	type	logic	for	the	reasons	discussed	in	Section	7.1	We	order	
the	port	list	as	outputs	followed	by	inputs	followed	by	control	inputs.	The	outputs‐inputs	order	is	not	
required	by	Verilog	or	SystemVerilog	and	many	engineers	prefer	to	list	inputs	followed	by	outputs.	
Since	Verilog	gate	primitives	can	only	be	instantiated	using	positional	ports	and	since	the	order	is	
always	outputs	followed	by	inputs	followed	by	control	inputs,	we	follow	that	same	convention	with	
our	own	modules.	We	have	also	been	told	by	engineering	colleagues	that	most	module	changes	are	
related	to	adding	or	modifying	the	inputs	and	that	it	is	easier	to	modify	the	end	of	the	list	as	opposed	
to	the	front	or	center	of	the	list.	

The	module	header	and	port	list	for	the	FSM1	design	is	shown	in	Example	1.	

	
module fsm1_3 (
 output logic rd, ds,
 input logic go, ws, clk, rst_n);

Example	1	-	FSM1	module	header	and	port	list	example	

Many	engineers	list	each	port	on	a	separate	line	and	there	is	nothing	specifically	wrong	with	that	
practice,	but	we	prefer	to	group	multiple	signals	into	each	output	and	input	declaration	as	shown	
in	Example	1,	to	reduce	the	number	of	lines	of	code	in	the	FSM	design	and	to	allow	more	of	the	FSM	
design	to	be	visible	per	page	when	examining	the	code.		

Checklist	item:	Use	the	Verilog‐2001	concise	port	declaration	style	and	declare	all	ports	to	be	of	type	
logic.	Extra	points	for	listing	outputs	followed	by	inputs	followed	by	control	inputs.	Extra	points	for	
grouping	multiple	signals	into	each	output	and	input	port	list	declaration.	

7.4	Enumerated	state	types	

Enumerated	types	are	used	to	make	the	state	and	next	state	declarations	and	then	the	enumerated	
state	names	are	used	throughout	the	FSM	design.		

While	working	 on	 this	 paper,	we	 discovered	 that	 there	were	multiple	 advantages	 to	 putting	 the	
enumerated	declarations	into	a	package	as	typedef[s]	and	then	importing	the	package	into	the	FSM	
design.		

We	used	the	naming	convention	of	<fsm-name>_pkg	and	we	actually	maintained	two	different	FSM	
packages,	one	with	abstract	enumerated	declaration	typedef	with	filename	<fsm-name>_pkg_a.sv	
(_a	 for	 abstract)	 and	 one	with	 binary	 encoded	 enumerated	 declaration	typedef	 with	 filename	
<fsm-name>_pkg_b.sv	(_b	for	binary).	

Using	the	FSM	enum	typedef	packages	offered	the	following	advantages:	

(1) Each	FSM	coding	style	would	 import	 the	same	FSM	packages	and	ensure	 that	all	 the	FSM	
styles	used	the	exact	same	FSM	typedef[s].	Fewer	opportunities	to	make	mistakes.	

SNUG	2019	
	

Page	16	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

(2) By	 maintaining	 pkg_a	 and	 pkg_b	 files,	 we	 could	 easily	 switch	 from	 abstract	 to	 binary	
encoded	enum	typedef[s]	without	maintaining	two	copies	of	each	FSM	file.		

(3) Simulation	 of	 either	 abstract	 or	 binary‐encoded	 enum[s]	 was	 as	 easy	 as	 selecting	 and	
compiling	 the	 appropriate	package	before	 compiling	 the	 other	 simulation	 files	 since	 each	
package	had	the	same	identical	package	name.	This	gave	us	much	easier	code	maintenance.	

(4) Similarly,	synthesis	of	either	abstract	or	binary‐encoded	enum[s]	was	as	easy	as	compiling	the	
appropriate	package	before	compiling	the	other	synthesis	files	since	each	package	had	the	
same	identical	package	name.	Again,	much	easier	code	maintenance.	

(5) If	we	wanted	to	try	different	enumerated	assignments,	we	only	had	to	change	the	pkg_b	file	
and	all	styles	would	use	the	exact	same	new	encodings.	We	did	not	have	to	touch	the	FSM	files	
themselves.	

(6) The	testbench	could	easily	use	the	same	state_e	typedef	to	implement	reference	models	
to	track	expected	FSM	states,	if	desired.		

(7) The	testbench	could	easily	use	bind	‐files	for	assertions	or	covergroups	by	using	the	typedef	
to	input	the	state	and	next	variables	from	the	FSM	design.		

After	we	implemented	the	separate	package	files,	we	were	able	to	cut	the	number	of	FSM	benchmark	
files	in	half	and	ensured	a	more	error‐free	coding	style.	

The	 enumerated	 declarations	 for	 the	state_e	typedef	 can	 either	 be	made	 using	 abstract	 state	
encodings	as	shown	in		

Example	2,	or	can	be	made	using	the	logic	data	type,	specifying	the	number	of	state	bits	as	a	range,	
and	include	user‐defined	encodings	for	each	state	as	shown	in	Example	3.	

	

package fsm1_pkg;
 typedef enum {IDLE,
 READ,
 DLY,
 DONE,
 XXX } state_e;
endpackage

Example	2	-	FSM1:	fsm1_pkg_a.sv	with	abstract	enumerated	state_e	typedef		

	

package fsm1_pkg;
 typedef enum logic [1:0] {IDLE = 2'b00,
 READ = 2'b01,
 DLY = 2'b11,
 DONE = 2'b10,
 XXX = 'x } state_e;
endpackage

Example	3	-	FSM1:	fs1_pkg_b.sv	encoded	state_e	typedef	w/logic	data	type	and	bit-range	

	
 import fsm1_pkg::*;
 state_e state, next;

Example	4	-	FSM1:	importing	fsm1_pkg::*;	(abstract	or	binary)	with	state/next	declaration	

It	is	typical	for	RTL	coders	to	start	with	the	abstract	state	and	next	declarations	and	to	later	add	
state	encodings	if	desired.	Since	the	state	names	are	used	throughout	the	FSM	RTL	code,	adding	state	

SNUG	2019	
	

Page	17	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

encodings	later	does	not	require	any	additional	RTL	modifications	to	the	FSM	design.	

The	enumerated	state	names	also	show	up	automatically	in	a	waveform	display	to	help	track	state	
transitions	 and	 to	 help	 debug	 the	 state	 machine.	 It	 is	 often	 useful	 to	 show	 two	 copies	 of	 the	
enumerated	names	in	the	waveform	display,	the	first	showing	the	state	names	(which	is	the	default	
mode	for	all	waveform	viewers)	and	the	second	copy	with	the	radix	changed	to	be	binary,	decimal	or	
hex	 to	 see	 the	 state	 encodings	 (often	 useful	 for	 debugging).	 There	 is	 nothing	 in	 the	 IEEE	
SystemVerilog	Standard[15]	that	requires	a	waveform	viewer	to	show	the	state	names	by	default,	
but	all	waveform	viewers	that	we	have	used	from	all	of	the	major	EDA	vendors	show	the	state	names	
by	default.	

It	is	a	good	practice	to	include	an	extra	XX	or	XXX	state	in	the	list	of	declared	state	names	as	shown	in	
both	Example	2	and	Example	3.	This	extra	XXX	state	will	be	used	to	code	the	always_comb	procedure	
and	this	practice	can	help	quickly	debug	an	FSM	design,	plus	if	one	chooses	to	include	state	encodings,	
the	XXX	state	will	be	set	to	all	X's,	which	are	treated	as	"don't	cares"	by	the	synthesis	tool	to	help	
optimize	the	synthesized	design.	

Checklist	item:	Declare	the	state	and	next	variables	using	enumerated	types.	Add	an	XX	or	XXX	
state	to	help	debug	the	design	and	to	help	optimize	the	synthesized	result.	

7.5	FMS	RTL	code	should	use	SystemVerilog	always_ff	and	always_comb	procedures	

The	 RTL	 code	 for	 the	 FSM	 design	 should	 use	always_ff	 and	always_comb	 procedures	 to	 infer	
clocked	and	combinatorial	logic.	Do	not	use	the	older	Verilog	always	procedures.	The	always_ff	
and	always_comb	procedures	show	designer	intent	and	include	built‐in	checking	for	bad	RTL	coding	
styles	as	described	in	the	paper	"SystemVerilog	Logic	Specific	Processes	for	Synthesis	‐	Benefits	and	
Proper	Usage[3]."	

Checklist	item:	Use	always_ff	and	always_comb	procedures	to	infer	clocked	and	combinatorial	
logic.	Do	not	use	the	older	Verilog	always	procedures.	

7.6	FSM	State	Register	

The	state	register	should	be	an	always_ff	procedure	and	should	be	3	lines	of	code,	not	5	lines	and	
not	6	lines.	This	state	register	is	placed	at	the	top	of	the	FSM	design,	immediately	following	the	FSM	
declarations,	and	requires	no	comment	to	note	the	obvious	state	register	code.	Since	the	state	register	
code	is	at	the	top	of	the	module,	there	is	no	need	to	search	the	remainder	of	the	FSM	design	to	see	
that	the	state	register	code	was	added	and	implemented	properly.		

With	a	posedge clk	and	a	low‐true	asynchronous	reset,	our	state	registers	are	almost	always	exactly	
the	following	three	lines	of	code:	

always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= IDLE;
 else state <= next;

Example	5	-	FSM	state	register	declaration	

There	is	no	need	to	put	the	if‐statement	and	the	state	assignment	on	separate	lines	and	there	is	no	
need	to	put	begin	‐	end	on	the	always_ff	procedure.	Also,	we	place	the	reset	state	assignment	and	
next	state	assignment	into	a	nice,	neat	column	for	easy	scanning	and	reading.	

Note	that	adding	begin	‐	end	to	the	always_ff	procedure	is	not	only	unnecessary,	but	introduces	
the	 opportunity	 to	 add	 code	 before	 the	 first	 if	 (!rst_n)	 statement,	 which	 violates	 coding	

SNUG	2019	
	

Page	18	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

requirements	for	some	synthesis	tools	including	Design	Compiler.	In	short,	the	always_ff		begin	‐	
end	allows	an	RTL	designer	to	code	and	simulate	something	that	might	not	be	synthesizable	and	as	
such,	we	consider	this	to	be	a	poor	coding	practice.	

Consider	the	legal	RTL	code	in	Example	6.			

	
always_ff @(posedge clk, negedge rst_n) begin
 testbad <= go;
 if (!rst_n) state <= IDLE;
 else state <= next;
end

Example	6	-	Bad	usage	of	always_ff	begin-end	statements	

This	example	code	is	legal	SystemVerilog	code	and	will	simulate	without	error,	but	once	this	design	
is	read	into	the	DesignVision	GUI,	the	following	error	messages	are	reported	in	a	pop‐up	window:	

	
1: Error:
<filename><line number>:
The statements in this 'always' block are outside the scope of the
synthesis policy. Only an 'if' statement is allowed at the top level in
this always block. (ELAB-302)

2: Error: Cant' read 'sverilog' file
<filename>
(UID-59)

Figure	8	-	DesignVision	error	messages	from	bad	usage	of	always_ff	begin-end	statements	

In	short,	the	begin	‐	end	is	unnecessary,	needlessly	verbose	and	introduces	the	opportunity	to	add	
bad	code	that	might	not	be	discovered	until	the	design	is	read	for	synthesis.	

Checklist	item:	Declare	the	state	register	using	just	3	lines	of	code	and	place	it	at	the	top	of	the	design	
after	the	enumerated	type	declaration.	

7.7	Default	next='x	-vs-	default	next=state	

There	 are	 two	 common	ways	 to	 code	 the	 always_comb	 procedure	 for	 an	 FSM	 design.	 The	 two	
methods	 are	 to	 either	 make	 a	 pre‐default‐X	 next	 assignment	 or	 use	 a	 pre‐default	 next=state	
assignment[16]	with	implied	loopback	assignments.	While	running	synthesis	benchmarks	on	both	
styles,	and	to	our	surprise,	we	discovered	that	the	next='x	pre‐default‐X	assignment	consistently	
gave	better	synthesis	results	over	the	pre‐default	next=state	assignment	style.	The	reason	seems	
to	be	that	the	pre‐default‐X	tends	to	fill	out	a	synthesis‐equivalent	of	the	Karnaugh	Map	(K‐Map)	with	
X's,	especially	when	there	are	fewer	than	2n	states	in	the	FSM	design.	Even	when	adding	case‐default‐
X	assignments	to	both	styles,	the	pre‐default‐X	assignment	style	consistently	gave	better	synthesis	
results.		

	 	
 always_comb begin
 next = XXX; // Pre-default-X assignment
 case (state)
 IDLE : if (go) next = READ;
 else next = IDLE; //@ loopback
 READ : next = DLY;
 DLY : if (!ws) next = DONE;
 else next = READ;

SNUG	2019	
	

Page	19	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 DONE : next = IDLE;
 default: next = XXX; // case-default-X assignment
 endcase
 end

Example	7	-	Default	next='x	combinatorial	always_comb	procedure	for	FSM	designs	

Anyone	who	has	done	extensive	RTL	coding	and	simulation	recognizes	that,	when	it	comes	to	RTL	
debugging,	catastrophic	RTL	coding	failures	are	the	easiest	to	find,	identify	and	fix.	Conversely,	subtle	
RTL	coding	errors	can	often	be	very	time	consuming	to	find	and	frequently	require	the	RTL	coder	to	
add	numerous	debug	printing	messages	to	finally	discover	the	subtle	problem	in	the	code.	Making	X‐
assignments	can	help	cause	catastrophic	simulation	failures	when	there	is	an	RTL	design	problem,	
while	implied	loopback	errors	can	often	allow	an	FSM	design	to	appear	to	be	working	for	multiple	
clock	cycles	before	the	simulation	reports	an	FSM	simulation	error.		

So	how	does	this	work	and	what	procedure	do	we	recommend?	

We	strongly	encourage	engineers	to	make	the	pre‐default	next='x	assignment	in	the	FSM	design.	
The	pre‐default	X‐assignments	have	two	RTL	simulation	debug	advantages	and	one	RTL	synthesis	
advantage.		

The	 RTL	 simulation	 advantage	 is	 that	 assigning	 X's	 frequently	 causes	 the	 simulation	 to	 fail	
catastrophically	if	there	is	a	missing	next	assignment.	At	the	point	where	there	is	a	missing	next	
assignment,	 we	 say	 that	 the	 waveform	 display	 "starts	 to	 bleed	 red!"	 Wherever	 the	 next	 state	
assignment	is	missing,	the	waveform	display	will	show	that	next	is	all	X's	and	that	is	typically	the	
exact	point	where	the	next‐assignment	is	missing.	This	is	a	catastrophic	simulation	error	that	quickly	
identifies	the	missing	assignment	and,	from	our	experience,	is	fixed	very	quickly.	

