
World Class SystemVerilog & UVM Training

World Class Design & Verification Services

uvmtb_template Files – An Efficient & Rapid Way

To Create UVM Testbenches

Clifford E. Cummings

Paradigm Works, Inc.
Provo, Utah, USA

www.sunburst-design.com

cliff.cummings@paradigm-works.com

ABSTRACT
There is a common misconception that due to the complexity and required structure of
UVM testbenches that UVM is too complex to be used for block level and simple design
testing. People believe that Verilog and SystemVerilog testbenches are better suited for
simple design testing, but this is not true.
There is also a widely held belief that commercial or in-house UVM testbench generation
tools are the best way to build simple UVM testbenches, and that without those tools, it
is too difficult to quickly assemble a UVM testbench.
This paper describes and shares a set of open and simple testbench files called the
uvmtb_template directory, which enables an engineer to quickly create simple UVM
testbenches by modifying 9 of the 23 template files. The full set of uvmtb_template files,
and a description of the required modifications are included in this paper.

SNUG-2025
Silicon Valley, CA

Voted Best Technical
Paper - 2nd Place

SNUG Silicon Valley 2025

Page 2
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

Table of Contents
1. Introduction ... 4
2. Why is UVM Hard to Learn? .. 4
3. Why Template Files? Why Not Gen-Tools? .. 5
4. Focused Experience versus Splitting Time ... 6

4.1 Simple testbenches using SystemVerilog ... 6
4.2 UVM is SystemVerilog Verification ... 6

5. What Makes UVM Easy to Use? ... 6
5.1 0-Timed Testbench ... 6
5.2 Common Transaction Item ... 8

5.2.1 2 or 1,000 Signals ... 8
5.2.2 Enables Common Copy, Printing and Other Common Methods 9
5.2.3 Use the transaction signals … or don't! ... 9

5.3 Correct Stimulus & Verification Timing ... 11
5.3.1 Clocking Block Time Budgeting ... 11
5.3.2 The Program Block Mistake & Avoidance ... 12

6. uvmtb_template Code ... 12
6.1 Eight Template Files to be Modified.. 12

6.1.1 (1) top.sv ... 13
6.1.2 (2) dut_if.sv ... 13
6.1.3 (3) trans1.svh .. 14
6.1.4 (4) tb_driver.svh .. 16
6.1.5 (5) tb_monitor.svh ... 17
6.1.6 (6) sb_calc_exp.svh .. 18
6.1.7 (7) tb_cover.svh... 19
6.1.8 (8) tr_sequence.svh ... 20
6.1.9 (9) sb_comparator.svh .. 21

6.2 Summarizing template-file code ... 21
6.3 Fourteen More Fully-Coded & Usable Template Files .. 22

7. UVM Testbench Structure Easier than SV .. 22
7.1 UVM Scoreboards Are Easier than SV ... 23

8. uvmtb_template MIT Licensed .. 24
9. Teaching UVM testbenches .. 24
10. Summary of uvmtb_template Files That Require Modification .. 25
11. Conclusions ... 26

SNUG Silicon Valley 2025

Page 3
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

12. Acknowledgements ... 26
13. References .. 26
14. Author & Contact Information .. 27
15. Appendix I – Printing Testbench Structure & Factory Contents .. 27
16. Appendix II - Running UVM Simulations ... 28

16.1 VCS-Specific Command Line Switches .. 28
16.1.1 VCS - 2-step simulation ... 28
16.1.2 VCS - 1-step simulation ... 29

16.2 QuestaSim-Specific Command Line Switches .. 29
16.2.1 QuestaSim - 3-step simulation .. 29
16.2.2 QuestaSim - 1-step simulation .. 30

16.3 Xcelium-Specific Command Line Switches ... 30
16.3.1 Xcelium - 1-step simulation ... 30

Table of Figures
Figure 1 - Component timing in a UVM Testbench ... 7
Figure 2 - Common Transaction used in a UVM Testbench .. 8
Figure 3 - Stimulus driving half of UVM testbench .. 9
Figure 4 - Output sampling half of UVM testbench .. 10
Figure 5 - Prediction logic of UVM testbench .. 10
Figure 6 - Output comparison logic of UVM testbench .. 11
Figure 7 - uvmtb_template files that require modification .. 12
Figure 8 - uvmtb_template files that do not require modification ... 22

Table of Examples
Example 1 - uvmtb_template – (1) top.sv file .. 13
Example 2 - uvmtb_template – (2) dut_if.sv file .. 13
Example 3 - uvmtb_template – (3) trans1.svh file ... 15
Example 4 - uvmtb_template – (4) tb_driver.svh file ... 16
Example 5 - uvmtb_template – (5) tb_monitor.svh file .. 17
Example 6 - uvmtb_template – (6) sb_calc_exp.svh file ... 18
Example 7 - uvmtb_template – (7) tb_cover.svh file ... 19
Example 8 - uvmtb_template – (8) tr_sequence.svh file ... 20
Example 9 - uvmtb_template – (9) sb_comparator.svh file ... 21
Example 10 - Conditional display of test configuration and factory configuration 27

SNUG Silicon Valley 2025

Page 4
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

1. Introduction
There are three commonly repeated myths surrounding UVM testbench development:

(1) It is easier to create a Verilog/SystemVerilog self-checking testbench than it is to create a UVM
self-checking testbench.

(2) UVM testbenches are hard to create.
(3) I should create simple testbenches using Verilog/SystemVerilog and only use UVM to create

more complex testbenches.

All three of these statements are false. If you believe that self-checking UVM testbenches are harder
to create than Verilog/SystemVerilog testbenches, you have improperly learned UVM or you have
taken the wrong UVM training.

This paper shows how to implement simple UVM testbench development techniques using simple
template files that you can control.

2. Why is UVM Hard to Learn?
Many engineers believe they can learn UVM by picking up and reading some UVM book, along with
the UVM User Guide. They quickly discover this is exceptionally difficult to do. Why is it so hard to
learn UVM from existing materials?

Through years of experience, Sunburst Design and Paradigm Works have identified the following
reasons why engineers struggle with existing UVM tutorial materials:

(1) The UVM User Guide was written by Cadence and teaches Cadence recommended methods,
which includes the use of a large number of UVM macros.

(2) The UVM tutorials on VerificationAcademy.org are shown using Siemens / Mentor
recommended methods, which includes the use of fewer UVM macros and more UVM method
calls.

(3) The OVM Cookbook (predecessor to UVM) was written by Mentor employees and is based on
an earlier version of OVM (the latest techniques are not shown in the book).

(4) The User Guide, tutorials and Cookbook do not acknowledge or explain that alternate methods
exist, so users are left to draw erroneous conclusions that some of the examples and
explanations shown in these materials are flawed, which is not true. Learners need to be taught
the pros and cons of alternate methods so that they understand why there are differences in the
various methods presented.

(5) All the people who have written UVM materials are really, really smart software engineers who
assume that engineers already understand SystemVerilog syntax and semantics, object-
oriented programming and polymorphism semantics, and they do not know how to teach these
concepts to beginners.

(6) Many of those who have written UVM materials are software engineers who do not have a strong
grasp of good hardware design practices, and it shows in many of the examples.

(7) The UVM User Guide (chapter 2) and the OVM Cookbook (chapter 3) introduce Transaction
Level Modeling (TLM) concepts, including put, get and transport communication, but do a poor
job of tying the concepts into the rest of the OVM/UVM materials. Engineers often wonder why
TLM was introduced in these texts.

(8) Most UVM materials show the driver on the right and the monitor on the left (right to left data-
flow inside of the agent). This contradicts known good hardware block diagramming methods
(data should flow from left to right in block diagrams) and adds an unnecessary level of confusion
to the learning process for those who are familiar with good block diagramming techniques.