The	second	RTL	simulation	advantage	is	that	making	a	pre‐default‐X	assignment	requires	the	RTL	
coder	to	code	an	equation	for	each	transition	arc	from	each	state.	After	completing	the	FSM	design,	a	
designer	can	double‐check	the	code	by	counting	the	number	of	transition	equations	for	each	state	in	
the	RTL	code	and	match	that	to	the	number	of	transition	arcs	in	the	state	diagram.	There	is	a	one‐to‐
one	 correspondence	 between	 the	 number	 of	 transition	 equations	 and	 transition	 arcs.	 Using	 the	
next=state	default	assignment	allows	designers	to	remove	loopback	transition	assignments	from	
the	RTL	code	wherever	there	is	a	feedback	loop	on	that	state	so	there	will	be	fewer	RTL	equations	
than	transition	arcs	in	the	state	diagram.	

The	RTL	synthesis	advantage	is	that	making	X‐assignments	is	like	putting	X's	into	a	K‐Map	for	unused	
states	and	all	digital	design	engineers	recognize	that	adding	X's	to	a	K‐Map	allows	engineers	or	tools	
to	make	larger	groupings,	enabling	smaller	sums‐of‐products,	which	can	infer	smaller	combinatorial	
logic	(at	least	in	theory).	

Making	a	next=state	pre‐default	assignment	only	has	one	minor	advantage	over	the	next='x	pre‐
default	assignment.	Any	state	with	a	loopback	transition	can	be	omitted	from	the	RTL	code	since	that	
state	will	 not	 take	 another	 transition	 branch	 and	will	 remain	 in	 the	 same	 state;	 thus	 potentially	
removing	a	few	lines	of	code.	

Since	debug	time	is	a	primary	concern	in	RTL	design,	we	recommend	using	the	pre‐default	next='x	
assignment	style.	

Checklist	item:	Use	the	pre‐default	next='x	assignment	at	the	top	of	the	always_comb	procedure.	

7.8	Next	state	naming	convention	

We	prefer	to	use	the	identifiers	state	and	next,	not	state	and	nextstate.	There	is	nothing	wrong	

SNUG	2019	
	

Page	20	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

with	using	nextstate	except	that	it	is	a	needlessly	long	identifier	that	lengthens	the	code	on	all	of	
the	next	assignments	in	the	combinatorial	always_comb	procedure.	

We	know	that	next	is	a	keyword	in	VHDL	so	those	with	a	VHDL	background	tend	to	gravitate	towards	
using	 the	nextstate	 identifier,	 but	next	 is	 not	 a	 keyword	 in	 SystemVerilog	 and	 SystemVerilog	
coders	can	make	their	designs	more	concise	by	using	the	next	identifier	instead	of	using	nextstate.	
As	previously	mentioned,	we	prefer	concise	code.	

Checklist	item:	Extra	points	for	using	next	instead	of	using	nextstate	in	the	FSM	design,	but	both	
work	fine.	

7.9	Next	assignments	placed	in	a	column	

Since	readability	and	the	ability	to	quickly	identify	RTL	coding	errors	are	very	important,	we	also	
place	 all	 of	 the	always_comb	next	 assignments	neatly	 in	 a	 column	positioned	 towards	 the	 right	
margin	of	the	RTL	code	as	shown	in	Example	8.	We	find	it	easier	to	scan	the	next	assignments	when	
they	are	 in	a	neat	column	as	opposed	to	next	assignments	that	 follow	the	contour	of	 the	code	as	
shown	in	Example	9.	This	style	also	has	 the	advantage	that	 if	an	engineer	ever	mistakenly	uses	a	
mixture	of	blocking	and	nonblocking	assignments	in	the	next	assignments,	is	it	visually	very	obvious	
in	the	slightly	misaligned	column	of	next	assignments.	

	
 always_comb begin
 next = XXX;
 case (state)
 IDLE : if (go) next = READ;
 else next = IDLE; //@ loopback
 READ : next = DLY;
 DLY : if (!ws) next = DONE;
 else next = READ;
 DONE : next = IDLE;
 default: next = XXX;
 endcase
 end

Example	8	-	always_comb	next	assignments	in	a	neat	column	-	Recommended	

 always_comb begin
 next = XXX;
 case (state)
 IDLE : if (go) next = READ;
 else next = IDLE; //@ loopback
 READ : next = DLY;
 DLY : if (!ws) next = DONE;
 else next = READ;
 DONE : next = IDLE;
 default: next = XXX;
 endcase
 end

Example	9	-	always_comb	next	assignments	following	contour	of	the	code	-	NOT	Recommended	

Of	course	the	simulation	and	synthesis	of	both	of	the	above	examples	will	be	identical.	The	column	
alignment	is	used	to	quickly	understand	and	debug	the	always_comb	next	assignments.	

Checklist	item:	Extra	points	for	placing	the	next	assignments	in	a	neat	column	in	the	FSM	RTL	code.	

SNUG	2019	
	

Page	21	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

7.10	Loopback	next	state	assignments	

Any	state	in	the	state	diagram	with	a	loopback	state	must	be	coded	into	the	always_comb	portion	of	
the	design.	There	are	two	ways	to	handle	the	loopback	assignments	depending	on	how	the	default	
next	assignment	was	implemented.		

If	the	pre‐default	next='x	was	used	(which	is	what	we	recommend),	the	loopback	assignment	must	
be	coded,	but	we	recommend	that	the	loopback	be	implemented	as	the	else	‐clause	of	an	if-else-
if	statement.	We	further	recommend	that	a	comment	be	added	to	the	loopback	else‐assignment	of	
the	form	//@ loopback.	The	reason	for	this	comment‐style	will	be	explained	shortly.	

	
 always_comb begin
 next = XXX;
 case (state)
 IDLE : if (go) next = READ;
 else next = IDLE; //@ loopback
 READ : next = DLY;
 DLY : if (!ws) next = DONE;
 else next = READ;
 DONE : next = IDLE;
 default: next = XXX;
 endcase
 end

	
 always_comb begin
 next = state;
 case (state)
 IDLE : if (go) next = READ;

 READ : next = DLY;
 DLY : if (!ws) next = DONE;
 else next = READ;
 DONE : next = IDLE;
 default: next = XXX;
 endcase
 end

Figure	9	-	FSM	loopback	state	assignment	styles	

If	the	pre‐default	next=state	is	used,	the	loopback	assignment	can	be	omitted	from	the	if-else-
if	statement	since	the	next	state	is	already	assigned	to	stay	in	the	current	state.		

The	reason	for	using	the	//@ loopback	 comment	and	placing	the	 loopback	 into	the	 final	else	 ‐
clause	is	that	it	makes	it	very	easy	to	convert	from	the	next='x	pre‐default	to	the	next=state	pre‐
default	style	of	always_comb	procedure	(although	we	do	not	recommend	the	latter).	The	RTL	coder	
simply	replaces	next='x	with	next=state	and	then	deletes	all	lines	that	have	the	//@ loopback	
comment.		

7.11	Default	output	assignments	

When	coding	the	outputs	in	an	FPGA	design,	we	have	observed	that	some	engineers	make	all	of	the	
output	 assignments	 for	 each	 state	 of	 the	 case	 statement.	 We	 discourage	 this	 practice	 for	 the	
following	reasons:	

It	 is	easy	to	miss	an	output	assignment	for	one	of	the	states,	which	means	that	the	missed	output	

SNUG	2019	
	

Page	22	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

must	not	change	for	that	state	and	that	will	infer	a	latch	when	synthesized.	

Listing	all	of	the	outputs	for	each	state	causes	the	FSM	RTL	design	code	to	grow	in	size	very	quickly.	

Listing	all	of	the	outputs	for	each	state	makes	it	confusing	for	an	engineer	to	determine	which	outputs	
have	 changed	 in	 which	 states.	 Engineers	 often	 try	 to	 examine	 the	 output	 assignments	 for	 the	
preceding	and	next	states	in	an	attempt	to	try	to	figure	out	what	has	changed	in	this	state.		

A	better	coding	practice	is	to	place	default	output	assignments	before	the	output‐assignment	case	
statement	and	then	to	update	the	appropriate	outputs	for	each	state	where	the	outputs	change	as	
shown	in	Example	10.	

	
 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) begin
 rd <= '0;
 ds <= '0;
 end
 else begin
 rd <= '0;
 ds <= '0;
 case (next)
 IDLE : ;
 READ : rd <= '1;
 DLY : rd <= '1;
 DONE : ds <= '1;
 default: {rd,ds} <= 'x;
 endcase
 end
endmodule

Example	10	-	FSM	registered	output	assignments	using	an	always_ff	procedure	

This	coding	style	offers	two	significant	advantages	over	making	all	output	assignments	for	each	state.	

First,	the	code	becomes	more	concise.	Second	an	engineer	can	plainly	see	which	outputs	change	for	
each	state,	thus	making	the	code	more	readable,	easier	to	understand	and	easier	to	debug.		

This	style	requires	less	code	(one	of	our	goals)	and	makes	the	design	easier	to	debug	(also	one	of	our	
goals).	

Checklist	item:	Place	pre‐default	output	assignments	before	the	output‐assignment	case	statement	
and	then	update	the	appropriate	outputs	for	each	state	where	the	outputs	change.	

7.12	Nonblocking	Assignment	race	conditions?	

The	code	shown	in	Example	10	shows	default	output	assignments	using	nonblocking	assignments	
followed	by	more	nonblocking	assignments	to	the	same	outputs	in	the	case	statement.	We	are	often	
asked	if	this	is	a	race	condition	in	Verilog	and	SystemVerilog?	The	answer	is	no	and	the	coding	style	
shown	is	both	proper	and	recommended.	

The	 question	 arises	 due	 to	 an	 error	 in	 the	 1995	Verilog	 Standard[13].	 Section	 5.4.1	 of	 the	 1995	
Verilog	Standard	correctly	states	that	two	nonblocking	assignments	to	the	same	variable	are	queued	
in	the	order	that	they	are	executed	such	that	the	last	assignment	wins	(in	more	official	verbiage).	In	
the	 same	 1995	 Verilog	 Standard,	 Section	 9.2.2	 includes	 an	 example	 with	 a	 mistake	 where	 two	
assignments	 are	 sequentially	 executed	 and	 the	 description	 states	 that	 the	 "final	 value	 …	 is	
indeterminate."	That	description	was	wrong.		

SNUG	2019	
	

Page	23	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

The	2001	Verilog	Standard[14]	fixed	the	example	in	section	9.2.2	to	have	parallel	execution	of	the	
two	assignments,	which	indeed	is	a	race	condition;	thus,	Section	5.4.1	clearly	governs	the	behavior	
of	two	sequentially	executed	nonblocking	assignments	and	last	assignment	wins.	

There	is	no	race	condition	in	Example	10.	

8.	Benchmark	FSM	designs	
This	paper	 examines	 coding	 efforts	 and	Design	Compiler	 synthesis	 results	 for	 four	different	FSM	
benchmark	 designs:	 FSM1,	 FSM7,	 FSM8	 and	 Prep4.	 Each	 design	 includes	 a	 state	 diagram	 and	 a	
description	of	the	RTL	code	using	the	four	different	FSM	coding	styles,	1‐always	block	with	registered	
outputs,	2‐always	block	with	combinatorial	outputs,	3‐always	block	with	registered	outputs	and	4‐
always	block	with	registered	outputs.	The	full	RTL	code	for	each	example	is	included	in	Appendix	2.	

For	benchmark	purposes,	we	have	noted	the	number	of	lines	of	code	required	to	complete	each	of	
the	 four	 coding	 styles	 that	 incorporated	 the	 pre‐default‐X	 assignments	 and	 included	 all	 of	 the	
loopback	assignments.	We	believe	the	pre‐default‐X	with	explicit	loopback	code	to	be	indicative	of	
the	coding	effort	for	each	FSM	design.	We	also	assigned	our	evaluation	for	each	of	the	original	coding	
goals	for	each	style	as	described	in	Section	3.		We	have	included	coding	observations	for	the	designs	
in	each	of	the	four	FSM	sections.	

The	synthesis	results	were	tested	using	the	1‐always	block,	2‐always	block,	3‐always	block	and	4‐
always	block	coding	styles.	Each	of	these	four	coding	styles	was	also	tested	with	slight	variations,	
specifically,	each	was	tested	without	using	case-default‐X	assignments	(No	case‐default‐X),	with	
case-default‐X	 assignments	 (case‐default	 X)	 and	 then	 used	 case‐default‐X	with	 pre‐default‐X	
(required	 "Explicit	 loopback"	 assignments)	 and	 with	 next=state	 (used	 "Implicit	 loopback"	
assignments).	

To	 see	 if	 there	 have	 been	 improvements	 between	 a	 2015	 version	 and	 a	 2018	 version	 of	 Design	
Compiler	(DC),	the	"No	Default	X"	and	"Default	X"	variations	were	synthesized	using	both	versions	
(explicit	DC	versions	are	noted	in	0),	but	when	we	saw	absolutely	no	difference	in	synthesized	results,	
we	quit	 using	 the	2015	version	 and	 synthesized	 all	 of	 the	 coding	 variations	 only	using	 the	2018	
version	of	DC.		

Synthesis	compilation	was	done	using	two	available	ASIC	libraries,	the	LSI	10K	library,	which	has	
been	included	in	all	of	the	DC	releases,	but	which	is	also	a	rather	old	library	with	limited	modern	
capabilities.	We	also	used	an	SAED32	 (Synopsys	Armenia	Educational	Department	32nm)	 library	
that	is	included	with	a	Synopsys	BitCoin	online	example.	

Default	 synthesis	was	done	without	 any	 clocking	 goals	 and	using	 abstract	 enumerated	 types	 (no	
assigned	state	encodings).	Then	a	create_clock clk	-period 0	was	executed	after	compiling	the	
design	 and	 before	 doing	report_area	 and	report_timing	 to	 show	 the	 default	 delay	 (negative	
slack)	 through	 each	 design.	 Note	 that	 abstract	 enumerated	 types	 are	 assigned	 integer	 values	 by	
SystemVerilog	starting	with	the	first	state	listed	equal	to	zero	and	each	successive	state	incrementing	
by	1.	These	in‐order	binary	counts	are	typically	not	very	efficient	when	synthesized.	

Based	on	the	default	delays,	a	create_clock	command	was	issued	with	a	realistic	clock	period	plus	
all	inputs	were	given	80%	of	the	clock	style	while	all	outputs	were	given	20%	of	the	clock	cycle.		

The	second	 iteration	of	each	design	used	semi‐intelligent	binary	encoded	values	assigned	to	each	
state	and	some	effort	was	made	to	choose	encodings	that	would	give	Gray‐like	transitions	as	much	
as	possible.	Then	the	designs	were	again	synthesized,	first	with	no	clock	goal	and	then	with	clock	
input	and	output	design	constraints.		

SNUG	2019	
	

Page	24	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

None	of	the	designs	up	to	this	point	used	case‐default	values	set	to	all	X's	(case-default‐X).	In	
the	tables	for	each	FSM	design,	these	are	referred	to	as	the	"No	case‐default‐X"	values.	

Since	adding	default	X's	to	a	case	statement	is	similar	adding	X's	to	a	K‐Map,	default	X‐values	were	
assigned	to	next	states	and	outputs	in	the	case	statements	and	the	previous	synthesis	exercises	were	
repeated.	These	are	referred	to	as	the	"Default	X"	values	in	the	tables.		

The	next	synthesis	iteration	was	to	change	the	next = 'x	assignments	to	next = state	and	to	
remove	all	of	the	loopback	code	from	the	case	statements.	The	theory	being	tested	is	that	synthesis	
might	improve	if	the	state	does	not	transition	and	if	the	extra	code	is	removed	from	each	design.	Then	
the	synthesis	runs	were	executed	again.	These	are	referred	to	as	the	"Default	X	‐	No	Loopback"	values	
in	the	tables.	
	 	

SNUG	2019	
	

Page	25	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

8.1	FSM1	with	4	states,	2	outputs	and	2	inputs	

The	FSM1	design,	shown	in	Figure	10,	has	an	asynchronous	low‐true	rst_n,	two	inputs	go	and	ws	
(wait	state),	and	two	outputs	rd	(read)	and	ds	(done	strobe).	

	
Figure	10	-	FSM1	state	diagram	

There	is	one	loopback	state	in	the	FSM1	design	and	that	is	in	the	IDLE	state.	

The	coding	effort	for	small	FSM	designs	using	the	different	styles	does	not	differ	significantly,	but	
it	will	differ	dramatically	as	the	number	of	states	and	outputs	increases.	

	

	

	
Figure	11	-	fsm1	-	Coding	styles	effort	comparison	

Figure	11	shows	the	relative	coding	difference	between	the	four	coding	styles.	The	full	fsm1	RTL	code	
for	all	four	coding	styles	used	in	Figure	11	are	shown	in	Appendix	2.2	‐	Appendix	2.5.	The	fsm1_pkg	
files	with	both	abstract	and	binary	encoded	typedef[s]	that	were	used	by	all	of	the	fsm1	designs	are	
shown	in	Appendix	2.1.	

	

SNUG	2019	
	

Page	26	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

	

	

	

	
Table	2	-	fsm1	-	Synthesis	efficiency	comparison	table	

When	the	fsm1	design	was	synthesized,	there	were	almost	no	differences	when	state	encodings	and	
pre‐default‐X	values	were	added.	Also	there	was	no	noticeable	difference	when	the	loopback	code	
was	deleted.	In	this	design,	the	1‐always	block	coding	style	had	slightly	better	synthesis	results	than	
the	3‐always	block	style,	and	the	4‐always	block	style	synthesis	results	matched	the	1‐always	block	
synthesis	results.	Since	this	FSM	design	has	four	states	and	since	two	bits	were	used	to	create	all	
possible	unique	encodings	for	each	state,	it	is	not	surprising	that	adding	default‐X	assignments	did	
not	noticeably	improve	the	synthesis	results.	We	expect	pre‐default‐X	assignments	will	prove	more	
useful	when	the	number	of	states	is	not	a	power	of	2.	

	

	
Figure	12	-	fsm1	-	Lines	of	code		

Design Compiler O‐2018.06‐SP4 LSI 10K Library ‐ lsk_10k

RTL RTL RTL

Enums LOC* Area Slack Area Slack LOC* Area Slack Area Slack LOC* Area Slack Area Slack

fsm1_1 Abstract 39 52 ‐5.57 52 0.04 44 50 ‐5.19 49 0.04 42 50 ‐5.36 51 0.04

fsm1_2 Abstract 34 32 ‐4.89 38 (1.68) 39 31 ‐4.94 35 (1.37) 38 28 ‐5.18 35 (1.37)

fsm1_3 Abstract 38 49 ‐6.37 49 0.03 41 49 ‐6.37 49 0.03 40 49 ‐6.37 57 0.04

fsm1_4 Abstract 48 52 ‐5.57 52 0.04 50 52 ‐5.57 52 0.04 49 53 ‐5.10 52 0.04

fsm1_1 Encoded 39 44 ‐4.08 44 0.04 44 44 ‐4.08 44 0.04 42 44 ‐4.08 44 0.04

fsm1_2 Encoded 34 26 ‐4.09 28 (1.16) 39 26 ‐4.09 28 (1.16) 38 26 ‐4.09 27 (1.16)

fsm1_3 Encoded 38 44 ‐5.06 45 0.04 41 44 ‐5.06 45 0.04 40 44 ‐5.06 45 0.04

fsm1_4 Encoded 48 44 ‐4.08 44 0.04 50 44 ‐4.08 44 0.04 49 44 ‐4.08 44 0.04

LOC* ‐ Lines Of Code (not including imported enums)

RTL RTL RTL

Abstract LOC* Area Slack Area Slack LOC* Area Slack Area Slack LOC* Area Slack Area Slack

fsm1_1 Abstract 39 51 ‐0.42 54 0.00 44 51 ‐0.40 52 0.00 42 52 ‐0.39 54 0.00

fsm1_2 Abstract 34 34 ‐0.38 54 (0.12) 39 34 ‐0.40 42 (0.09) 38 32 ‐0.40 43 (0.09)

fsm1_3 Abstract 38 48 ‐0.50 49 0.00 41 48 ‐0.50 49 0.00 40 48 ‐0.50 48 0.00

fsm1_4 Abstract 48 51 ‐0.42 54 0.00 50 51 ‐0.42 54 0.00 49 50 ‐0.40 52 0.00

fsm1_1 Encoded 39 42 ‐0.38 44 0.00 44 42 ‐0.38 44 0.00 42 42 ‐0.37 44 0.00

fsm1_2 Encoded 34 26 ‐0.35 31 (0.06) 39 26 ‐0.35 31 (0.06) 38 26 ‐0.35 29 (0.06)

fsm1_3 Encoded 38 42 ‐0.41 45 0.00 41 42 ‐0.41 45 0.00 40 42 ‐0.41 45 0.00

fsm1_4 Encoded 48 42 ‐0.37 44 0.00 50 42 ‐0.37 44 0.00 49 42 ‐0.38 44 0.00

No case‐default‐X / Explicit loopback case‐default‐X / Explicit loopback case‐default‐X / Implicit loopback

Design Compiler O‐2018.06‐SP4

No Clock Goal Clock Goal 7.5

No Clock Goal Clock Goal 0.65

case‐default‐X / Implicit loopback

SAED Library ‐ saed32rvt_ss0p95v125c.db

No Clock Goal Clock Goal 7.5 No Clock Goal Clock Goal 7.5

No Clock Goal Clock Goal 0.65 No Clock Goal Clock Goal 0.65

No case‐default‐X / Explicit loopback case‐default‐X / Explicit loopback

SNUG	2019	
	

Page	27	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

	

	
Figure	13	-	fsm1	-	Coding	goals	summary	

It	is	apparent	from	Figure	12	that	the	coding	styles	are	rather	equal.	

	

8.2	FSM7	with	10	states,	1	output	and	2	inputs	

The	FSM7	design	has	an	asynchronous	low‐true	rst_n,	two	inputs	go	and	jmp	(jump),	and	just	one	
output	y1.	

There	are	loopback	states	in	the	fsm7	diagram	in	states	S0	and	S3.	

The	coding	effort	for	this	FSM	design	using	the	different	styles	does	start	to	show	that	the	1‐always	
block	coding	effort	is	starting	to	get	verbose.	This	design	is	somewhat	contrived	because	most	FSM	
designs	with	10	states	would	have	multiple	outputs	and	multiple	transition	arcs,	so	we	do	not	yet	see	
the	full	impact	of	the	1‐always	block	coding	style.	

	

	
Figure	14	-	FSM7	state	diagram	

As	can	be	seen	from	the	fsm7	design,	the	1‐always	block	coding	style	required	46%	more	code	than	
the	equivalent	3‐always	block	coding	style.		

	

	

SNUG	2019	
	

Page	28	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

	
Figure	15	-	fsm7	-	Coding	styles	effort	comparison	

When	the	fsm7	design	was	synthesized,	there	was	some	area	and	performance	advantage	using	the	
1‐always	 block	 coding	 style	 over	 the	 3‐always	 block	 coding	 style	 as	 shown	 in	 Table	 3.	 This	 is	
presumably	 due	 to	 the	 fact	 that	 the	 registered	 outputs	 for	 the	 3‐always	 block	 coding	 style	 are	
calculated	 from	 the	next	 state	 values	 as	 opposed	 to	 using	 the	 same	 inputs	 tests	 to	 calculate	 the	
clocked	outputs	 for	 the	1‐always	block	style.	Noteworthy	 is	 the	 fact	 that	 the	4‐always	block	style	
synthesis	results	were	actually	slightly	better	than	the	3‐always	block	synthesis	results.	The	full	fsm7	
RTL	code	for	the	coding	styles	used	in	Figure	15	are	shown	in	Appendix	2.7	‐	Appendix	2.10.	The	
fsm7_pkg	files	with	both	abstract	and	binary	encoded	typedef[s]	that	were	used	by	all	of	the	fsm7	
designs	are	shown	in	Appendix	2.6.	

SNUG	2019	
	

Page	29	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

	
Table	3	-	fsm7	-	Synthesis	efficiency	comparison	table	

	

	
Figure	16	-	fsm7	-	Lines	of	code		

	

	
Figure	17	-	fsm7	-	Coding	goals	summary	

RTL RTL RTL

Enums LOC* Area Slack Area Slack LOC* Area Slack Area Slack LOC* Area Slack Area Slack

fsm7_1 Abstract 69 100 ‐7.60 153 0.00 73 94 ‐7.48 105 0.11 70 89 ‐7.42 97 0.06

fsm7_2 Abstract 41 76 ‐8.10 118 (1.48) 45 78 ‐6.87 112 (1.15) 43 78 ‐8.90 95 (1.15)

fsm7_3 Abstract 46 93 ‐8.92 164 (0.91) 47 89 ‐8.14 145 0.01 45 87 ‐7.82 127 0.02

fsm7_4 Abstract 57 95 ‐8.38 139 0.07 59 91 ‐7.79 118 0.03 57 87 ‐7.96 88 0.12

fsm7_1 Encoded 69 78 ‐6.54 89 0.11 73 73 ‐6.15 77 0.24 70 79 ‐7.37 93 0.07

fsm7_2 Encoded 41 61 ‐5.79 83 (1.44) 45 61 ‐6.50 68 (1.15) 43 66 ‐7.68 78 (1.29)

fsm7_3 Encoded 46 73 ‐5.20 71 0.24 47 73 ‐5.20 71 0.24 45 77 ‐7.30 93 0.06

fsm7_4 Encoded 57 77 ‐5.32 78 0.19 59 73 ‐5.20 71 0.24 57 82 ‐7.69 84 0.14

LOC* ‐ Lines Of Code (not including imported enums)

RTL RTL RTL

Enums LOC* Area Slack Area Slack LOC* Area Slack Area Slack LOC* Area Slack Area Slack

fsm7_1 Abstract 69 122 ‐0.77 126 0.00 73 101 ‐0.63 107 0.00 70 96 ‐0.68 102 0.00

fsm7_2 Abstract 41 80 ‐0.68 108 (0.11) 45 87 ‐0.61 109 (0.07) 43 82 ‐0.71 95 (0.07)

fsm7_3 Abstract 46 100 ‐0.73 113 0.00 47 95 ‐0.65 101 (0.01) 45 92 ‐0.62 122 0.00

fsm7_4 Abstract 57 105 ‐0.70 125 0.00 59 103 ‐0.65 107 0.00 57 96 ‐0.68 107 0.00

fsm7_1 Encoded 69 89 ‐0.60 96 0.00 73 80 ‐0.48 85 0.00 70 86 ‐0.62 87 0.00

fsm7_2 Encoded 41 65 ‐0.49 86 (0.08) 45 70 ‐0.57 70 (0.07) 43 74 ‐0.73 91 (0.07)

fsm7_3 Encoded 46 80 ‐0.47 79 0.00 47 80 ‐0.47 79 0.00 45 90 ‐0.57 89 0.00

fsm7_4 Encoded 57 86 ‐0.44 84 0.00 59 80 ‐0.47 79 0.00 57 90 ‐0.74 90 0.00

LOC* ‐ Lines Of Code (not including imported enums)

Design Compiler O‐2018.06‐SP4 LSI 10K Library ‐ lsk_10k

SAED Library ‐ saed32rvt_ss0p95v125c.db

No case‐default‐X / Explicit loopback case‐default‐X / Explicit loopback case‐default‐X / Implicit loopback

No case‐default‐X / Explicit loopback case‐default‐X / Explicit loopback case‐default‐X / Implicit loopback

Clock Goal 0.65

No Clock Goal Clock Goal 8.5No Clock Goal Clock Goal 8.5 No Clock Goal Clock Goal 8.5

Design Compiler O‐2018.06‐SP4

No Clock Goal Clock Goal 0.65 No Clock Goal Clock Goal 0.65 No Clock Goal

SNUG	2019	
	

Page	30	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

It	is	apparent	from	Figure	16	that	the	1‐always	block	coding	style	is	significantly	more	verbose	than	
the	3‐always	block	coding	style	and	that	the	1‐always	block	code	is	getting	harder	to	follow	all	of	the	
next‐output	assignments.	

We	have	again	noted	that	the	1‐always	block	coding	style	might	not	be	so	easy	to	change	due	to	FSM	
changes.	

8.2.1	Why	is	1	always	block	more	verbose	than	3	always	block?	

When	we	 originally	 examined	 different	 FSM	 coding	 styles	more	 than	 15	 years	 ago,	we	were	
surprised	to	observe	that	larger	1‐always	block	FSM	RTL	coded	examples	were	significantly	more	
verbose	 than	 3‐always	 block	 coded	 examples.	 Based	 on	 the	 names	 of	 the	 styles,	 this	 seemed	
counter	intuitive.	After	all,	which	sounds	bigger?	1‐always	block	or	3‐always	blocks?		