(9) There is a huge shortage of complete simple examples. Most of the publicly available example
code is in abbreviated code-snippet form, leaving the new user to guess what is missing. Finding
full online examples is rare. One notable example shows OVM used on a large VHDL design,
which introduces yet another unknown to the learning process.

SNUG Silicon Valley 2025

Page 5
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

(10) Of course, you must understand classes, class-extension, virtual classes, virtual methods,
dynamic casting, polymorphism, randomization, constraints, covergroups, coverpoints,
interfaces and virtual interfaces before you can learn UVM. Too many engineers try to learn
UVM without a full understanding of these SystemVerilog fundamentals (this is not the fault of
UVM authors).

(11) Classes are applied as stimulus and sampled for verification. Existing materials do not explain
why classes are used instead of structs?

(12) Interfaces, virtual interfaces and their recommended usage-models are somewhat buried in the
materials and are poorly explained (most authors assume you understand these concepts
without much explanation - they are wrong).

(13) There are a substantial number of typos and mistakes sprinkled throughout the materials and
examples. The mistakes leave the learner to try to figure out which coding styles are correct,
and which have typos.

Proper UVM training should address each of these issues.

3. Why Template Files? Why Not Gen-Tools?
There are many available UVM testbench generation tools, so why create and use UVM testbench
template files?

First note that if you use and like a specific UVM testbench generation tool, then keep using it. The
tool is probably giving you testbench development value.

If you are considering using third-party UVM testbench generation tools, you might discover that the
generation tools all have their own unique required input syntax and a small learning curve. Many of
the generation tools also create good albeit somewhat complex set of files based on a testbench
patterned after the style of the tool developers. To the developer, the constructed files make sense
but to the end-user some of those files might be unnecessary, overly complex, and confusing. I have
seen engineers use the UVM testbench generation tools but not understand much of the generated
testbench code.

What do you do if the generation tool creates a UVM testbench style that is not desired by the end
user? What if the user would like the tool to add some functionality that is non-standard for that tool?
The user might try to contact the tool developer and ask for additional options or features and the user
is then at the mercy of the tool developer to provide the requested functionality.

What if the user wants the tool to generate less code or a less complicated version of a UVM
testbench? Often the user is stuck with the set of files generated by the tool and the user has no way
to coerce the tool to generate simpler code. Exactly how the tool generates the UVM files is often a
mystery to the end user.

What if you had a simple way to control the testbench structure and files created for your UVM
testbenches? That is the topic detailed in this paper.

SNUG Silicon Valley 2025

Page 6
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

4. Focused Experience versus Splitting Time
In the introduction of this paper, I described three common myths surrounding testbench development
and UVM.

Many engineers have told me that "It is easier to create a Verilog or SystemVerilog self-checking
testbench than it is to create a UVM self-checking testbench." This is not true.

Those same engineers claim, "UVM testbenches are hard to create." That might be true if you are
creating UVM testbenches from scratch, but using a set of template files makes UVM testbenches
easier to create than Verilog or SystemVerilog testbenches.

Many of those same engineers have arrived at the conclusion that they should, "create simple
testbenches using Verilog/SystemVerilog and only use UVM to create more complex testbenches."
This is a bad idea.

4.1 Simple testbenches using SystemVerilog
If you test simpler blocks using SystemVerilog, you will use your own, nonstandard methodology, and
you will be reinventing the wheel. Many of these techniques do not translate to UVM methodologies,
so you are largely reinforcing bad habits.

If you subsequently do larger blocks and multiblock testing using UVM, you will be using a different
methodology and you will need to change your mindset to use the different methodology.

If you reserve UVM for only the most complex testing situations, you will be less proficient with two
different methodologies and not as effective at developing rapid UVM testbenches.

4.2 UVM is SystemVerilog Verification
Very smart developers have taken the SystemVerilog verification enhancements and turned them into
a powerful and extensible verification methodology called UVM. With the release of UVM back in 2011,
all three major EDA vendors agreed that this was the methodology that verification engineers should
use. Whenever any company askes me about SystemVerilog Verification training, I tell them, "UVM is
SystemVerilog Verification!"

The more practice you get developing UVM testbenches, the quicker you will put together both simple
and more complex UVM testbenches. You should focus on developing your UVM skills as opposed to
splitting time between two methodologies.

With some simple template files as a starting point, you can quickly assemble simple block-level UVM
testbenches. You can also restructure the simple template files to meet your needs and coding style.

Learning SystemVerilog Verification decoupled from UVM is largely a waste of time. You are not just
reinventing the wheel; you are basically trying to reinvent the Tesla by reinventing the wheel.

5. What Makes UVM Easy to Use?
Once you understand a few basics, you quickly discover that very smart people implemented very
clever and useful techniques to create powerful self-checking testbenches.

A few UVM features that make testbench development relatively easy to do are detailed below.

5.1 0-Timed Testbench
One reason the UVM testbench lends itself to template implementation is because the entire UVM
testbench is almost entirely 0-timed with two handshaking interfaces: (1) sequencer-driver and (2)
monitor analysis port, which broadcasts a sampled transaction to all subscribers (all listeners).

SNUG Silicon Valley 2025

Page 7
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

As shown in Figure 1, the two components that have timing are the tb_driver, which splits the
transaction item signals to send as stimulus to the DUT inputs, and the tb_monitor, which samples
the DUT inputs at the same time that the DUT samples the inputs, and samples the outputs at the end
of the cycle after all DUT signals have settled for that cycle.

Figure 1 - Component timing in a UVM Testbench

The tb_sequencer is always ready to send the next randomized transaction item, but the
tb_driver uses handshaking to grab the next item (transaction), then the tb_sequencer must wait
until the tb_driver is done with the current item before the next transaction is retrieved from the
tb_sequencer. The tb_sequencer waits for item_done.

The tb_monitor reassembles the sampled inputs and outputs into a common transaction item and
then broadcasts the transaction (whether there are 2 or 1,000 signals) to all other subscribers for
analysis or processing. The tb_monitor does not wait for any subscriber to acknowledge receipt of
the broadcast transaction. All subscribers either need to examine the broadcast transaction in 0-time
or they need to take a copy of the broadcast transaction to examine later.

All analysis subscribers wait for a broadcast transaction before processing the transaction, and the
broadcast transactions should NEVER be modified [2].

The other handshaking interface occurs in the sb_comparator. The 0-timed sb_comparator uses
blocking get() methods to wait until there are expected and actual sampled outputs available from
sb_comparator's TLM FIFOs before waking up and comparing output fields. The comparator will
then increment PASS and ERROR status counters during the UVM run_phase() and ultimately report
the final results in the post-run report_phase().

SNUG Silicon Valley 2025

Page 8
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

5.2 Common Transaction Item
When building a UVM testbench, the data that is passed around the testbench has all the necessary
signals (inputs, outputs control signals), functions, and randomization constraints enclosed within a
common transaction unit.

Traditional Verilog testbenches partition the input data, control signals, and output data into separate
signals. The UVM-way places all the signals and functions into a common transaction definition and
those signals and functions are either used … or they are not, depending on which part of the UVM
testbench is using the common transaction.

5.2.1 2 or 1,000 Signals
Most of the UVM testbench structure does not care if the transaction contains 2 signals, or 1,000s of
signals, the majority of the UVM testbench connections are identical. This is one reason it is easy to
put large portions of the UVM testbench into standard template files.

Figure 2 - Common Transaction used in a UVM Testbench

As shown in Figure 2, most of the components are passing around the common transaction unit and
the only components or methods that need to split-out the signals are the tb_driver component, the
tb_monitor component and the sb_calc_exp() function.

The tb_driver grabs an incoming transaction from the tb_sequencer (whether there are 2 or
1,000 signals) and splits up the signals and sends the inputs and control signals with the correct timing
to the DUT interface (dut_if). The driver completely ignores the dedicated output signals.

The tb_monitor samples the DUT inputs and control signals on the active clock edge (because that
is when the DUT samples those signals) and the tb_monitor samples the outputs at the end of the
cycle after all the outputs have settled. The tb_monitor takes the sample signals and then

SNUG Silicon Valley 2025

Page 9
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

reassembles them back into a common transaction (whether there are 2 or 1,000 signals) to be
broadcast to the rest of the UVM testbench.

The only other file that cares about the individual signals is the scoreboard-calculate-expected
(sb_calc_exp()) function, which must examine the sampled inputs, the sampled control signals,
and the saved reference-model state information, to calculate what the expected outputs should be.
The sb_calc_exp() function takes a common transaction (with 2-1,000+ signals) as an input and
returns an expected transaction (again with 2-1,000+) signals, which is why the predictor, which calls
the sb_calc_exp() function, does not require modification whether there are 2 or 1,000 signals.

As seen in Figure 2, most of the UVM testbench just passes around a common transaction of any size,
which is not dependent on the number of signals defined in the transaction.

5.2.2 Enables Common Copy, Printing and Other Common Methods
Because all the transaction fields are co-located in a common transaction definition, a copy()
operation can copy all the fields using a single command as opposed to calling one function to copy
inputs and another function to copy outputs.

The same transaction can also print all the transaction fields or a portion of the signals if desired.

That same transaction should have been coded with a common compare() method, defined to
compare the outputs of one transaction to another. The inclusion of a properly coded compare()
method will also greatly simplify the creation of self-checking testbenches.

5.2.3 Use the transaction signals … or don't!
Just because all the input, control and output signals are defined in a single transaction does not mean
it is required to use all the signals every time a reference is made to the transaction item.

In the stimulus driving half of the UVM testbench as shown in Figure 3, the tb_driver gets a
transaction from the tb_sequencer, which includes input-signals, control-signals and output signals,
but the driver does nothing with the output signals. The outputs are included in the common transaction
definition, but they are not required when generating stimulus.

Figure 3 - Stimulus driving half of UVM testbench

SNUG Silicon Valley 2025

Page 10
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

In the output sampling half of the UVM testbench as shown in Figure 4, the tb_monitor will sample
all the inputs and control signals on the active clock edge and sample the outputs at the end of the
cycle, so the tb_monitor will use all the signals defined in the transaction.

Figure 4 - Output sampling half of UVM testbench

The sb_predictor (scoreboard predictor) will pass the full transaction to the sb_calc_exp()
function. As shown in Figure 5, the sb_calc_exp() function ignores the sampled output signals. The
sb_calc_exp() function will take a copy of the broadcast transaction and use the sampled inputs
and control signals to help generate the expected outputs. The expected transaction will then be
broadcast over to the sb_comparator (scoreboard comparator).

Figure 5 - Prediction logic of UVM testbench

As shown in Figure 6, the sb_comparator will get the sampled output transaction from the
tb_monitor and will get the generated expected transaction from the sb_predictor, and then call
the common compare() method, which was included in the transaction definition, to compare the
outputs from the two transactions. The comparator will ignore the input and control signals present in

SNUG Silicon Valley 2025

Page 11
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

both the sampled and expected transactions.

Figure 6 - Output comparison logic of UVM testbench

It can be seen that a common transaction definition is used or partially used through the entire UVM
testbench.

5.3 Correct Stimulus & Verification Timing
The description of the 0-Timed Testbench section shows that there are three important testbench
times that must be considered in any standard testbench [1].

(1) When should the stimulus be driven (from the stimulus driving half of the agent).
(2) When should the monitor sample the DUT inputs (part of the output sampling half of the agent).
(3) When should the monitor sample the DUT outputs (the other part of the output sampling half

of the agent).

5.3.1 Clocking Block Time Budgeting
The clocking block can control the stimulus driving time (#1 from above) and the DUT output
sampling time (#3 from above). The DUT input sampling time (#2 from above) should happen
simply on the active clock edge.

The testbench timing is controlled from a clocking block that is placed in the DUT interface. It is
important to recognize that the input/output descriptions in the clocking block are with respect to
the testbench. Testbench outputs are the stimulus to the inputs to the design, while testbench
inputs are the sampled signals from the design outputs. Effectively, testbench input and output
directions are the opposite of design input and output directions, and the clocking block uses the
testbench signal directions to specify timing.

Testbench sourced stimulus should never be driven on the active clock edge and there are many
engineers that continue to make this mistake. This would be the same as changing the design
inputs on the active clock edge in a real design, which would violate setup and/or hold times and
probably cause metastability issues.

A properly timed UVM testbench would drive the stimulus after holding the last vector for 10-20%
of the clock period. This would allow the required time to meet hold times in a gate level simulation
(GLS) with delays and timing checks, plus allow 80-90% of the clock period to traverse any
combinational inputs to the design to meet setup times in a GLS.

In the uvmtb_template files, the 10%-hold / 90%-setup or 20%-hold / 80% setup timing is
controlled by a single number, as shown on line 10 of Example 2 (the example is shown on page
13 of this paper). The setup/hold time descriptions are included after the example.

SNUG Silicon Valley 2025

Page 12
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

5.3.2 The Program Block Mistake & Avoidance
The SystemVerilog program keyword “enhancement” was a mistake. The only advantage the
program had over a module is that it allowed stimulus to be applied to design inputs on the active
clock edge without simulation race conditions … WHICH YOU SHOULD NEVER DO! The
justification for this statement is described in the previous section.

If you are currently using program blocks and applying stimulus on the active clock edge,
REPENT! And use the timing recommendations shown in the previous section. Quit using the
program statement in all testbenches (not just UVM testbenches) [1].

6. uvmtb_template Code
There are eight of the uvmtb_template files that require modification: top.sv, dut_if.sv,
trans1.svh, tb_driver.svh, tb_monitor.svh, sb_calc_exp.svh, tb_cover.svh, and
tr_sequence.svh. Those modifications are described in the sections below. As summarized in
Section 6.2 large portions of each of these files are already coded. The ninth file, the
sb_comparator.svh, only needs modification if the design's reset is synchronous or if the design
has pipelined logic that must be flushed before the outputs become valid.

The file-extension naming conventions used in the templates are, files that are directly compiled use
a ".sv" file extension, while files that use `include to compile them into package files use a ".svh"
file extension. This is a common file naming convention on large verification projects but technically is
not required.

6.1 Eight Template Files to be Modified
The eight (or nine) files that require modification, along with the modifications that are required are
shown in this section. Note: even in the files that require modification, large portions of the files are
pre-coded in the uvmtb_template files.

Figure 7 - uvmtb_template files that require modification

SNUG Silicon Valley 2025

Page 13
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

6.1.1 (1) top.sv
Replace the "dut" instantiation (lines 10-11) with the actual design instantiation (line 12). The
template files include a dummy register-dut instantiated in the top module to make the template
files compile and initially run. This dut-file should be deleted to prevent accidental usage.