Upon	closer	examination	we	noted	that	the	2‐always	block	and	3‐always	block	RTL	coding	styles	
assign	the	outputs	once	per	state,	while	the	1‐always	block	style	assigned	the	outputs	once	per	
transition	arc	to	each	state.	

	
Figure	18	-	FSM7	state	diagram	-	why	is	the	1-always	block	style	so	verbose?	

In	the	FSM7	design,	as	shown	in	Figure	18,	the	worst	case	state	is	S3.	Every	state	in	this	FSM	design	
that	transitions	to	state	S3	must	set	state <= S3	and	also	change	the	output	assignment	by	setting	
y1 <= '1.	These	two	assignments	must	be	encapsulated	within	begin	‐	end	statements.	This	means	
that	each	transition	arc	to	state	S3	must	include	these	four	lines	of	code.	This	contributes	to	the	rapid	
code‐explosion	that	is	so	common	when	using	the	1‐always	block	coding	style.	

In	the	RTL	code	shown	in	Example	11,	it	can	be	seen	that	there	are	four	lines	of	code	for	each	state	in	
the	case	statement	that	are	nearly	identical.	For	each	transition	to	state	S3,	the	assignment	y1 <=
'1	is	required	and	the	state <= S3	assignment	is	also	required.	These	two	assignments	must	also	
be	surrounded	by	begin	‐	end.	These	four	lines	of	code,	added	to	each	case	item,	quickly	add	many	
lines	of	code	to	the	case	statement.	

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) begin
 state <= S0;
 y1 <= '0;
 end
 else begin

SNUG	2019	
	

Page	31	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 state <= XX;
 y1 <= '0;
 case (state)
 S0 : if (go && jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else if (go && !jmp) state <= S1;
 else state <= S0; //@ looopback
 S1 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S2;
 S2 : begin
 y1 <= '1;
 state <= S3;
 end
 S3 : if (!jmp) state <= S4;
 else begin
 y1 <= '1;
 state <= S3; //@ loopback
 end
 S4 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S5;
 S5 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S6;
 S6 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S7;
 S7 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S8;
 S8 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S9;
 S9 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S0;
 default: begin
 y1 <= 'x;
 state <= XX;
 end
 endcase

SNUG	2019	
	

Page	32	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 end
endmodule

Example	11	-	fsm7_1	-	1-always	block	style	output	assignments	for	each	transition	arc	

The	difference	becomes	more	pronounced	when	there	are	more	states,	multiple	output	assignments	
and	more	transition	arcs	as	shown	in	the	FSM8	design	of	Section	8.3	.	
	 	

SNUG	2019	
	

Page	33	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

8.3	FSM8	with	10	states,	3	outputs	and	2	inputs	

The	FSM8	design	has	an	asynchronous	low‐true	rst_n,	four	inputs	go,	sk1,	sk0	and	jmp	(jump),	and	
three	outputs	y3,	y2	and	y1.	

	

	
Figure	19	-	FSM8	state	diagram	

	

As	can	be	seen	from	the	fsm8	design,	the	1‐always	block	coding	style	required	84%	more	code	than	
the	equivalent	3‐always	block	coding	style.		

	

	

	
Figure	20	-	fsm8	-	Coding	styles	effort	comparison	

SNUG	2019	
	

Page	34	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

	
Table	4	-	fsm8	-	Synthesis	efficiency	comparison	table	

Surprisingly,	 when	 the	 fsm8	 design	 was	 synthesized,	 there	 was	 some	 area	 and	 performance	
advantage	using	the	3‐always	block	coding	style	over	the	1‐always	block	and	4‐always	block	coding	
styles	as	shown	inTable	4.	This	observation	suggests	that	first	coding	FSM	designs	using	the	concise	
and	 efficient	 3‐always	 block	 style	 and	 then	 copying	 the	 code	 to	 incorporate	 the	 4‐always	 block	
modifications	is	a	good	strategy.	The	copied	4‐always	block	style	typically	will	have	better	synthesis	
results	than	the	3‐always	block	style,	but	not	always.	

The	full	fsm8	RTL	code	for	the	coding	styles	used	in	Figure	20	are	shown	in	Appendix	2.11	‐	Appendix	
2.11.	The	fsm8_pkg	files	with	both	abstract	and	binary	encoded	typedef[s]	that	were	used	by	all	of	
the	fsm8	designs	are	shown	in	Appendix	2.11.	

	

	

	
Figure	21	-	fsm8	-	Lines	of	code		

RTL RTL RTL

Enums LOC* Area Slack Area Slack LOC* Area Slack Area Slack LOC* Area Slack Area Slack

fsm8_1 Abstract 136 147 ‐10.66 220 0.03 142 163 ‐8.63 207 0.00 138 149 ‐8.37 179 0.15

fsm8_2 Abstract 70 105 ‐10.57 190 (2.99) 76 100 ‐7.88 150 (1.95) 73 98 ‐8.62 141 (1.87)

fsm8_3 Abstract 72 140 ‐14.81 284 (0.72) 73 133 ‐11.50 229 (1.38) 70 139 ‐12.62 246 (1.39)

fsm8_4 Abstract 98 155 ‐10.11 261 (0.03) 100 157 ‐9.02 190 0.02 97 162 ‐10.45 210 0.01

fsm8_1 Encoded 136 140 ‐11.38 213 (0.09) 142 164 ‐7.85 195 0.02 138 175 ‐8.73 198 0.03

fsm8_2 Encoded 70 94 ‐7.95 154 (2.70) 76 85 ‐7.19 130 (2.16) 73 95 ‐9.57 141 (1.69)

fsm8_3 Encoded 72 128 ‐11.55 224 0.01 73 128 ‐11.55 224 0.01 70 146 ‐11.90 270 (0.95)

fsm8_4 Encoded 98 143 ‐8.64 180 0.01 100 164 ‐7.85 195 0.02 97 174 ‐8.02 220 0.00

LOC* ‐ Lines Of Code (not including imported enums)

RTL RTL RTL

Enums LOC* Area Slack Area Slack LOC* Area Slack Area Slack LOC* Area Slack Area Slack

fsm8_1 Abstract 136 170 ‐0.84 185 0.00 142 180 ‐0.75 195 0.00 138 177 ‐0.90 186 0.00

fsm8_2 Abstract 70 119 ‐0.80 166 (0.17) 76 120 ‐0.74 142 (0.12) 73 124 ‐0.66 148 (0.09)

fsm8_3 Abstract 72 154 ‐1.15 210 (0.05) 73 150 ‐1.07 173 (0.01) 70 152 ‐1.19 177 0.00

fsm8_4 Abstract 98 178 ‐0.84 199 0.00 100 177 ‐0.84 187 0.00 97 185 ‐0.82 181 0.00

fsm8_1 Encoded 136 160 ‐0.86 177 0.00 142 193 ‐0.69 197 0.00 138 212 ‐0.71 211 0.00

fsm8_2 Encoded 70 116 ‐0.72 145 (0.16) 76 97 ‐0.53 150 (0.15) 73 116 ‐0.85 141 (0.11)

fsm8_3 Encoded 72 140 ‐0.93 176 0.00 73 140 ‐0.93 176 0.00 70 171 ‐0.97 243 (0.01)

fsm8_4 Encoded 98 164 ‐0.74 172 0.00 100 193 ‐0.69 197 0.00 97 220 ‐0.69 222 0.00

LOC* ‐ Lines Of Code (not including imported enums)

Design Compiler O‐2018.06‐SP4 LSI 10K Library ‐ lsk_10k

SAED Library ‐ saed32rvt_ss0p95v125c.db

No case‐default‐X / Explicit loopback case‐default‐X / Explicit loopback case‐default‐X / Implicit loopback

No case‐default‐X / Explicit loopback case‐default‐X / Explicit loopback case‐default‐X / Implicit loopback

No Clock Goal Clock Goal 9.0No Clock Goal Clock Goal 9.0 No Clock Goal Clock Goal 9.0

Design Compiler O‐2018.06‐SP4

No Clock Goal Clock Goal 0.8 No Clock Goal Clock Goal 0.8 No Clock Goal Clock Goal 0.8

SNUG	2019	
	

Page	35	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

	

	
Figure	22	-	fsm8	-	Coding	goals	summary	

We	see	in	Figure	21	and	Figure	22	that	the	1‐always	block	coding	style	is	significantly	more	verbose	
than	 the	 3‐always	 block	 coding	 style	 and	 that	 the	 1‐always	 block	 code	 is	 getting	 even	 harder	 to	
understand	all	of	 the	next‐output	assignments,	while	again	noting	 that	 the	1‐always	block	and	4‐
always	block	coding	styles	were	not	necessarily	more	efficient	when	synthesized.	

We	have	also	noted	that	the	1‐always	block	coding	style	might	not	be	very	easy	to	change	due	to	FSM	
changes.	

8.4	Prep4	FSM	design	with	16	states,	8-bit	output	and	8-bit	input	

The	Prep4	design	has	an	asynchronous	low‐true	rst_n,	one	8‐bit	input	i,	and	one	8‐bit	output	o.	

	

	
Figure	23	-	Prep4	state	diagram	

As	can	be	seen	in	Figure	24	for	the	prep4	design,	the	1‐always	block	coding	style	required	more	than	
twice	as	much	code	(114%	more	code)	than	the	equivalent	3‐always	block	coding	style.		

	

	

SNUG	2019	
	

Page	36	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

	
Figure	24	-	prep4	-	Coding	styles	effort	comparison	

	
Table	5	-	prep4	-	Synthesis	efficiency	comparison	table	

It	should	be	noted	that	the	outputs	in	this	prep4	design	are	shown	in	vector	form	for	each	state,	so	
the	easiest	way	to	code	the	outputs	in	this	FSM	design	was	to	assign	the	output	vector	for	each	state	
and	not	make	default‐X	output	assignments.	Since	the	outputs	are	calculated	from	each	next	state,	
the	area	increased	significantly	when	synthesized.	The	full	prep4	RTL	code	for	the	coding	styles	used	
in	Figure	24	are	shown	in	Appendix	2.17	‐	Appendix	2.20.	The	prep4_pkg	files	with	both	abstract	
and	binary	encoded	typedef[s]	that	were	used	by	all	of	the	prep4	designs	are	shown	in	Appendix	
2.16.	

RTL RTL RTL

Enums LOC* Area Slack Area Slack LOC* Area Slack Area Slack LOC* Area Slack Area Slack

prep4_1 Abstract 188 304 ‐10.96 421 0.00 192 303 ‐11.17 353 0.04 182 334 ‐11.03 451 0.00

prep4_2 Abstract 115 201 ‐9.44 345 (4.65) 119 199 ‐9.06 312 (4.91) 110 222 ‐13.57 360 (2.54)

prep4_3 Abstract 90 285 ‐16.32 476 (1.58) 92 281 ‐14.27 511 (0.62) 83 297 ‐16.30 497 (2.09)

prep4_4 Abstract 126 328 ‐12.09 453 (0.34) 128 304 ‐11.49 419 0.02 118 340 ‐12.64 487 0.00

prep4_1 Encoded 188 297 ‐10.69 363 0.01 192 297 ‐12.32 353 0.00 182 355 ‐14.89 423 0.02

prep4_2 Encoded 115 198 ‐9.01 357 (4.84) 119 202 ‐10.11 310 (5.08) 110 222 ‐13.22 360 (3.10)

prep4_3 Encoded 90 278 ‐15.89 491 (1.61) 92 291 ‐15.37 580 (1.14) 83 293 ‐17.42 491 (2.68)

prep4_4 Encoded 126 302 ‐11.61 346 0.04 128 297 ‐11.11 361 0.01 118 350 ‐11.62 458 0.01

LOC* ‐ Lines Of Code (not including imported enums)

RTL RTL RTL

Enums LOC* Area Slack Area Slack LOC* Area Slack Area Slack LOC* Area Slack Area Slack

prep4_1 Abstract 188 369 ‐0.85 373 0.00 192 398 ‐0.78 395 0.00 182 441 ‐0.90 494 (0.01)

prep4_2 Abstract 115 276 ‐0.66 345 (0.34) 119 275 ‐0.69 327 (0.29) 110 314 ‐0.95 355 (0.20)

prep4_3 Abstract 90 354 ‐1.19 448 (0.09) 92 367 ‐1.21 408 (0.08) 83 377 ‐1.40 526 (0.11)

prep4_4 Abstract 126 409 ‐0.79 400 0.00 128 399 ‐0.81 401 0.00 118 438 ‐1.02 478 (0.08)

prep4_1 Encoded 188 383 ‐0.73 386 0.00 192 379 ‐0.87 368 0.00 182 456 ‐0.92 488 0.00

prep4_2 Encoded 115 267 ‐0.65 376 (0.33) 119 272 ‐0.69 339 (0.32) 110 315 ‐0.83 368 (0.26)

prep4_3 Encoded 90 358 ‐1.14 469 (0.14) 92 355 ‐1.19 426 (0.05) 83 368 ‐1.34 529 (0.09)

prep4_4 Encoded 126 383 ‐0.86 371 (0.01) 128 379 ‐0.87 399 0.00 118 463 ‐0.98 493 (0.01)

LOC* ‐ Lines Of Code (not including imported enums)

Clock Goal 0.8

Design Compiler O‐2018.06‐SP4 LSI 10K Library ‐ lsk_10k

SAED Library ‐ saed32rvt_ss0p95v125c.db

No case‐default‐X / Explicit loopback case‐default‐X / Explicit loopback case‐default‐X / Implicit loopback

No case‐default‐X / Explicit loopback case‐default‐X / Explicit loopback case‐default‐X / Implicit loopback

No Clock Goal Clock Goal 11Clock Goal 11No Clock Goal Clock Goal 11 No Clock Goal

Design Compiler O‐2018.06‐SP4

No Clock Goal Clock Goal 0.8 No Clock Goal No Clock Goal Clock Goal 0.8

SNUG	2019	
	

Page	37	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

	
Figure	25	-	prep4	-	Lines	of	code	

	

	
Figure	26	-	prep4	-	Coding	goals	summary	

As	seen	in	Figure	25,	the	1‐always	block	coding	style	is	more	than	twice	as	verbose	as	the	3‐always	
block	coding	style	and	the	1‐always	block	code	is	getting	much	harder	to	follow	when	examining	the	
next‐output	assignments.	

We	have	again	noted	in	Figure	26	that	the	1‐always	block	coding	style	is	not	so	easy	to	change	due	to	
FSM	changes.	
	 	

SNUG	2019	
	

Page	38	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

9.	Comparisons	&	Summary	
SystemVerilog	coding	styles	help	facilitate	proper	simulation	and	understanding	of	the	FSM	coding	
styles.	Below	is	a	list	of	items	that	were	identified	as	checklist	items	in	this	paper.	After	coding	your	
FSM	design,	we	recommend	compare	your	code	against	the	items	in	this	checklist.	