 1 `include "CYCLE.sv"
 2 `include "uvm_macros.svh"
 3 module top;
 4 import uvm_pkg::*; // import uvm base classes
 5 import tb_pkg::*; // import testbench classes
 6 logic clk;
 7
 8 clkgen ck (clk);
 9
 10 dut i1 (.dout(dif.dout), .din (dif.din),
 11 .clk (clk), .rst_n(dif.rst_n));
 12 // instantiate actual DUT here
 13
 14 dut_if dif (clk);
 15
 16 initial begin
 17 uvm_resource_db#(virtual dut_if)::set("*", "vif", dif);
 18 run_test();
 19 end
 20 endmodule

Example 1 - uvmtb_template – (1) top.sv file

Note that 17 of the 20 lines of code shown in this file typically do not require modification.

6.1.2 (2) dut_if.sv
Modify the interface signals (lines 5-7) to reflect the actual signals, sizes and data types to be
connected to the dut and similarly modify the signals in the clocking block (lines 11-13) with all
testbench driven signals (dut inputs) listed as outputs, and all testbench sampled signals (dut
outputs) listed as inputs. The clocking block descriptions do not require size or data type
information.

 1 `include "CYCLE.sv"
 2 `define Tdrive #(0.2*`CYCLE)
 3
 4 interface dut_if (input clk);
 5 logic [15:0] dout;
 6 logic [15:0] din;
 7 logic rst_n;
 8
 9 clocking cb1 @(posedge clk);
 10 default input #1step output `Tdrive;
 11 input dout;
 12 output din;
 13 output rst_n;
 14 endclocking
 15 endinterface

Example 2 - uvmtb_template – (2) dut_if.sv file

Line 2 defines the stimulus drive time to be 20% of the defined `CYCLE time (#(0.2*`CYCLE)).

SNUG Silicon Valley 2025

Page 14
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

If the stimulus drive time is required to be shortened to 10% of the ̀ CYCLE delay, then an engineer
simply changes 0.2 to 0.1, and all stimulus drive times will automatically scale to the 10%
number.

Line 10 defines all clocking block-controlled testbench inputs (dut outputs) should be sampled at
the last possible moment (#1step) at the end of the cycle, after all dut outputs have settled. Line
10 also specifies that the testbench stimulus drive times (dut inputs) should occur using the drive
time definition (`Tdrive) shown on line 2. Any modifications to the drive time on line 2 will
automatically update the timings in this clocking block.

As described at the beginning of Section 5.3 , (1) the testbench stimulus (dut inputs) is driven
using the clocking block output `Tdrive specification, (2) the testbench inputs (inputs
sampled by the dut on the active clock edge) are sampled on the active clock edge, NOT using
the clocking block, and (3) the rest of the testbench inputs (dut outputs) are sampled using the
clocking block input #1step specification.

Note that 9 of the 15 lines of code shown in this file typically do not require modification.

6.1.3 (3) trans1.svh
Make the following modifications to the trans1 transaction class definition:

Modify or add all the transaction signals (lines 4-6). Dedicated inputs and control signals are
generally declared to be randomizable (rand or randc) signals.

Modify or add the signals (lines 16-18) referenced by the do_copy() method.

Modify or add the output signals to be compared (lines 25-26) used by the do_compare()
method.

Modify or add the input and control signals to be printed (lines 36-37) with proper formatting by the
input2string() method.

Modify or add the output signals to be printed (line 41) with proper formatting by the
output2string() method.

The convert2sring() method (lines 44-46) simply returns the signals that were listed and
formatted by the input2string() method concatenated to the signals listed and formatted by
the output2string() method. The convert2string() method typically does not require any
user-modification.

SNUG Silicon Valley 2025

Page 15
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

 1 class trans1 extends uvm_sequence_item;
 2 `uvm_object_utils(trans1)
 3
 4 logic [15:0] dout; // outputs not randomized
 5 rand bit [15:0] din;
 6 rand bit rst_n;
 7
 8 function new (string name="trans1");
 9 super.new(name);
 10 endfunction
 11
 12 function void do_copy(uvm_object rhs);
 13 trans1 tr;
 14 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_copy() cast")
 15 super.do_copy(rhs);
 16 dout = tr.dout;
 17 din = tr.din;
 18 rst_n = tr.rst_n;
 19 endfunction
 20
 21 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 22 trans1 tr;
 23 bit eq;
 24 if(!$cast(tr, rhs)) `uvm_fatal("trans1", "ILLEGAL do_compare() cast")
 25 eq = super.do_compare(rhs, comparer);
 26 eq &= (dout === tr.dout);
 27 return(eq);
 28 endfunction
 29
 30 function void do_print(uvm_printer printer);
 31 $display("\n\n\t\t*** print() and sprint() are not implemented ",
 32 "for this transaction type ***\n\n");
 33 endfunction
 34
 35 virtual function string input2string();
 36 return($sformatf("din=%4h rst_n=%b",
 37 din, rst_n));
 38 endfunction
 39
 40 virtual function string output2string();
 41 return($sformatf("dout=%4h", dout));
 42 endfunction
 43
 44 virtual function string convert2string();
 45 return({input2string(), " ", output2string()});
 46 endfunction
 47 endclass

Example 3 - uvmtb_template – (3) trans1.svh file

On Lines 4-6, designs with dedicated outputs are not randomized, while design inputs and control
signals are typically specified to be randomizable (rand or randc) variables.

Note that 36 of the 47 lines of code shown in this file typically do not require modification.

SNUG Silicon Valley 2025

Page 16
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

6.1.4 (4) tb_driver.svh
Modify the stimulus driving methods initialize() (lines 24-25) and drive_item() (lines 31-
32) with correct stimulus signals.

 1 class tb_driver extends uvm_driver #(trans1);
 2 `uvm_component_utils(tb_driver)
 3
 4 virtual dut_if vif;
 5
 6 function new (string name, uvm_component parent);
 7 super.new(name, parent);
 8 endfunction
 9
 10 task run_phase(uvm_phase phase);
 11 trans1 tr;
 12 initialize();
 13 forever begin
 14 `uvm_info("DEBUG: Driver Run", "... getting next item ...", UVM_FULL)
 15 seq_item_port.get_next_item(tr);
 16 drive_item(tr);
 17 seq_item_port.item_done();
 18 `uvm_info("DEBUG: Driver Run", "... next item done ...", UVM_FULL)
 19 end
 20 endtask
 21
 22 virtual task initialize (); // @0 - Does not use clocking block
 23 `uvm_info("INIT", "Initialize (time @0)", UVM_HIGH)
 24 vif.rst_n <= '0;
 25 vif.din <= '1; // Initialize din with 1's to verify that reset works
 26 @vif.cb1; // @(posedge vif.clk);
 27 endtask
 28
 29 virtual task drive_item (trans1 tr);
 30 `uvm_info("drive_item", tr.input2string(), UVM_FULL)
 31 vif.cb1.rst_n <= tr.rst_n;
 32 vif.cb1.din <= tr.din;
 33 @vif.cb1; // @(posedge vif.clk);
 34 endtask
 35 endclass

Example 4 - uvmtb_template – (4) tb_driver.svh file

Note that 31 of the 35 lines of code shown in this file typically do not require modification.

Also note that on lines 14 and 18, the template file includes useful debug messages to show the
tb_driver has retrieved and processed a transaction from the tb_sequencer if verbosity is set
to UVM_FULL or higher.

Also note that on line 30, the template file includes a useful debug message to show the transaction
being driven by the tb_driver if verbosity is set to UVM_FULL or higher. The transaction
input2string() method is used to display the stimulus inputs and control signals, but does not
show the dedicated outputs, which are typically uninitialized. Displaying uninitialized outputs can
add confusion to the debug process.

SNUG Silicon Valley 2025

Page 17
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

6.1.5 (5) tb_monitor.svh
Modify the sample_dut() sampling method (lines 29-30 and 32-33) with correct sampled input
and output signals.

The sample_dut() method that starts on line 26 is assumed to be already synchronized to the
active clock edge (typically posedge clk) so inputs and control signals sampled on lines 29-30
are sampled directly from the virtual interface (vif) on the active clock edge. Then on line 31 of
sample_dut(), the method resynchronizes to the next active clock edge using the @vif.cb1
syntax. If the design has an asynchronous reset, then the test and assignment shown on line 32
is required. With asynchronous reset, the presence of an active reset must be tested both at the
beginning and end of the cycle. Line 32 shows that the output(s) are sampled using clocking
block timing at the end of the cycle.

 1 class tb_monitor extends uvm_monitor;
 2 `uvm_component_utils(tb_monitor)
 3
 4 virtual dut_if vif;
 5
 6 uvm_analysis_port #(trans1) ap;
 7
 8 function new (string name, uvm_component parent);
 9 super.new(name, parent);
 10 endfunction
 11
 12 function void build_phase(uvm_phase phase);
 13 super.build_phase(phase);
 14 ap = new("ap", this);
 15 endfunction
 16
 17 task run_phase(uvm_phase phase);
 18 trans1 tr;
 19 //---------------------------------------
 20 forever begin
 21 sample_dut(tr);
 22 ap.write(tr);
 23 end
 24 endtask
 25
 26 task sample_dut (output trans1 tr);
 27 trans1 t;
 28 t = trans1::type_id::create("t");
 29 t.din = vif.din;
 30 t.rst_n = vif.rst_n;
 31 @vif.cb1; // @(posedge vif.clk);
 32 if (!vif.rst_n) t.rst_n = '0;
 33 t.dout = vif.cb1.dout;
 34 tr = t;
 35 `uvm_info("sample_dut", tr.convert2string(), UVM_FULL)
 36 endtask
 37 endclass

Example 5 - uvmtb_template – (5) tb_monitor.svh file

Note that 33 of the 37 lines of code shown in this file typically do not require modification.

Also note that on line 35, the template file includes a useful debug message to show the sampled
transaction that is being broadcast by the tb_monitor if verbosity is set to UVM_FULL or higher.

SNUG Silicon Valley 2025

Page 18
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

6.1.6 (6) sb_calc_exp.svh
Modify the calculate-expected extern function to predict the correct outputs based on sampled
inputs (lines 10-13) and any saved state information that is stored as static variables (line 3) in
the function. The static variables allow the sb_calc_exp() function to save any required
reference-model state information that might be required the next time the sb_calc_exp()
function is called.

By declaring the sb_calc_exp() function to be an extern function, it can be kept in a separate
file. This means that the sb_predictor component file does not require any modification.

 1 function trans1 sb_predictor::sb_calc_exp(trans1 t);
 2
 3 static logic [15:0] ex_dout;
 4
 5 trans1 extr = trans1::type_id::create("extr");
 6 //---------------------------
 7 `uvm_info("CALC #1", t.convert2string(), UVM_FULL)
 8 extr.copy(t);
 9
 10 if (!extr.rst_n) ex_dout = '0;
 11 else ex_dout = extr.din;
 12
 13 extr.dout = ex_dout;
 14
 15 `uvm_info("CALC #2", extr.convert2string(), UVM_FULL)
 16 return(extr);
 17 endfunction

Example 6 - uvmtb_template – (6) sb_calc_exp.svh file

Note that 12 of the 17 lines of code shown in this file typically do not require modification. This fille
will typically require significant additional coding effort to mirror the values expected to come from
the dut. This basically becomes the reference model for this block-level test.

Also note that line 7 shows the incoming transaction, and line 15 shows the calculated expected
transaction generated by this function. These can be especially useful for debugging the
sb_calc_exp() function if verbosity is set to UVM_FULL or higher.

SNUG Silicon Valley 2025

Page 19
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

6.1.7 (7) tb_cover.svh
Modify the covergroup as desired (lines 7-13) to perform functional coverage of sample signals
as specified by the block-level test plan.

 1 class tb_cover extends uvm_subscriber #(trans1);
 2 `uvm_component_utils(tb_cover)
 3
 4 trans1 tr;
 5
 6 covergroup cg;
 7 option.per_instance = 1;
 8 option.at_least = 10;
 9 dout : coverpoint tr.dout {bins dout[8] = {[0:$]};}
 10 din : coverpoint tr.din {bins din[8] = {[0:$]};}
 11 rst : coverpoint tr.rst_n {bins dorst = {'0};}
 12 norst : coverpoint tr.rst_n {bins norst = {'1};}
 13 doutXnorst: cross dout, norst;
 14 endgroup
 15
 16 function new (string name, uvm_component parent);
 17 super.new(name, parent);
 18 cg = new();
 19 endfunction
 20
 21 function void write (trans1 t);
 22 tr = t;
 23 `uvm_info("tb_cover", "Taking covergroup sample ...", UVM_FULL)
 24 cg.sample();
 25 endfunction
 26 endclass

Example 7 - uvmtb_template – (7) tb_cover.svh file

Note that 19 of the 26 lines of code shown in this file typically do not require modification. This fille
will typically require significant additional code to capture the desired functional coverage
information for this UVM testbench.

Also note that on line 23, the template file includes a useful debug message to show the sampled
transaction that that was broadcast by the tb_monitor to this coverage collector if verbosity is
set to UVM_FULL or higher.

SNUG Silicon Valley 2025

Page 20
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

6.1.8 (8) tr_sequence.svh
Modify the tr_sequence (lines 11 and 17) to perform some level of proper testing.

 1 class tr_sequence extends uvm_sequence #(trans1);
 2 `uvm_object_utils(tr_sequence)
 3
 4 function new (string name = "tr_sequence");
 5 super.new(name);
 6 endfunction
 7
 8 task body;
 9 trans1 tr = trans1::type_id::create("tr");
 10 //---------------------------------
 11 repeat(100) do_item(tr);
 12 endtask
 13
 14 task do_item (trans1 tr);
 15 `uvm_info("do_item", "executing", UVM_FULL)
 16 start_item(tr);
 17 if (!(tr.randomize() with {tr.rst_n=='1;}))
 18 `uvm_fatal("TR_S", "tr_sequence randomization failed")
 19 `uvm_info("do_item", tr.input2string(), UVM_FULL)
 20 finish_item(tr);
 21 endtask
 22 endclass

Example 8 - uvmtb_template – (8) tr_sequence.svh file

Note that 20 of the 22 lines of code shown in this file typically do not require modification. Initial
block-level testing can frequently use this tr_sequence without any modification, but later block-
level testing will likely enhance this tr_sequence to perform additional, interesting test activity.

Also note that on line 19, the template file includes a useful debug message to show the
randomized transaction that will be processed by the tr_sequence if verbosity is set to
UVM_FULL or higher.

SNUG Silicon Valley 2025

Page 21
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

6.1.9 (9) sb_comparator.svh
The sb_comparator is fully coded and typically requires no modification.

If the design has synchronous reset signals or if the design has pipelined logic that must be flushed
on startup, modify lines 8-11 in the run_phase() by uncommenting the repeat-loop and
modifying the repeat-count value to express how many samples should be sampled but ignored.

When uncommented, lines 9 and 10 get the next expected (exp_tr) and sampled output
(out_tr) transactions but do nothing with them; hence, they are effectively discarded.