Checklist	item:	Engineers	should	generally	declare	all	FSM	ports	and	all	FSM	internal	signals	to	be	
of	type	logic.	

Checklist	item:	Where	ever	possible,	use	the	SystemVerilog	'0	/	'1	/	'x	to	make	assignments.	

Checklist	item:	Declare	all	ports	to	be	of	type	logic.	Extra	points	for	listing	outputs	followed	by	
inputs	followed	by	control	inputs.	Extra	points	for	grouping	multiple	signals	into	each	output	and	
input	port	list	declaration.	

Checklist	item:	Declare	the	state	and	next	variables	using	enumerated	types.	Add	an	XX	or	XXX	
state	to	help	debug	the	design	and	to	help	optimize	the	synthesized	result.	

Checklist	item:	Use	always_ff	and	always_comb	procedures	to	infer	clocked	and	combinatorial	
logic.	Do	not	use	the	older	Verilog	always	procedures.	

Checklist	item:	Declare	the	state	register	using	just	3	lines	of	code	and	place	it	at	the	top	of	the	design	
after	the	enumerated	type	declaration.	

Checklist	 item:	 Use	 a	 default	 next='x	 or	 next=state	 default	 assignment	 at	 the	 top	 of	 the	
always_comb	procedure.	Start	by	first	using	the	next='x	style	to	help	debug	the	FSM	design.	

Checklist	item:	Extra	points	for	using	next	instead	of	using	nextstate	in	the	FSM	design,	but	both	
work	fine.	

Checklist	item:	Extra	points	for	placing	the	next	assignments	in	a	neat	column	in	the	FSM	RTL	code.	

Checklist	item:	Place	default	output	assignments	before	the	output‐assignment	case	statement	and	
then	to	update	the	appropriate	outputs	for	each	state	where	the	outputs	change.	

When	 comparing	 the	 coding	 effort	 for	 the	 four	 coding	 styles	 (1‐always	 block,	 2‐always	 block,	 3‐
always	block	and	4‐always	block)	the	1‐always	block	coding	style	is	very	verbose	and	increases	in	
size	quickly	with	more	states	and	outputs.	For	the	larger	prep4	design,	the	coding	effort	was	more	
than	twice	as	hard	as	coding	the	3‐always	block	style.		

It	was	also	 interesting	to	note	that	the	3‐always	block	style	 frequently	required	less	coding	effort	
than	the	2‐always	block	style	with	combinatorial	outputs.		

The	1‐always	block	and	4‐always	block	coding	styles	typically	gave	slightly	better	synthesis	area	and	
timing	performance	over	the	3‐always	block	style,	but	we	recommend	using	the	efficient	3‐always	
block	style	and	then	converting	it	to	a	4‐always	block	style	if	slightly	better	synthesis	performance	is	
needed.	

In	later	publications,	we	will	compare	these	styles	to	OneHot	and	output	encoded	FSM	coding	styles	
to	see	if	the	improved	area	and	timing	trend	continues.		
	 	

SNUG	2019	
	

Page	39	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

10.	Acknowledgements	
We	are	grateful	to	good	friend	and	colleague	Paul	Zimmer,	creator	of	the	FizZim	FSM	diagram	and	
code	generation	tool[16],	for	his	review	and	valuable	suggestions	to	help	improve	this	paper.	

We	also	thank	our	good	friend	and	colleague,	Steve	Golson,	for	his	recommendations	to	use	newer	
technology	libraries	and	to	use	input	and	output	design	constraints	with	our	FSM	designs.	

WE	 also	 thank	 Jing	 Zhan,	 Robert	 Lombardi	 and	 Benny	 Widen	 for	 their	 valuable	 feedback	 and	
suggestions	regarding	the	paper	and	presentation.	

We	thank	Will	Cummings	of	Synopsys	for	his	help	with	using	the	Synplify	Pro	and	Synplify	Premier	
FPGA	synthesis	tools.	

11.	References	
[1] Armenia	Educational	Programs	‐	SAED:	Synopsys	Armenia	Educational	Department	

https://www.synopsys.com/company/contact‐synopsys/office‐locations/armenia/armenia‐
educational‐program.html	

[2] Clifford	E.	Cummings,	"Synthesizable	Finite	State	Machine	Design	Techniques	Using	the	New	
SystemVerilog	3.0	Enhancements,"	SNUG	
http://www.sunburst‐design.com/papers/CummingsSNUG2003SJ_SystemVerilogFSM.pdf	

[3] Clifford	E.	Cummings,	“SystemVerilog	Assertions	‐	Bindfiles	&	Best	Known	Practices	for	Simple	SVA	
Usage,”	SNUG	2016	(Silicon	Valley).	
http://www.sunburst‐design.com/papers/CummingsSNUG2016SV_SVA_Best_Practices.pdf	

[4] Clifford	E.	Cummings,	"SystemVerilog	Logic	Specific	Processes	for	Synthesis	‐	Benefits	and	Proper	Usage,"	
SNUG	
http://www.sunburst‐design.com/papers/CummingsSNUG2016SV_SVLogicProcs.pdf	

[5] Dejan	Marković,	"Logic	Synthesis	‐	Lecture	11,"	EEM216A	Lecture	Slides,	Fall	2012		
http://icslwebs.ee.ucla.edu/dejan/researchwiki/images/0/0c/F2012‐Lec‐11_Logic‐Synthesis.pdf		

[6] Harry	Foster,	"Part	5:	The	2010	Wilson	Research	Group	Functional	Verification	Study,"	
(See	Figure	2	‐	32%	Debug)		
https://blogs.mentor.com/verificationhorizons/blog/2011/04/04/part‐5‐the‐2010‐wilson‐research‐
group‐functional‐verification‐study/	

[7] Harry	Foster,	"Part	6:	The	2012	Wilson	Research	Group	Functional	Verification	Study,"	
(See	Figure	2	‐	36%	Debug)	
https://blogs.mentor.com/verificationhorizons/blog/2013/07/22/part‐6‐the‐2012‐wilson‐research‐
group‐functional‐verification‐study/	

[8] Harry	Foster,	"Part	3:	The	2014	Wilson	Research	Group	Functional	Verification	Study,"	
(See	Figure	2	‐	43%	Debug)	
https://blogs.mentor.com/verificationhorizons/blog/2015/04/01/part‐3‐the‐2014‐wilson‐research‐
group‐functional‐verification‐study/	

[9] Harry	Foster,	"Part	8:	The	2014	Wilson	Research	Group	Functional	Verification	Study,"	
(See	Figure	5	‐	37%	Debug)		
https://blogs.mentor.com/verificationhorizons/blog/2015/07/13/part‐8‐the‐2014‐wilson‐research‐
group‐functional‐verification‐study/	

[10] Harry	Foster,	"Part	3:	The	2016	Wilson	Research	Group	Functional	Verification	Study,"	
(See	Figure	2	‐		43%	Debug)	
https://blogs.mentor.com/verificationhorizons/blog/2016/08/29/part‐3‐the‐2016‐wilson‐research‐
group‐functional‐verification‐study/	

SNUG	2019	
	

Page	40	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

[11] Harry	Foster,	"Part	8:	The	2016	Wilson	Research	Group	Functional	Verification	Study,"	
(See	Figure	5	‐	39%	Debug)	
https://blogs.mentor.com/verificationhorizons/blog/2016/10/04/part‐8‐the‐2016‐wilson‐research‐
group‐functional‐verification‐study/	

[12] Harry	Foster,	"Part	4:	The	2018	Wilson	Research	Group	Functional	Verification	Study,"	
(See	Figure	4‐2	‐	42%	Debug)	
https://blogs.mentor.com/verificationhorizons/blog/2019/01/02/part‐4‐the‐2018‐wilson‐research‐
group‐functional‐verification‐study/	

[13] IEEE	Standard	Hardware	Description	Language	Based	on	the	Verilog	Hardware	Description	Language,	
IEEE	Computer	Society,	IEEE,	New	York,	NY,	IEEE	Std	1364‐1995	

[14] IEEE	Standard	Verilog	Hardware	Description	Language,	IEEE	Computer	Society,	IEEE,	New	York,	NY,	
IEEE	Std	1364‐2001	

[15] "IEEE	Standard	For	SystemVerilog	‐	Unified	Hardware	Design,	Specification	and	Verification	Language,"	
IEEE	Computer	Society	and	the	IEEE	Standards	Association	Corporate	Advisory	Group,	IEEE,	New	York,	
NY,	IEEE	Std	1800™‐2017	

[16] Paul	Zimmer,	Michael	Zimmer,	Brian	Zimmer,	"FizZim	‐	an	open‐source	FSM	design	environment,"	
http://www.fizzim.com/mydownloads/fizzim_tutorial_20160423.pdf	

[17] SAED	Technology	Libraries	‐	SolvNet,	"Bitcoin	Low	Power	Case	Study,"	(download	Technology	
Libraries)	
https://solvnet.synopsys.com/retrieve/2630223.html	

[18] Steve	Golson,	"State	Machine	Design	Techniques	for	Verilog	and	VHDL,"	Synopsys	Journal	of	High‐Level	
Design,	
September	1994,	pp.	1‐48.	

Lines of Code Web References:

[19] Amy	Bowersox,	"How	true	is	the	following:	"Every	line	of	code	is	a	bug"?,"	
https://www.quora.com/How‐true‐is‐the‐following‐Every‐line‐of‐code‐is‐a‐bug	

[20] Chad	Perrin,	"The	danger	of	complexity:	More	code,	more	bugs,"	https://www.techrepublic.com/blog/it‐
security/the‐danger‐of‐complexity‐more‐code‐more‐bugs/	

[21] Charles	Brian	Quinn,	"Less	Code	is	Better,"	https://www.bignerdranch.com/blog/less‐code‐is‐better/	

[22] Clifford	E.	Cummings,	"The	Sunburst	Design	‐	"Where's	Waldo"	Principle	of	Verilog	Coding,"	
http://www.sunburst‐design.com/papers/Wheres_Waldo_Coding.pdf	

[23] Jack	Ganssle,	"Keep	It	Small,"	http://www.ganssle.com/articles/keepsmall.htm	

[24] Quora,	"Is	there	a	correlation	between	the	number	of	lines	of	code	and	the	number	of	bugs	in	software?,"	
https://www.quora.com/Is‐there‐a‐correlation‐between‐the‐number‐of‐lines‐of‐code‐and‐the‐
number‐of‐bugs‐in‐software	

[25] Software	Engineering,	"More	code	=	more	bugs,"	
https://softwareengineering.stackexchange.com/questions/41949/more‐code‐more‐bugs	

[26] Steve	Baker,	"What	is	the	average	ratio	of	bugs	to	a	line	of	code?,"	https://www.quora.com/What‐is‐the‐
average‐ratio‐of‐bugs‐to‐a‐line‐of‐code	

	

	

	 	

SNUG	2019	
	

Page	41	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

12.	Author	&	Contact	Information	
Cliff	Cummings,	President	of	Sunburst	Design,	Inc.,	is	an	independent	EDA	consultant	and	trainer	
with	38	years	of	ASIC,	FPGA	and	system	design	experience	and	28	years	of	SystemVerilog,	synthesis	
and	methodology	training	experience.	

Mr.	Cummings	has	presented	more	than	100	SystemVerilog	seminars	and	training	classes	in	the	past	
17	years	and	was	the	featured	speaker	at	the	world‐wide	SystemVerilog	NOW!	seminars.		

Mr.	 Cummings	 participated	 on	 every	 IEEE	 &	 Accellera	 SystemVerilog,	 SystemVerilog	 Synthesis,	
SystemVerilog	 committee	 from	 1994‐2012,	 and	 has	 presented	 more	 than	 50	 papers	 on	
SystemVerilog	&	SystemVerilog	related	design,	synthesis	and	verification	techniques.	

Mr.	 Cummings	 holds	 a	 BSEE	 from	 Brigham	 Young	 University	 and	 an	 MSEE	 from	 Oregon	 State	
University.	

Sunburst	 Design,	 Inc.	 offers	 World	 Class	 Verilog	 &	 SystemVerilog	 training	 courses.	 For	 more	
information,	visit	the	www.sunburst‐design.com	web	site.	

Email	address:	cliffc@sunburst‐design.com	

	

Heath	Chambers	is	President	of	HMC	Design	Verification,	Inc.,	a	company	that	specializes	in	design	
and	verification	consulting	and	high	 tech	 training.	Mr.	Chambers	 is	a	 consultant	with	23	years	of	
Verilog	Experience	16	years	of	SystemVerilog	experience,	19	years	of	consulting	and	verification	lead	
experience	for	multiple	projects	and	has	been	an	instructor	for	Sunburst	Design	since	the	year	2000.	
Heath	has	18	years	of	SystemVerilog,	Verilog,	synthesis	and	UVM	Verification	methodology	training	
experience	 for	 Sunburst	 Design,	 Inc.,	 and	 was	 previously	 a	 contract	 Specman	 Basic	 Training	
instructor	 for	 Verisity.	 Heath	 has	 ASIC	 and	 system	 verification,	 firmware,	 and	 self‐test	 design	
experience	 and	 is	 capable	 of	 answering	 the	 very	 technical	 questions	 asked	 by	 experienced	
verification	engineers.	

Mr.	 Chambers,	was	 a	member	of	 the	 IEEE	1364	Verilog	 and	 IEEE	1800	SystemVerilog	 Standards	
Groups	 from	 2000	 to	 2012,	 and	 has	 helped	 to	 develop	 and	 improve	 Sunburst	 Design	 Verilog,	
SystemVerilog,	UVM	and	synthesis	training	courses.	

Mr.	Chambers	specializes	in	verification	of	ASICs	and	systems	using	top‐down	design	methodologies	
and	 is	 proficient	 in	 SystemVerilog,	Verilog,	UVM,	 'e',	 C,	 and	Perl.	Mr.	 Chambers	 specializes	 in	 the	
Questa,	Cadence,	Synopsys	simulation	tools.		

Before	 becoming	 an	 independent	 Consultant,	 Mr.	 Chambers	 worked	 for	 Hewlett‐Packard	 doing	
verification	of	multi‐million	gate	ASICs	and	systems	containing	multiple	chips.	Mr.	Chambers	was	the	
lead	verification	engineer	for	the	last	two	projects	he	worked	on	before	leaving	the	company.		

Mr.	Chambers	holds	a	BSCS	from	New	Mexico	Institute	of	Mining	and	Technology.	

Email	address:	hmcdvi@msn.com	

	

Last	Updated:	February	2019	

	

	 	

SNUG	2019	
	

Page	42	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 Tools	and	OS	versions	
The	ability	of	Verilog	and	SystemVerilog	tools	used	to	simulate	FSM	designs	typically	does	not	change	
with	 simulation	 tool	 versions.	 Simulation	 of	 FSM	 designs	 is	 a	 well‐established	 task	 that	 has	 not	
changed	in	the	foreseeable	past.	