 1 class sb_comparator extends uvm_component;
 2 `uvm_component_utils(sb_comparator)
 3 trans1 exp_tr, out_tr;
 4 static int VECT_CNT, PASS_CNT, ERROR_CNT;
 5
 6 ...
 7 task run_phase(uvm_phase phase);
 8 // repeat (1) begin
 9 // expfifo.get(exp_tr); // Throw away expected sample
 10 // outfifo.get(out_tr); // Throw away output sample
 11 // end
 12 forever begin
 13 `uvm_info("SB_CMP", "WAITING for expected output", UVM_FULL)
 14 expfifo.get(exp_tr);
 15 `uvm_info("SB_CMP", "WAITING for actual output", UVM_FULL)
 16 outfifo.get(out_tr);
 17 if (out_tr.compare(exp_tr)) PASS();
 18 else ERROR();
 19 end
 20 endtask
 21 ...
 22
 23 endclass

Example 9 - uvmtb_template – (9) sb_comparator.svh file

6.2 Summarizing template-file code
Even though the user is required to modify eight files to complete a UVM block-level testbench, in
these subsections of Section 6. we have seen that for each of these block-level testbenches:

(1) top.sv: 17 of the 20 lines of code are already included in the template file.
(2) dut_if.sv: 9 of the 15 lines of code are already included in the template file.
(3) trans1.svh: 36 of the 47 lines of code are already included in the template file.
(4) tb_driver.svh: 31 of the 35 lines of code are already included in the template file.
(5) tb_monitor.svh: 33 of the 37 lines of code are already included in the template file.
(6) sb_calc_exp.svh: 12 of the 17 lines of code are already included in the template file.
(7) tb_cover.svh: 19 of the 26 lines of code are already included in the template file.
(8) tr_sequence.svh: 20 of the 22 lines of code are already included in the template file.

For all eight files, 177 of the 219 lines of code, or 81% of the initial code, are already included in the
template files. This is one reason the template files greatly simplify UVM testbench development.

SNUG Silicon Valley 2025

Page 22
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

6.3 Fourteen More Fully-Coded & Usable Template Files
The uvmtb_template directory also includes 14 more files that can typically be used without
modification to create a UVM testbench for block-level testing.

(1) clkgen.sv Clock generator with 50% duty cycle
(2) CYCLE.sv Defines the clock cycle to be 10ns. This can be user-modified
(3) dut.sv Simple register DUT. This file should typically be deleted
(4) env.svh Typical environment - fully coded
(5) pkg.f Package file to compile testbench classes
(6) run.f Command file that references all required simulation files
(7) sb_comparator.svh Scoreboard style #1 comparator file - fully coded
(8) sb_predictor.svh Scoreboard style #1 predictor file - fully coded
(9) tb_agent.svh Typical agent - fully coded
(10) tb_pkg.sv Typical package - more tests and sequences can be added
(11) tb_scoreboard.svh Scoreboard style #1 wrapper
(12) tb_sequencer.svh Typical sequencer - fully coded
(13) test_base.svh Useful test base class - fully coded
(14) test1.svh Typical test that starts the tr_sequence

Figure 8 - uvmtb_template files that do not require modification

7. UVM Testbench Structure Easier than SV
If an entire UVM testbench had to be coded from scratch for each block-level testbench, one could
make the reasonable argument that UVM testbenches are harder to code than Verilog testbenches.
As shown in the previous sections, with a simple and powerful set of 23 template files, design and
verification engineers can quickly and easily assemble a block-level UVM testbench with much less
effort than creating a Verilog or SystemVerilog testbench from scratch.

Based off my personal experience of using and teaching UVM testbench development for more than
a decade, I have found that a proper set of user-defined template files makes it easier to assemble
and deploy a UVM testbench than it is to assemble and use Verilog or SystemVerilog for simple

SNUG Silicon Valley 2025

Page 23
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

testbench development.

Another nice feature of the UVM testbench template files is that you and your company can modify
this starting set of template files with features that are important to your design and verification teams.
You get to control the content of the reusable template files. This is not controlled by a third-party UVM
testbench generation tool.

7.1 UVM Scoreboards Are Easier than SV
My experience has also shown that creating UVM scoreboards using the uvmtb_template files is
also much easier than creating Verilog or SystemVerilog scoreboards.

Transaction definitions should already include a properly coded compare() method. The engineer
who codes the transaction item should have identified the fields that should be compared when running
tests.

For designs that include dedicated inputs and dedicated outputs, there typically is no reason to
compare the inputs. The outputs and possibly some input-control signals should be compared.

Note that comparing certain output fields might be conditional. Consider the case of synchronous FIFO
testing. When the FIFO empty flag is false, the dataout fields should be compared. When the empty
flag is true, the dataout fields are invalid and should not be compared.

When defining the transaction using UVM field macros, this is not easy to specify. When defining the
transaction using the do_compare() method, it is easy to unconditionally compare most of the
outputs while conditionally comparing the dataout field only when the FIFO is not empty.

Using the do_compare() method, also makes it easy to add conditional printed messages for
specifically detected commands or conditions, which might help verification engineers understand and
debug any actions that routinely occur during normal design operation.

For packet-based designs, the do_compare() method can be coded to examine all the packet bits
that are input to, and output from the design.

In a Verilog testbench, verification engineers typically add the comparison functionality while coding
the scoreboard. There is typically no built-in compare() method that can be called.

Using the uvmtb_template code there are four files that are included in the creation of a common
UVM scoreboard. Three of the files are pre-coded and typically do not need to be modified. Those
files are:

(1) tb_scoreboard.svh (testbench scoreboard), a wrapper class that includes the pre-coded
sb_predictor and sb_comparator.

(2) sb_predictor.svh (scoreboard predictor), which loops taking the sampled transaction
broadcast from the monitor, passes it to the sb_calc_exp() function and takes the returned
expected transaction and broadcasts it to the sb_comparator.

(3) sb_comparator.svh (scoreboard comparator), which loops taking each sampled
transaction that was broadcast from the monitor and calls the transaction compare() method
to compare the appropriate fields to the corresponding fields in the expected transaction that
was broadcast from the sb_predictor.

The fourth scoreboard file is the sb_calc_exp.svh (scoreboard calculate expected function) file,
which is an extern function called by the sb_predictor. Making the sb_calc_exp() function an
extern function in a separate file means that the sb_predictor file is fully coded and does not
require modification. The sb_calc_exp.svh file is the only scoreboard file that typically needs to be
modified for simple block-level testbenches.

The sb_calc_exp() function uses the inputs and control signals from the transaction sampled by

SNUG Silicon Valley 2025

Page 24
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

the tb_monitor to calculate the expected outputs, while the transaction outputs sampled by the
tb_monitor are ignored. It is the job of the sb_calc_exp() function to calculate what the DUT
output values should be based on (1) the sampled inputs, (2) the sampled control signals, and (3) any
saved static state information saved by a previous call to the sb_calc_exp() function. Since a
UVM testbench should never modify the signals of the transaction that was broadcast from the
tb_monitor, the sb_calc_exp() function will declare and factory create its own local expected
transaction (extr).

The sb_calc_exp() function is composed of the following elements and actions:

• Declare any necessary state variables as static. Any function field that relies on a previous
state value must be declared static so that it can be used in subsequent calls to the
sb_calc_exp() function.

• Create a local transaction called extr (expected-transaction).
• Copy the incoming transaction to the extr. The incoming transaction was broadcast from the

tb_monitor.
• Test the extr inputs and control signals to calculate and assign the expected outputs to the

expected transaction (extr). The sb_calc_exp() function ignores any sampled outputs.
• Return the extr transaction to the sb_predictor, which will broadcast the extr to the

sb_comparator.

8. uvmtb_template MIT Licensed
The uvmtb_template files are copyrighted under the MIT License instead of the GPL License.

The MIT License is a much more user-friendly license since it allows the user to freely use, modify and
share the uvmtb_template files without an obligation to send the modifications back to the originator
of the files.

Quoting from the Endor Labs Blog website [4]:

"One of the key differences between the MIT and GPL licenses is how they handle derivative works.
With the MIT license, derivative works can be licensed under any terms, while the GPL license requires
that derivative works must be released under the same license. This means that when using the MIT
license, a developer can use the code in a commercial product and keep the source code closed,
while the GPL license forces to release the code and any modifications made to it under the same
license."

A long-time complaint I have had about GPL licenses in source code is the verbose comment block at
the beginning of each GPL-licensed file.

Colleagues from Emerson (see names in Acknowledgements - Section 12. pointed me to The Linux
Foundation Projects website, which describes a concise way to add the MIT license information to the
source files using SPDX License IDs. Each uvmtb_template files includes the concise ID string:
// SPDX-License-Identifier: MIT

For more information about SPDX License IDs and their usage, readers are encouraged to visit the
appropriate "The Linux Foundation Projects" webpage shown in reference [5].

The uvmtb_template source files are freely available on Github [6] at https://github.com/paradigm-
works/uvmtb_template

9. Teaching UVM testbenches
If you want users to quickly learn UVM testbench techniques, they need practice building multiple

SNUG Silicon Valley 2025

Page 25
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

simple UVM full, self-checking testbenches.

Teaching UVM is not like teaching most programming languages, including Verilog and
SystemVerilog. Typical programming languages can be taught from basic-to-advanced, from start-to-
end. Teaching UVM does not lend itself to this teaching approach. To most users, every UVM concept,
structure and command is new, and it is difficult to see how the pieces fit together.

The strategy I recommend for teaching UVM is patterned after the teaching style for one of the best
classes I took at BYU during my undergraduate studies. That class was Differential Equations, or 4th
semester calculus. What made the class so good was the teaching style of the Professor. The
professor would go through each chapter three times. He would go through the chapter quickly the
first time and assign the easy homework problems, He would then go quickly through the chapter a
second time and assign the hard homework problems. Then he would go through special topics from
the chapter a third time and assign more of the hard homework problems. By the time we had been
through the chapter three times, we had a good understanding of the material.

I have taken the same approach to teaching UVM. In my training class, we take our first full path
through UVM in section 2 of the training class and engineers are assigned their first full self-checking
UVM testbench on day-1. Engineers are told that they will not fully understand all the UVM concepts
during this first pass but not worry, because they will go through all the concepts two, three or four
more times before the conclusion of the class. The objective of this training style is to get engineers
through as many full self-checking UVM testbenches as they can in a 3-day training class. The goal is
that engineers on the last day of class can say, “Cliff, this UVM-stuff is so boring, because it is so
easy!” The only way to achieve this goal is to go through the concepts multiple times so that students
see how the parts fit together and relate to each other, and to give engineers lots of practice coding
and running full self-checking UVM testbenches.

10. Summary of uvmtb_template Files That Require Modification
This section includes a summary list of uvmtb_template files that require modification. I keep this
list and the diagram shown in Figure 7 taped to the wall in my office. I also have a Linux alias called
"viuvm" that opens in Vim the first eight of these files in the order shown. This allows me to go down
the list and quickly create simple UVM testbenches.

These are typical uvmtb_template modifications.
(1) top.sv: Replace "dut" instantiation with actual design instantiation.
(2) dut_if.sv: Modify signals in the interface and in the clocking block with the

correct signals.
(3) trans1.svh: Modify signals and all standard methods.
(4) tb_driver.svh: Modify driving methods initialize() and drive_item() with

correct stimulus signals.
(5) tb_monitor.svh: Modify sample_dut() sampling method with correct sampled input

and output signals.
(6) sb_calc_expect.svh: Modify the calculate-expected extern function to predict correct output

based on sampled inputs.
(7) tb_cover.svh: Modify covergroup to sample signals as desired.
(8) tr_sequence.svh: Modify the sequence(s) to do proper testing.
(9) sb_comparator.svh: IF the design has synchronous reset or piped logic to be flushed -

Modify the run_phase() - uncomment pre-forever repeat-loop &
modify count value.

SNUG Silicon Valley 2025

Page 26
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

11. Conclusions
The more I use UVM, the more I recognize that very smart verification engineers developed a
methodology that incorporated very smart and powerful verification capabilities.

Engineers who split time between simple Verilog or SystemVerilog testbenches, and simple UVM
testbenches, are generally less efficient at both testbench coding styles, and are not developing
important UVM testbench skills as quickly as they could if they focused on using the
uvmtb_template template files described in this paper.

The more I use UVM, the more I find that, with a small set of template files, I can assemble simple,
yet powerful UVM testbenches easier than I could ever assemble Verilog or SystemVerilog self-
checking testbenches.

Using third party UVM testbench generation tools works, but I always seem to find them lacking
features I want to commonly add to a UVM testbench, plus the generated code is often needlessly
complex for simple block-level testbench generation.

The uvmtb_template files can be freely downloaded from the website: https://github.com/paradigm-
works/uvmtb_template

Use the uvmtb_template files to simplify your UVM testbench development efforts and enhance
your UVM skills!

12. Acknowledgements
I am grateful to my long-time friend and colleague, Ronald Goodstein for his very thorough review of
the draft version of this paper. Ron caught many typographical errors and a duplicate/missing figure.
This paper is a more polished work due to Ron's review.

I am also grateful to Olivia Poon for her comments that improved the content of the paper.

I am also grateful to my colleagues from Emerson, Wade Fife, Andrew Moch, and Kevin Cuzner, for
their recommendations to put the uvmtb_template files under the MIT License and to identify the
license by adding the concise ”//SPDX License-Identifier: MIT" SPDX License ID to the top
of each file.

13. References
[1] Clifford E. Cummings, "Applying Stimulus & Sampling Outputs - UVM Verification Testing Techniques,"

SNUG (Synopsys Users Group) 2016 (Austin, TX). Also available at:
www.sunburst-design.com/papers/CummingsSNUG2016AUS_Verification TimingTesting.pdf

[2] Clifford E. Cummings, "UVM Analysis Port Functionality and Using Transaction Copy Commands,"
SNUG (Synopsys Users Group) 2018 (Austin, TX). Also available at:
www.sunburst-design.com/papers/CummingsSNUG2018AUS_UVMAnalysisCopy.pdf

[3] Clifford E. Cummings, "UVM Message Display Commands – Capabilities, Proper Usage and
Guidelines," SNUG (Synopsys Users Group) 2014 (Austin, TX). Also available at:
www.sunburst-design.com/papers/CummingsSNUG2014AUS_UVM_Messages.pdf

[4] Ron Harnik, "Open Source Licensing Simplified: A Comparative Overview of Popular Licenses,"
January 24, 2023, Endor Labs Blog. https://www.endorlabs.com/learn/open-source-licensing-
simplified-a-comparative-overview-of-popular-licenses

[5] "SPDX – Handling License Info," The Linux Foundation Projects, https://spdx.dev/learn/handling-
license-info/

[6] The uvmtb_template source files are freely available for download at the GitHub website:
https://github.com/paradigm-works/uvmtb_template

SNUG Silicon Valley 2025

Page 27
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

14. Author & Contact Information
Sunburst Design World Class Training
Sunburst Design merged with Paradigm Works in February of 2020 and still provides World Class
SystemVerilog, Synthesis and UVM Verification training. For more information about SystemVerilog
and UVM training, contact Cliff Cummings (cliffc@sunburst-design.com) or Michael Hoyt
(michael.hoyt@paradigm-works.com)

Paradigm Works Expert Design Services, Verification Services & IP
Paradigm Works provides expert services in Semiconductor Architecture, Design, Synthesis,
Functional Verification, and DFT. For more information about Paradigm Works services, contact
Michael Hoyt at michael.hoyt@paradigm-works.com

Cliff Cummings is Vice President of Training at Paradigm Works and Founder of Sunburst Design.
Paradigm Works and Sunburst Design merged in February of 2020. Cliff has more than 40 years of
ASIC, FPGA and system design experience and more than 30 years of combined Verilog,
SystemVerilog, UVM verification, synthesis, and methodology training experience.