On	the	other	hand,	synthesis	results	continue	to	evolve	with	different	tool	versions	and	has	changed	
significantly	over	the	years.		

The	examples	in	this	paper	were	run	using	the	following	Linux	and	Synopsys	tool	versions:	

64‐bit	Linux	laptop:	CentOS	release	6.5	

VCS	version	N‐2017.12‐SP1_Full64	

Running	vcs	and	dve	each	required	the	command	line	switch	‐full64	

Without	the	‐full64	command	line	switch,	vcs	compilation	would	fail	with	the	message:	
error while loading shared libraries: libelf.so.1: cannot open shared
object file: No such file or directory.

Design	Compiler	versions	O‐2018.06‐SP4	and	K‐2015.06‐SP4	

Synplify	Premier	version	O‐2018.09‐SP1	

Synthesis	Libraries:	

LSI	10K	‐	old	synthesis	library	that	ships	with	Design	Compiler	

SAED32	
	 	

SNUG	2019	
	

Page	43	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM	benchmark	source	code	
The	source	code	for	the	FSM1,	FSM7,	FSM8	and	Prep4	source	files	are	included	in	this	appendix.	

 FSM1	-	fsm1_pkgs	for	abstract	and	binary	encoded	enums	

The	[a]bstract	enumerated	 types	package	 file	 is	named	fsm1_pkg_a.sv	but	 the	package	name	 is	
fsm1_pkg.		

	
package fsm1_pkg;
 typedef enum {IDLE,
 READ,
 DLY,
 DONE,
 XXX } state_e;
endpackage

Example	12	-	File:	fsm1_pkg_a.sv	-	fsm1_pkg	enumerated	typedef	

The	 [b]inary	 encoded	 enumerated	 types	 package	 file	 is	 named	fsm1_pkg_b.sv	 but	 the	 package	
name	is	still	fsm1_pkg.		

	
package fsm1_pkg;
 typedef enum logic [1:0] {IDLE = 2'b00,
 READ = 2'b01,
 DLY = 2'b11,
 DONE = 2'b10,
 XXX = 'x } state_e;
endpackage

Example	13	-	File:	fsm1_pkg_b.sv	-	fsm1_pkg	enumerated	typedef	

These	packages	include	a	typedef	for	the	state_e	type	that	is	used	by	all	of	the	fsm1	designs.		

Using	the	same	package	name	makes	it	possible	to	read	the	separate	package	files	first	in	a	simulation	
and	first	in	synthesis	compilation	to	selectively	choose	abstract	or	binary	encoded	enumerated	types	
without	touching	the	fsm1	files.		

	

	

	
	 	

SNUG	2019	
	

Page	44	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM1	-	1	always	block	RTL	-	NOT	Recommended	-	Registered	Outputs	

	
module fsm1_1x (
 output logic rd, ds,
 input logic go, ws, clk, rst_n);

 import fsm1_pkg::*;
 state_e state;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) begin
 state <= IDLE;
 rd <= '0;
 ds <= '0;
 end
 else begin
 state <= XXX; //@ LB
 rd <= '0;
 ds <= '0;
 case (state)
 IDLE : if (go) begin
 rd <= '1;
 state <= READ;
 end
 else state <= IDLE; //@ LB
 READ : begin
 rd <= '1;
 state <= DLY;
 end
 DLY : if (!ws) begin
 ds <= '1;
 state <= DONE;
 end
 else begin
 rd <= '1;
 state <= READ;
 end
 DONE : state <= IDLE;
 default: begin
 ds <= 'x;
 rd <= 'x;
 state <= XXX;
 end
 endcase
 end
endmodule

Example	14	-	fsm1_1x	-	1-always	block	with	registered	outputs	

	

	
	 	

SNUG	2019	
	

Page	45	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM1	-	2	always	block	RTL	-	Recommended	-	Combinatorial	Outputs	

	
module fsm1_2x (
 output logic rd, ds,
 input logic go, ws, clk, rst_n);

 import fsm1_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= IDLE;
 else state <= next;

 always_comb begin
 next = XXX; //@LB next = state;
 rd = '0;
 ds = '0;
 case (state)
 IDLE : if (go) next = READ;
 else next = IDLE; //@ LB
 READ : begin
 rd = '1;
 next = DLY;
 end
 DLY : begin
 rd = '1;
 if (!ws) next = DONE;
 else next = READ;
 end
 DONE : begin
 ds = '1;
 next = IDLE;
 end
 default: begin
 ds = 'x;
 rd = 'x;
 next = XXX;
 end
 endcase
 end
endmodule

Example	15	-	fsm1_2x	-	2-always	block	with	combinatorial	outputs	

	 	

SNUG	2019	
	

Page	46	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM1	-	3	always	block	RTL-	NOT	Recommended	-	Registered	Outputs	

	
module fsm1_3x (
 output logic rd, ds,
 input logic go, ws, clk, rst_n);

 import fsm1_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= IDLE;
 else state <= next;

 always_comb begin
 next = XXX; //@LB next = state;
 case (state)
 IDLE : if (go) next = READ;
 else next = IDLE; //@ LB
 READ : next = DLY;
 DLY : if (!ws) next = DONE;
 else next = READ;
 DONE : next = IDLE;
 default: next = XXX;
 endcase
 end

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) begin
 rd <= '0;
 ds <= '0;
 end
 else begin
 rd <= '0;
 ds <= '0;
 case (next)
 IDLE : ;
 READ : rd <= '1;
 DLY : rd <= '1;
 DONE : ds <= '1;
 default: {rd,ds} <= 'x;
 endcase
 end
endmodule

Example	16	-	fsm1_3x	-	3-always	block	style	with	registered	outputs	

	 	

SNUG	2019	
	

Page	47	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM1	-	4	always	block	RTL	-	Recommended	-	Registered	Outputs	

	
module fsm1_4x (
 output logic rd, ds,
 input logic go, ws, clk, rst_n);

 logic n_rd, n_ds; // next combinatorial outputs

 import fsm1_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= IDLE;
 else state <= next;

 always_comb begin
 next = XXX; //@LB next = state;
 case (state)
 IDLE : if (go) next = READ;
 else next = IDLE; //@ LB
 READ : next = DLY;
 DLY : if (!ws) next = DONE;
 else next = READ;
 DONE : next = IDLE;
 default: next = XXX;
 endcase
 end

 always_comb begin
 n_rd = '0;
 n_ds = '0;
 case (state)
 IDLE : if (go) n_rd = '1; // READ
 else ; // IDLE
 READ : n_rd = '1; // DLY
 DLY : if (ws) n_rd = '1; // READ
 else n_ds = '1; // DONE
 DONE : ; // IDLE
 default: {n_rd,n_ds} = 'x;
 endcase
 end

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) begin
 rd <= '0;
 ds <= '0;
 end
 else begin
 rd <= n_rd;
 ds <= n_ds;
 end
endmodule

Example	17	-	fsm1_4x	-	3-always	block	style	with	registered	outputs	

	 	

SNUG	2019	
	

Page	48	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM7	-	fsm7_pkgs	for	abstract	and	binary	encoded	enums	

The	[a]bstract	enumerated	 types	package	 file	 is	named	fsm7_pkg_a.sv	but	 the	package	name	 is	
fsm7_pkg.		

	
package fsm7_pkg;
 typedef enum {S0,
 S1,
 S2,
 S3,
 S4,
 S5,
 S6,
 S7,
 S8,
 S9,
 XX } state_e;
endpackage

Example	18	-	File:	fsm7_pkg_a.sv	-	fsm7_pkg	enumerated	typedef	

The	 [b]inary	 encoded	 enumerated	 types	 package	 file	 is	 named	fsm7_pkg_b.sv	 but	 the	 package	
name	is	still	fsm7_pkg.		

	
package fsm7_pkg;
 typedef enum logic [3:0] {S0 = 4'b0000,
 S1 = 4'b0001,
 S2 = 4'b0011,
 S3 = 4'b0010,
 S4 = 4'b0110,
 S5 = 4'b0111,
 S6 = 4'b0101,
 S7 = 4'b0100,
 S8 = 4'b1100,
 S9 = 4'b1000,
 XX = 'x } state_e;
endpackage

Example	19	-	File:	fsm7_pkg_b.sv	-	fsm7_pkg	enumerated	typedef	

These	packages	include	a	typedef	for	the	state_e	type	that	is	used	by	all	of	the	fsm7	designs.		

Using	the	same	package	name	makes	it	possible	to	read	the	separate	package	files	first	in	a	simulation	
and	first	in	synthesis	compilation	to	selectively	choose	abstract	or	binary	encoded	enumerated	types	
without	touching	the	fsm7	files.		

	

	
	 	

SNUG	2019	
	

Page	49	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM7	-	1	always	block	RTL	-	NOT	Recommended	-	Registered	Outputs	

	
module fsm7_1x (
 output logic y1,
 input logic jmp, go, clk, rst_n);

 import fsm7_pkg::*;
 state_e state;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) begin
 state <= S0;
 y1 <= '0;
 end
 else begin
 state <= XX; //@ LB
 y1 <= '0;
 case (state)
 S0 : if (go && jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else if (go && !jmp) state <= S1;
 else state <= S0; //@ LB
 S1 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S2;
 S2 : begin
 y1 <= '1;
 state <= S3;
 end
 S3 : if (!jmp) state <= S4;
 else begin
 y1 <= '1;
 state <= S3; //@ LB
 end
 S4 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S5;
 S5 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S6;
 S6 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S7;
 S7 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end

SNUG	2019	
	

Page	50	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 else state <= S8;
 S8 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S9;
 S9 : if (jmp) begin
 y1 <= '1;
 state <= S3;
 end
 else state <= S0;
 default: begin
 y1 <= 'x;
 state <= XX;
 end
 endcase
 end
endmodule

Example	20	-	fsm7_1x	-	1-always	block	style	with	registered	outputs	

	 	

SNUG	2019	
	

Page	51	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM7	-	2	always	block	RTL	-	Recommended	-	Combinatorial	Outputs	
	

module fsm7_2x (
 output logic y1,
 input logic jmp, go, clk, rst_n);

 import fsm7_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= S0;
 else state <= next;

 always_comb begin
 next = XX; //@LB next = state;
 y1 = '0;
 case (state)
 S0 : if (go && jmp) next = S3;
 else if (go && !jmp) next = S1;
 else next = S0; //@ LB
 S1 : if (jmp) next = S3;
 else next = S2;
 S2 : next = S3;
 S3 : begin
 y1 = '1;
 if (!jmp) next = S4;
 else next = S3; //@ LB
 end
 S4 : if (jmp) next = S3;
 else next = S5;
 S5 : if (jmp) next = S3;
 else next = S6;
 S6 : if (jmp) next = S3;
 else next = S7;
 S7 : if (jmp) next = S3;
 else next = S8;
 S8 : if (jmp) next = S3;
 else next = S9;
 S9 : if (jmp) next = S3;
 else next = S0;
 default: begin
 y1 = 'x;
 next = XX;
 end
 endcase
 end
endmodule

Example	21	-	fsm7_2x	-	2-always	block	style	with	combinatorial	outputs	

SNUG	2019	
	

Page	52	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM7	-	3	always	block	-	Recommended	-	Registered	Outputs	
	 	

module fsm7_3x (
 output logic y1,
 input logic jmp, go, clk, rst_n);

 import fsm7_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= S0;
 else state <= next;

 always_comb begin
 next = XX; //@LB next = state;
 case (state)
 S0 : if (go && jmp) next = S3;
 else if (go && !jmp) next = S1;
 else next = S0; //@ LB
 S1 : if (jmp) next = S3;
 else next = S2;
 S2 : next = S3;
 S3 : if (!jmp) next = S4;
 else next = S3; //@ LB
 S4 : if (jmp) next = S3;
 else next = S5;
 S5 : if (jmp) next = S3;
 else next = S6;
 S6 : if (jmp) next = S3;
 else next = S7;
 S7 : if (jmp) next = S3;
 else next = S8;
 S8 : if (jmp) next = S3;
 else next = S9;
 S9 : if (jmp) next = S3;
 else next = S0;
 default: next = XX;
 endcase
 end

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) y1 <= '0;
 else begin
 y1 <= '0;
 case (next)
 S3 : y1 <= '1;
 endcase
 end
endmodule

Example	22	-	fsm7_3x	-	3-always	block	style	with	registered	outputs	

	
	 	

SNUG	2019	
	

Page	53	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM7	-	4	always	block	RTL	-	Recommended	-	Registered	Outputs	

	
module fsm7_4x (
 output logic y1,
 input logic jmp, go, clk, rst_n);

 logic n_y1; // next combinatorial outputs

 import fsm7_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= S0;
 else state <= next;

 always_comb begin
 next = XX; //@LB next = state;
 case (state)
 S0 : if (go && jmp) next = S3;
 else if (go && !jmp) next = S1;
 else next = S0; //@ LB
 S1 : if (jmp) next = S3;
 else next = S2;
 S2 : next = S3;
 S3 : if (!jmp) next = S4;
 else next = S3; //@ LB
 S4 : if (jmp) next = S3;
 else next = S5;
 S5 : if (jmp) next = S3;
 else next = S6;
 S6 : if (jmp) next = S3;
 else next = S7;
 S7 : if (jmp) next = S3;
 else next = S8;
 S8 : if (jmp) next = S3;
 else next = S9;
 S9 : if (jmp) next = S3;
 else next = S0;
 default: next = XX;
 endcase
 end

 always_comb begin
 n_y1 = '0;
 case (state)
 S0 : if (go && jmp) n_y1 = '1; // S3
 else ; // S0, S1
 S2 : n_y1 = '1; // S3
 S3 : if (!jmp) ; // S4
 else n_y1 = '1; // S3
 S1, S4, S5, S6, S7, S8, S9:
 if (jmp) n_y1 = '1; // S3
 else ; // S2, S5, S6, S7, S8, S9, S0
 default: n_y1 = 'x;
 endcase
 end

SNUG	2019	
	

Page	54	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) y1 <= '0;
 else y1 <= n_y1;
endmodule

Example	23	-	fsm7_4x	-	4-always	block	style	with	registered	outputs	

	 	

SNUG	2019	
	

Page	55	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM8	-	fsm8_pkgs	for	abstract	and	binary	encoded	enums	

The	[a]bstract	enumerated	 types	package	 file	 is	named	fsm8_pkg_a.sv	but	 the	package	name	 is	
fsm8_pkg.		

	
package fsm8_pkg;
 typedef enum {S0,
 S1,
 S2,
 S3,
 S4,
 S5,
 S6,
 S7,
 S8,
 S9,
 XX } state_e;
endpackage

Example	24	-	File:	fsm8_pkg_a.sv	-	fsm8_pkg	enumerated	typedef	

The	 [b]inary	 encoded	 enumerated	 types	 package	 file	 is	 named	fsm8_pkg_b.sv	 but	 the	 package	
name	is	still	fsm8_pkg.		

	
package fsm8_pkg;
 typedef enum logic [3:0] {S0 = 4'b0000,
 S1 = 4'b0001,
 S2 = 4'b0011,
 S3 = 4'b0010,
 S4 = 4'b0110,
 S5 = 4'b0111,
 S6 = 4'b0101,
 S7 = 4'b0100,
 S8 = 4'b1100,
 S9 = 4'b1000,
 XX = 'x } state_e;
endpackage

Example	25	-	File:	fsm8_pkg_b.sv	-	fsm8_pkg	enumerated	typedef	

These	packages	include	a	typedef	for	the	state_e	type	that	is	used	by	all	of	the	fsm8	designs.		