Cliff has presented more than 100 SystemVerilog seminars and training classes in the past 20 years
and was the featured speaker at the world-wide SystemVerilog NOW! seminars.

Cliff participated on every IEEE & Accellera SystemVerilog, SystemVerilog Synthesis, SystemVerilog
committee from 1994-2012, and has presented more than 50 papers on SystemVerilog &
SystemVerilog related design, synthesis, and UVM verification techniques.

Cliff holds a BSEE from Brigham Young University and an MSEE from Oregon State University.

Email address: cliffc@sunburst-design.com

Last Updated: April 2025

15. Appendix I – Printing Testbench Structure & Factory Contents
The test_base template file includes a cool trick that I documented in a SNUG Austin paper back in
2014 [3]. Turning up verbosity to UVM_HIGH or higher will print out your UVM testbench structure and
the classes that you have registered with the factory.

 function void start_of_simulation_phase(uvm_phase phase);
 super.start_of_simulation_phase(phase);
 ...
 if (uvm_report_enabled(UVM_HIGH)) begin
 this.print;
 factory.print;
 end
 endfunction

Example 10 - Conditional display of test configuration and factory configuration

All tests that extend the test_base class include this useful capability.

SNUG Silicon Valley 2025

Page 28
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

16. Appendix II - Running UVM Simulations
For those who might be new to running UVM simulations, especially with the uvmtb_template
template files, follow the steps described below for your chosen simulator.

The uvmtb_template file includes two command files, pkg.f and run.f.

Using the pkg.f command file is optional and is intended to be used to compile all of the package
files as a preliminary step to debug most of the files before running a simulation. Experience has
shown that coding multiple files for a UVM testbench typically will introduce simple typos that are more
easily debugged before trying to run the full simulation.

The run.f command file is used to run the simulation.

Running a UVM test requires the test name to added to the command line using the +UVM_TESTNAME
command line switch to include the requested test as shown in the examples below.

16.1 VCS-Specific Command Line Switches
The VCS version used to test the command line switches was:

version T-2022.06-SP1-1_Full64

The following are VCS-specific command line switches used to run UVM simulations:

-full64 Runs 64-bit version of UVM. Many companies have already aliased this
switch into their VCS command and the switch does not have to be included
if that is true. If the -full64 switch is missing, the following compilation
error is reported:

g++ error: /home/vcs/linux/lib/ctype-stubs_32.a: No such file or directory

-sverilog Required to compile SystemVerilog code, including all the classes used by
UVM.

-ntb_opt uvm Specifies Native Testbench Options UVM, to use the precompiled UVM
testbench classes used by VCS.

-timescale=1ns/1ns In SystemVerilog, if any of the compiled files includes a `timescale
directive, then SystemVerilog requires that the first compiled file must also
include a `timescale directive. The UVM libraries do not include a
`timescale and they are compiled first, so the -timescale command
line switch sets a default timescale before compiling any files.

-R Runs the simulation immediately if the design compiled successfully.

16.1.1 VCS - 2-step simulation
2-step simulation allows the design with all tests to be compiled once and then each test can be
run without recompilation.

To check for initial syntax errors, first compile with the pkg.f command file (this step is optional):
vcs -full64 -sverilog -f pkg.f -ntb_opts UVM -timescale=1ns/1ns

To compile the testbench for simulation, use the run.f command file:
vcs -full64 -sverilog -f run.f -ntb_opts UVM -timescale=1ns/1ns

The compilation step will create a simv executable.

SNUG Silicon Valley 2025

Page 29
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

To run the compiled simulation executable with UVM_HIGH verbosity, use the following command:
simv +UVM_TESTNAME=test1 +UVM_VERBOSITY=HIGH

To re-run the compiled simulation with the lower UVM_MEDIUM verbosity, use the following
command:
simv +UVM_TESTNAME=test1 +UVM_VERBOSITY=MEDIUM

16.1.2 VCS - 1-step simulation
The 1-step simulation compiles the design and all tests and then immediately runs (-R) the
simulation with UVM_HIGH verbosity after successful compilation. Running the 1-step command
recompiles the UVM library each time the command is executed, so if none of the existing files
have changed and if no new files are being compiled, you are paying a recompilation-time penalty
by running the 1-step simulation.
vcs -full64 -sverilog -f run.f -R -ntb_opts UVM -timescale=1ns/1ns +UVM_TESTNAME=test1 +UVM_VERBOSITY=HIGH

16.2 QuestaSim-Specific Command Line Switches
The QuestaSim version used to test the command line switches was:

QuestaSim 2023.1

The following are QuestaSim-specific command line switches used to run UVM simulations:

-sv Required to compile SystemVerilog code, including all the classes used by UVM.

-mfcu If Verilog macros are defined separately from the file that uses the macros,
QuestaSim requires a command line switch to specify that all files compiled must
make up a single compilation unit. -mfcu stands for Multi-File Compilation Unit,
which makes the macros from another file visible in a different file that references
them.

-c Run in command-line mode (batch mode) without bringing up the vsim GUI.

-do "run -all" Do the run -all command to run the entire simulation in batch mode.

-R What follows -R are the runtime command options.

16.2.1 QuestaSim - 3-step simulation
3-step simulation allows the design with all tests to be compiled once and then each test can be
run without creating a work directory and without recompilation.

Create the work directory. This step is only required once per simulation directory.
vlib work

To check for initial syntax errors, first compile with the pkg.f command file (this step is optional):
vlog -sv -mfcu -f pkg.f

If there are no syntax errors, the compilation output will report:
Top level modules: --none--

To compile the testbench for simulation, use the run.f command file:
vlog -sv -mfcu -f run.f

If the design and UVM testbench successfully compile, the compilation output will report:
Top level modules: top (or whatever the top-module name is called)

The top-level module name is used in the following simulation command:
vsim -c -do "run -all" top _UVM_TESTNAME=test1 +UVM_VERBOSITY=HIGH

SNUG Silicon Valley 2025

Page 30
Rev 1.0

uvmtb_template Files – An Efficient & Rapid Way
To Create UVM Testbenches

16.2.2 QuestaSim - 1-step simulation
The 1-step simulation compiles the design and all tests and then immediately runs the simulation
with UVM_HIGH verbosity after successful compilation. Running the 1-step command recompiles
the UVM library each time the command is executed, so if none of the existing files have changed
and if no new files are being compiled, you are paying a recompilation-time penalty by running the
1-step simulation.
qverilog -sv -mfcu -f run.f -R +UVM_TESTNAME=test1 +UVM_VERBOSITY=HIGH

The runtime options +UVM_TESTNAME=test1 +UVM_VERBOSITY=HIGH must be placed on the
command line after the -R (runtime) switch)

16.3 Xcelium-Specific Command Line Switches
The following are Cadence Xcelium-specific command line switches used to run UVM simulations:

+sv Used to compile SystemVerilog code, including all the classes used by UVM.

-uvm Used to use the precompiled UVM testbench classes used by Xcelium.

16.3.1 Xcelium - 1-step simulation
The 1-step simulation compiles the design and all tests and then immediately runs the simulation
with UVM_HIGH verbosity after successful compilation.
xrun +sv -uvm -f run.f +UVM_TESTNAME=test1 +UVM_VERBOSITY=HIGH