Using	the	same	package	name	makes	it	possible	to	read	the	separate	package	files	first	in	a	simulation	
and	first	in	synthesis	compilation	to	selectively	choose	abstract	or	binary	encoded	enumerated	types	
without	touching	the	fsm8	files.		

	
	 	

SNUG	2019	
	

Page	56	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM8	-	1	always	block	RTL	-	NOT	Recommended	-	Registered	Outputs	

	
module fsm8_1x (
 output logic y1, y2, y3,
 input logic jmp, go, sk0, sk1, clk, rst_n);

 import fsm8_pkg::*;
 state_e state;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) begin
 y1 <= '0;
 y2 <= '0;
 y3 <= '0;
 state <= S0;
 end
 else begin
 y1 <= '0;
 y2 <= '0;
 y3 <= '0;
 state <= XX; //@ LB
 case (state)
 S0: if (go && jmp) begin
 y1 <= '1;
 y2 <= '1;
 state <= S3;
 end
 else if (go && !jmp) begin
 y2 <= '1;
 state <= S1;
 end
 else state <= S0; //@ LB
 S1 : if (jmp) begin
 y1 <= '1;
 y2 <= '1;
 state <= S3;
 end
 else state <= S2;
 S2 : if (jmp) begin
 y1 <= '1;
 y2 <= '1;
 state <= S3;
 end
 else begin
 y1 <= '1;
 y2 <= '1;
 y3 <= '1;
 state <= S9;
 end
 S3: if (!jmp) state <= S4;
 else begin
 y1 <= '1;
 y2 <= '1;
 state <= S3; //@ LB
 end
 S4 : if (jmp) begin
 y1 <= '1;

SNUG	2019	
	

Page	57	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 y2 <= '1;
 state <= S3;
 end
 else if (sk0 && !jmp) begin
 y1 <= '1;
 y2 <= '1;
 y3 <= '1;
 state <= S6;
 end
 else state <= S5;
 S5 : if (jmp) begin
 y1 <= '1;
 y2 <= '1;
 state <= S3;
 end
 else if (!sk1 && !sk0 && !jmp) begin
 y1 <= '1;
 y2 <= '1;
 y3 <= '1;
 state <= S6;
 end
 else if (!sk1 && sk0 && !jmp) begin
 y3 <= '1;
 state <= S7;
 end
 else if (sk1 && !sk0 && !jmp) begin
 y2 <= '1;
 y3 <= '1;
 state <= S8;
 end
 else begin
 y1 <= '1;
 y2 <= '1;
 y3 <= '1;
 state <= S9;
 end
 S6 : if (jmp) begin
 y1 <= '1;
 y2 <= '1;
 state <= S3;
 end
 else if (go && !jmp) begin
 y3 <= '1;
 state <= S7;
 end
 else begin
 y1 <= '1;
 y2 <= '1;
 y3 <= '1;
 state <= S6; //@ LB
 end
 S7 : if (jmp) begin
 y1 <= '1;
 y2 <= '1;
 state <= S3;
 end
 else begin
 y2 <= '1;

SNUG	2019	
	

Page	58	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 y3 <= '1;
 state <= S8;
 end
 S8 : if (jmp) begin
 y1 <= '1;
 y2 <= '1;
 state <= S3;
 end
 else begin
 y1 <= '1;
 y2 <= '1;
 y3 <= '1;
 state <= S9;
 end
 S9 : if (jmp) begin
 y1 <= '1;
 y2 <= '1;
 state <= S3;
 end
 else state <= S0;
 default: begin
 y1 <= 'x;
 y2 <= 'x;
 y3 <= 'x;
 state <= XX;
 end
 endcase
 end
endmodule

Example	26	-	fsm8_1x	-	1-always	block	style	with	registered	outputs	

	

SNUG	2019	
	

Page	59	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM8	-	2	always	block	RTL	-	Recommended	-	Combinatorial	Outputs	

	
module fsm8_2x (
 output logic y1, y2, y3,
 input logic jmp, go, sk0, sk1, clk, rst_n);

 import fsm8_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= S0;
 else state <= next;

 always_comb begin
 next = XX; //@LB next = state;
 y1 = '0;
 y2 = '0;
 y3 = '0;
 case (state)
 S0: if (go && jmp) next = S3;
 else if (go && !jmp) next = S1;
 else next = S0; //@ LB
 S1 : begin
 y2 = '1;
 if (jmp) next = S3;
 else next = S2;
 end
 S2 : if (jmp) next = S3;
 else next = S9;
 S3 : begin
 y1 = '1;
 y2 = '1;
 if (!jmp) next = S4;
 else next = S3; //@ LB
 end
 S4 : if (jmp) next = S3;
 else if (sk0 && !jmp) next = S6;
 else next = S5;
 S5 : if (jmp) next = S3;
 else if (!sk1 && !sk0 && !jmp) next = S6;
 else if (!sk1 && sk0 && !jmp) next = S7;
 else if (sk1 && !sk0 && !jmp) next = S8;
 else next = S9;
 S6 : begin
 y1 = '1;
 y2 = '1;
 y3 = '1;
 if (jmp) next = S3;
 else if (go && !jmp) next = S7;
 else next = S6; //@ LB
 end
 S7 : begin
 y3 = '1;
 if (jmp) next = S3;
 else next = S8;
 end
 S8 : begin

SNUG	2019	
	

Page	60	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 y2 = '1;
 y3 = '1;
 if (jmp) next = S3;
 else next = S9;
 end
 S9 : begin
 y1 = '1;
 y2 = '1;
 y3 = '1;
 if (jmp) next = S3;
 else next = S0;
 end
 default: begin
 y1 = 'x;
 y2 = 'x;
 y3 = 'x;
 next = XX;
 end
 endcase
 end
endmodule

Example	27	-	fsm8_2x	-	2-always	block	style	with	combinatorial	outputs	

	 	

SNUG	2019	
	

Page	61	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM8	-	3	always	block	-	Recommended	-	Registered	Outputs	

	
module fsm8_3x (
 output logic y1, y2, y3,
 input logic jmp, go, sk0, sk1, clk, rst_n);

 import fsm8_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= S0;
 else state <= next;

 always_comb begin
 next = XX; //@LB next = state;
 case (state)
 S0: if (go && jmp) next = S3;
 else if (go && !jmp) next = S1;
 else next = S0; //@ LB
 S1 : if (jmp) next = S3;
 else next = S2;
 S2 : if (jmp) next = S3;
 else next = S9;
 S3 : if (!jmp) next = S4;
 else next = S3; //@ LB
 S4 : if (jmp) next = S3;
 else if (sk0 && !jmp) next = S6;
 else next = S5;
 S5 : if (jmp) next = S3;
 else if (!sk1 && !sk0 && !jmp) next = S6;
 else if (!sk1 && sk0 && !jmp) next = S7;
 else if (sk1 && !sk0 && !jmp) next = S8;
 else next = S9;
 S6 : if (jmp) next = S3;
 else if (go && !jmp) next = S7;
 else next = S6; //@ LB
 S7 : if (jmp) next = S3;
 else next = S8;
 S8 : if (jmp) next = S3;
 else next = S9;
 S9 : if (jmp) next = S3;
 else next = S0;
 default: next = XX;
 endcase
 end

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) begin
 y1 <= '0;
 y2 <= '0;
 y3 <= '0;
 end
 else begin
 y1 <= '0;
 y2 <= '0;
 y3 <= '0;
 case (next)

SNUG	2019	
	

Page	62	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 S7 : y3 <= '1;
 S1 : y2 <= '1;
 S3 : begin
 y1 <= '1;
 y2 <= '1;
 end
 S8 : begin
 y2 <= '1;
 y3 <= '1;
 end
 S6, S9 : begin
 y1 <= '1;
 y2 <= '1;
 y3 <= '1;
 end
 endcase
 end
endmodule

Example	28	-	fsm8_3x	-	3-always	block	style	with	registered	outputs	

	
	 	

SNUG	2019	
	

Page	63	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 FSM8	-	4	always	block	RTL	-	Recommended	-	Registered	Outputs	

	
module fsm8_4x (
 output logic y1, y2, y3,
 input logic jmp, go, sk0, sk1, clk, rst_n);

 logic a1, a2, a3; // next combinatorial outputs

 import fsm8_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= S0;
 else state <= next;

 always_comb begin
 next = XX; //@LB next = state;
 case (state)
 S0: if (go && jmp) next = S3;
 else if (go && !jmp) next = S1;
 else next = S0; //@ LB
 S1 : if (jmp) next = S3;
 else next = S2;
 S2 : if (jmp) next = S3;
 else next = S9;
 S3 : if (!jmp) next = S4;
 else next = S3; //@ LB
 S4 : if (jmp) next = S3;
 else if (sk0 && !jmp) next = S6;
 else next = S5;
 S5 : if (jmp) next = S3;
 else if (!sk1 && !sk0 && !jmp) next = S6;
 else if (!sk1 && sk0 && !jmp) next = S7;
 else if (sk1 && !sk0 && !jmp) next = S8;
 else next = S9;
 S6 : if (jmp) next = S3;
 else if (go && !jmp) next = S7;
 else next = S6; //@ LB
 S7 : if (jmp) next = S3;
 else next = S8;
 S8 : if (jmp) next = S3;
 else next = S9;
 S9 : if (jmp) next = S3;
 else next = S0;
 default: next = XX;
 endcase
 end

 always_comb begin
 {a3,a2,a1} = '0;
 case (state)
 S0 : if (go && jmp) { a2,a1} = '1; // S3
 else if (go && !jmp) { a2 } = '1; // S1
 else ; // S0

 S1 : if (jmp) { a2,a1} = '1; // S3
 else ; // S2

SNUG	2019	
	

Page	64	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 S2 : if (jmp) { a2,a1} = '1; // S3
 else {a3,a2,a1} = '1; // S9

 S3 : if (!jmp) ; // S4
 else { a2,a1} = '1; // S3

 S4 : if (jmp) { a2,a1} = '1; // S3
 else if (sk0 && !jmp) {a3,a2,a1} = '1; // S6
 else ; // S5

 S5 : if (jmp) { a2,a1} = '1; // S3
 else if (!sk1 && !sk0 && !jmp) {a3,a2,a1} = '1; // S6
 else if (!sk1 && sk0 && !jmp) {a3 } = '1; // S7
 else if (sk1 && !sk0 && !jmp) {a3,a2 } = '1; // S8
 else {a3,a2,a1} = '1; // S9

 S6 : if (jmp) { a2,a1} = '1; // S3
 else if (go && !jmp) {a3 } = '1; // S7
 else {a3,a2,a1} = '1; // S6

 S7 : if (jmp) { a2,a1} = '1; // S3
 else {a3,a2 } = '1; // S8

 S8 : if (jmp) { a2,a1} = '1; // S3
 else {a3,a2,a1} = '1; // S9

 S9 : if (jmp) { a2,a1} = '1; // S3
 else ; // S0
 default: {a3,a2,a1} = 'x;
 endcase
 end

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) begin
 y1 <= '0;
 y2 <= '0;
 y3 <= '0;
 end
 else begin
 y1 <= a1;
 y2 <= a2;
 y3 <= a3;
 end
endmodule

Example	29	-	fsm8_4x	-	4-always	block	style	with	registered	outputs	

	 	

SNUG	2019	
	

Page	65	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

	

 PREP4	-	prep4_pkgs	for	abstract	and	binary	encoded	enums	

The	[a]bstract	enumerated	types	package	file	is	named	prep4_pkg_a.sv	but	the	package	name	is	
prep4_pkg.		

	
package prep4_pkg;
 typedef enum {S0,
 S1,
 S2,
 S3,
 S4,
 S5,
 S6,
 S7,
 S8,
 S9,
 S10,
 S11,
 S12,
 S13,
 S14,
 S15,
 XX } state_e;
endpackage

Example	30	-	File:	prep4_pkg_a.sv	-	prep4_pkg	enumerated	typedef	

The	[b]inary	encoded	enumerated	 types	package	 file	 is	named	prep4_pkg_b.sv	but	 the	package	
name	is	still	prep4_pkg.		

	
package prep4_pkg;
 typedef enum logic [3:0] {S0 = 4'b0000,
 S1 = 4'b0100,
 S2 = 4'b0101,
 S3 = 4'b0001,
 S4 = 4'b1011,
 S5 = 4'b1001,
 S6 = 4'b0010,
 S7 = 4'b0011,
 S8 = 4'b0110,
 S9 = 4'b1111,
 S10 = 4'b1101,
 S11 = 4'b0111,
 S12 = 4'b1010,
 S13 = 4'b1000,
 S14 = 4'b1110,
 S15 = 4'b1100,
 XX = 'x } state_e;
endpackage

Example	31	-	File:	prep4_pkg_b.sv	-	prep4_pkg	enumerated	typedef	

These	packages	include	a	typedef	for	the	state_e	type	that	is	used	by	all	of	the	prep4	designs.		

Using	the	same	package	name	makes	it	possible	to	read	the	separate	package	files	first	in	a	simulation	

SNUG	2019	
	

Page	66	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

and	first	in	synthesis	compilation	to	selectively	choose	abstract	or	binary	encoded	enumerated	types	
without	touching	the	prep4	files.		

 PREP4	-	1	always	block	RTL	-	NOT	Recommended	-	Registered	Outputs	

	
module prep4_1x (
 output logic [7:0] out,
 input logic [7:0] in,
 input logic clk, rst_n);

 import prep4_pkg::*;
 state_e state;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) begin
 state <= S0;
 out <= 8'h00;
 end
 else begin
 state <= XX; //@ LB
 out <= 'x;
 case (state)
 S0 : if (in) begin
 if (in < 4) begin
 out <= 8'h06;
 state <= S1;
 end
 else if (in < 32) begin
 out <= 8'h18;
 state <= S2;
 end
 else if (in < 64) begin
 out <= 8'h60;
 state <= S3;
 end
 else begin
 out <= 8'h80;
 state <= S4;
 end
 end
 else begin
 out <= 8'h00;
 state <= S0; //@ LB
 end
 S1 : if (in[0] & in[1]) begin
 out <= 8'h00;
 state <= S0;
 end
 else begin
 out <= 8'h60;
 state <= S3;
 end
 S2 : begin
 out <= 8'h60;
 state <= S3;
 end
 S3 : begin

SNUG	2019	
	

Page	67	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 out <= 8'hF0;
 state <= S5;
 end
 S4 : if (in[0] | in[2] | in[4]) begin
 out <= 8'hF0;
 state <= S5;
 end
 else begin
 out <= 8'h1F;
 state <= S6;
 end
 S5 : if (in[0]) begin
 out <= 8'h3F;
 state <= S7;
 end
 else begin
 out <= 8'hF0;
 state <= S5; //@ LB
 end
 S6 : if (in[6] & in[7]) begin
 out <= 8'h06;
 state <= S1;
 end
 else if (!in[6] & in[7]) begin
 out <= 8'hFF;
 state <= S9;
 end
 else if (in[6] & !in[7]) begin
 out <= 8'h7F;
 state <= S8;
 end
 else begin
 out <= 8'h1F;
 state <= S6; //@ LB
 end
 S7 : if (in[6] & in[7]) begin
 out <= 8'h80;
 state <= S4;
 end
 else if (!in[6] & !in[7]) begin
 out <= 8'h60;
 state <= S3;
 end
 else begin
 out <= 8'h3F;
 state <= S7; //@ LB
 end
 S8 : if (in[4] ^ in[5]) begin
 out <= 8'hFF;
 state <= S11;
 end
 else if (in[7]) begin
 out <= 8'h06;
 state <= S1;
 end
 else begin
 out <= 8'h7F;
 state <= S8; //@ LB

SNUG	2019	
	

Page	68	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 end
 S9 : if (in[0]) begin
 out <= 8'hFF;
 state <= S11;
 end
 else begin
 out <= 8'hFF;
 state <= S9; //@ LB
 end
 S10: begin
 out <= 8'h06;
 state <= S1;
 end
 S11: if (in == 64) begin
 out <= 8'h7F;
 state <= S15;
 end
 else begin
 out <= 8'h7F;
 state <= S8;
 end
 S12: if (in == 255) begin
 out <= 8'h00;
 state <= S0;
 end
 else begin
 out <= 8'hFD;
 state <= S12; //@ LB
 end
 S13: if (in[1] ^ in[3] ^ in[5]) begin
 out <= 8'hFD;
 state <= S12;
 end
 else begin
 out <= 8'hDF;
 state <= S14;
 end
 S14: if (in) begin
 if (in < 64) begin
 out <= 8'hFD;
 state <= S12;
 end
 else begin
 out <= 8'hFF;
 state <= S10;
 end
 end
 else begin
 out <= 8'hDF;
 state <= S14; //@ LB
 end
 S15: if (in[7]) begin
 case (in[1:0])
 2'b00: begin
 out <= 8'hDF;
 state <= S14;
 end
 2'b01: begin

SNUG	2019	
	

Page	69	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 out <= 8'hFF;
 state <= S10;
 end
 2'b10: begin
 out <= 8'hF7;
 state <= S13;
 end
 2'b11: begin
 out <= 8'h00;
 state <= S0;
 end
 endcase
 end
 else begin
 out <= 8'h7F;
 state <= S15; //@ LB
 end
 default: begin
 out <= 'x;
 state <= XX;
 end
 endcase
 end
endmodule

Example	32	-	prep4_1x	-	1-always	block	style	with	registered	outputs	

	 	

SNUG	2019	
	

Page	70	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 PREP4	-	2	always	block	RTL	-	Recommended	-	Combinatorial	Outputs	

	
module prep4_2x (
 output logic [7:0] out,
 input logic [7:0] in,
 input logic clk, rst_n);

 import prep4_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= S0;
 else state <= next;

 always_comb begin
 next = XX; //@LB next = state;
 out = 'x;
 case (state)
 S0 : begin
 out = 8'h00;
 if (in) begin
 if (in < 4) next = S1;
 else if (in < 32) next = S2;
 else if (in < 64) next = S3;
 else next = S4;
 end
 else next = S0; //@ LB
 end
 S1 : begin
 out = 8'h06;
 if (in[0] && in[1]) next = S0;
 else next = S3;
 end
 S2 : begin
 out = 8'h18;
 next = S3;
 end
 S3 : begin
 out = 8'h60;
 next = S5;
 end
 S4 : begin
 out = 8'h80;
 if (in[0] || in[2] || in[4]) next = S5;
 else next = S6;
 end
 S5 : begin
 out = 8'hF0;
 if (in[0]) next = S7;
 else next = S5; //@ LB
 end
 S6: begin
 out = 8'h1F;
 if (in[6] & in[7]) next = S1;
 else if (!in[6] & in[7]) next = S9;
 else if (in[6] & !in[7]) next = S8;
 else next = S6; //@ LB

SNUG	2019	
	

Page	71	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 end
 S7 : begin
 out = 8'h3F;
 if (in[6] & in[7]) next = S4;
 else if (!in[6] & !in[7]) next = S3;
 else next = S7; //@ LB
 end
 S8 : begin
 out = 8'h7F;
 if (in[4] ^ in[5]) next = S11;
 else if (in[7]) next = S1;
 else next = S8; //@ LB
 end
 S9 : begin
 out = 8'hFF;
 if (in[0]) next = S11;
 else next = S9; //@ LB
 end
 S10: begin
 out = 8'hFF;
 next = S1;
 end
 S11: begin
 out = 8'hFF;
 if (in == 64) next = S15;
 else next = S8;
 end
 S12: begin
 out = 8'hFD;
 if (in == 255) next = S0;
 else next = S12; //@ LB
 end
 S13: begin
 out = 8'hF7;
 if (in[5] ^ in[3] ^ in[1]) next = S12;
 else next = S14;
 end
 S14: begin
 out = 8'hDF;
 if (in) begin
 if (in < 64) next = S12;
 else next = S10;
 end
 else next = S14; //@ LB
 end
 S15: begin
 out = 8'h7F;
 if (in[7]) begin
 case (in[1:0])
 2'b00: next = S14;
 2'b01: next = S10;
 2'b10: next = S13;
 2'b11: next = S0;
 endcase
 end
 else next = S15; //@ LB
 end
 default : begin

SNUG	2019	
	

Page	72	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 out = 'x;
 next = XX;
 end
 endcase
 end
endmodule

Example	33	-	prep4_2x	-	2-always	block	style	with	combinatorial	outputs	

SNUG	2019	
	

Page	73	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 PREP4	-	3	always	block	-	Recommended	-	Registered	Outputs	

	
module prep4_3x (
 output logic [7:0] out,
 input logic [7:0] in,
 input logic clk, rst_n);

 import prep4_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= S0;
 else state <= next;

 always_comb begin
 next = XX; //@LB next = state;
 case (state)
 S0 : if (in) begin
 if (in < 4) next = S1;
 else if (in < 32) next = S2;
 else if (in < 64) next = S3;
 else next = S4;
 end
 else next = S0; //@ LB
 S1 : if (in[0] && in[1]) next = S0;
 else next = S3;
 S2 : next = S3;
 S3 : next = S5;
 S4 : if (in[0] || in[2] || in[4]) next = S5;
 else next = S6;
 S5 : if (in[0]) next = S7;
 else next = S5; //@ LB
 S6: if (in[6] & in[7]) next = S1;
 else if (!in[6] & in[7]) next = S9;
 else if (in[6] & !in[7]) next = S8;
 else next = S6; //@ LB
 S7 : if (in[6] & in[7]) next = S4;
 else if (!in[6] & !in[7]) next = S3;
 else next = S7; //@ LB
 S8 : if (in[4] ^ in[5]) next = S11;
 else if (in[7]) next = S1;
 else next = S8; //@ LB
 S9 : if (in[0]) next = S11;
 else next = S9; //@ LB
 S10: next = S1;
 S11: if (in == 64) next = S15;
 else next = S8;
 S12: if (in == 255) next = S0;
 else next = S12; //@ LB
 S13: if (in[5] ^ in[3] ^ in[1]) next = S12;
 else next = S14;
 S14: if (in) begin
 if (in < 64) next = S12;
 else next = S10;
 end
 else next = S14; //@ LB
 S15: if (in[7]) begin

SNUG	2019	
	

Page	74	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 case (in[1:0])
 2'b00: next = S14;
 2'b01: next = S10;
 2'b10: next = S13;
 2'b11: next = S0;
 endcase
 end
 else next = S15; //@ LB
 default : next = XX;
 endcase
 end

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) out <= 8'h00;
 else begin
 out <= 'x;
 case (next)
 S0: out <= 8'h00;
 S1: out <= 8'h06;
 S2: out <= 8'h18;
 S3: out <= 8'h60;
 S4: out <= 8'h80;
 S5: out <= 8'hF0;
 S6: out <= 8'h1F;
 S7: out <= 8'h3F;
 S8: out <= 8'h7F;
 S9: out <= 8'hFF;
 S10: out <= 8'hFF;
 S11: out <= 8'hFF;
 S12: out <= 8'hFD;
 S13: out <= 8'hF7;
 S14: out <= 8'hDF;
 S15: out <= 8'h7F;
 default: out <= 'x;
 endcase
 end
endmodule

Example	34	-	prep4_3x	-	3-always	block	style	with	registered	outputs	

	
	 	

SNUG	2019	
	

Page	75	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 PREP4	-	4	always	block	RTL	-	Recommended	-	Registered	Outputs	

	
module prep4_4x (
 output logic [7:0] out,
 input logic [7:0] in,
 input logic clk, rst_n);

 logic [7:0] n_out; // next combinatorial outputs

 import prep4_pkg::*;
 state_e state, next;

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) state <= S0;
 else state <= next;

 always_comb begin
 next = XX; //@LB next = state;
 case (state)
 S0 : if (in) begin
 if (in < 4) next = S1;
 else if (in < 32) next = S2;
 else if (in < 64) next = S3;
 else next = S4;
 end
 else next = S0; //@ LB
 S1 : if (in[0] && in[1]) next = S0;
 else next = S3;
 S2 : next = S3;
 S3 : next = S5;
 S4 : if (in[0] || in[2] || in[4]) next = S5;
 else next = S6;
 S5 : if (in[0]) next = S7;
 else next = S5; //@ LB
 S6: if (in[6] & in[7]) next = S1;
 else if (!in[6] & in[7]) next = S9;
 else if (in[6] & !in[7]) next = S8;
 else next = S6; //@ LB
 S7 : if (in[6] & in[7]) next = S4;
 else if (!in[6] & !in[7]) next = S3;
 else next = S7; //@ LB
 S8 : if (in[4] ^ in[5]) next = S11;
 else if (in[7]) next = S1;
 else next = S8; //@ LB
 S9 : if (in[0]) next = S11;
 else next = S9; //@ LB
 S10: next = S1;
 S11: if (in == 64) next = S15;
 else next = S8;
 S12: if (in == 255) next = S0;
 else next = S12; //@ LB
 S13: if (in[5] ^ in[3] ^ in[1]) next = S12;
 else next = S14;
 S14: if (in) begin
 if (in < 64) next = S12;
 else next = S10;
 end

SNUG	2019	
	

Page	76	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 else next = S14; //@ LB
 S15: if (in[7]) begin
 case (in[1:0])
 2'b00: next = S14;
 2'b01: next = S10;
 2'b10: next = S13;
 2'b11: next = S0;
 endcase
 end
 else next = S15; //@ LB
 default : next = XX;
 endcase
 end

 always_comb begin
 n_out = 8'h00;
 case (state)
 S0 : if (in) begin
 if (in < 4) n_out = 8'h06; // S1
 else if (in < 32) n_out = 8'h18; // S2
 else if (in < 64) n_out = 8'h60; // S3
 else n_out = 8'h80; // S4
 end
 else n_out = 8'h00; //@ LB
 S1 : if (in[0] && in[1]) n_out = 8'h00; // S0
 else n_out = 8'h60; // S3
 S2 : n_out = 8'h60; // S3
 S3 : n_out = 8'hF0; // S5
 S4 : if (in[0] || in[2] || in[4]) n_out = 8'hF0; // S5
 else n_out = 8'h1F; // S6
 S5 : if (in[0]) n_out = 8'h3F; // S7
 else n_out = 8'hF0; // S5
 S6: if (in[6] & in[7]) n_out = 8'h06; // S1
 else if (!in[6] & in[7]) n_out = 8'hFF; // S9
 else if (in[6] & !in[7]) n_out = 8'h7F; // S8
 else n_out = 8'h1F; // S6
 S7 : if (in[6] & in[7]) n_out = 8'h80; // S4
 else if (!in[6] & !in[7]) n_out = 8'h60; // S3
 else n_out = 8'h3F; // S7
 S8 : if (in[4] ^ in[5]) n_out = 8'hFF; // S11
 else if (in[7]) n_out = 8'h06; // S1
 else n_out = 8'h7F; // S8
 S9 : if (in[0]) n_out = 8'hFF; // S11
 else n_out = 8'hFF; // S9
 S10: n_out = 8'h06; // S1
 S11: if (in == 64) n_out = 8'h7F; // S15
 else n_out = 8'h7F; // S8
 S12: if (in == 255) n_out = 8'h00; // S0
 else n_out = 8'hFD; // S12
 S13: if (in[5] ^ in[3] ^ in[1]) n_out = 8'hFD; // S12
 else n_out = 8'hDF; // S14
 S14: if (in) begin
 if (in < 64) n_out = 8'hFD; // S12
 else n_out = 8'hFF; // S10
 end
 else n_out = 8'hDF; // S14
 S15: if (in[7]) begin
 case (in[1:0])

SNUG	2019	
	

Page	77	

Rev	1.0	

Finite	State	Machine	(FSM)	Design	&	Synthesis	
using	SystemVerilog	‐	Part	I	

 2'b00: n_out = 8'hDF; // S14
 2'b01: n_out = 8'hFF; // S10
 2'b10: n_out = 8'hF7; // S13
 2'b11: n_out = 8'h00; // S0
 endcase
 end
 else n_out = 8'h7F; // S15
 default : n_out = 'x;
 endcase
 end

 always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) out <= 8'h00;
 else out <= n_out;
endmodule

Example	35	-	prep4_4x	-	4-always	block	style	with	registered	outputs	

	

