
SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

1

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard

Part 2

presented by

Clifford E. Cummings
Sunburst Design, Inc.

cliffc@sunburst-design.com
www.sunburst-design.com

Stuart Sutherland
Sutherland HDL, Inc.
stuart@sutherland-hdl.com

www.sutherland-hdl.com
sponsored by

2 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

50+ Major Enhancements in
SystemVerilog-2009…

� Part 1:
� Cliff Cummings of Sunburst Design presents the details on the

major new features in SystemVerilog-2009 that involve
hardware modeling and testbench programming
� www.sunburst-design.com/papers/

DAC2009_SystemVerilog_Update_Part1_SunburstDesign.pdf

� Part 2:
� Stu Sutherland of Sutherland HDL presents the details on the

major new features in SystemVerilog-2009 that involve
SystemVerilog Assertions
� See the remaining slides of this presentation, or
� www.sutherland-hdl.com/papers/

DAC2009_SystemVerilog_Update_Part2_SutherlandHDL.pdf

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

2

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

3 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Stu Sutherland
and Sutherland HDL

� Stuart Sutherland, a true SystemVerilog wizard
� Independent Verilog/SystemVerilog consultant and trainer
� Hardware design and verification engineer
� Have been working with Verilog since 1988
� Bachelors in Computer Science / Masters in Education
� Presented dozens of papers (www.sutherland-hdl.com/papers)
� Published books on Verilog PLI and SystemVerilog for Design
� Technical editor of every version of the IEEE Verilog and

SystemVerilog "Language Reference Manual" since 1995
� Founded Sutherland HDL in 1992
� Provides Verilog/SystemVerilog consulting services
� Provides the absolute best Verilog and SystemVerilog training!

NOTE: There is a typo on slide 3 of Part 1; It is Cliff that is a close 2nd! ☺NOTE: There is a typo on slide 3 of Part 1; It is Cliff that is a close 2nd! ☺

4 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

SystemVerilog extends Verilog

structures
unions
const
break
continue
return

do–while
++ -- += -= *= /=
>>= <<= >>>= <<<=
&= |= ^= %= ==?

C types
void
alias
casting
typedef
enum

interfaces
nested hierarchy
unrestricted ports
automatic port connect
enhanced literals
time values and units

packages
compilation unit space
2-state modeling
specialized procedures
array assignments
unique/priority case/if

de
si

gn

IEEE SystemVerilog-2005
assertions
test program blocks
clocking domains
process control

mailboxes
semaphores
constrained random values
functional coverage

classes
inheritance
polymorphism
strings

dynamic arrays
associative arrays
queues
references

ve
rif

ic
at

io
n

initial
disable
events
wait # @
fork–join

$finish $fopen $fclose
$display $write
$monitor
`define `ifdef `else
`include `timescale

wire reg
integer real
time
packed arrays
2D memory

+ = * /
%
>> <<

modules
parameters
function/tasks
always @
assign

begin–end
while
for forever
if–else
repeat

IEEE Verilog-1995 (created in 1984)

ANSI C style ports
generate
localparam
constant functions

standard file I/O
$value$plusargs
`ifndef `elsif `line
@*

(* attributes *)
configurations
memory part selects
variable part select

multi dimensional arrays
signed types
automatic
** (power operator)

IEEE Verilog-2001
uwire `begin_keywords `pragma $clog2

IEEE Verilog-2005

Proposed SystemVerilog-2009
What comes next?

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

3

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

5 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Verilog and SystemVerilog:
One Standard or Two Standards?

� SystemVerilog extends Verilog, but…
� In 2005 they were separate standards!!!
� IEEE 1364-2005 — the base Verilog standard
� IEEE 1800-2005 — SystemVerilog extensions to 1364-2005

� Why? (pick the best answer)
� To frustrate users of Verilog/SystemVerilog
� To use more paper
� So the IEEE could make more money by selling two documents
� So that EDA companies could focus on implementing new features

� SystemVerilog-2009 merges the two standards together
� One large document (about 1,300 pages)
� Removes the overlap between 1364-2005 and 1800-2005
� Clarifies ambiguities that existed between the two documents
� Adds more than 50 new major features!

6 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

“Verilog” Is Now Called
“SystemVerilog”

� The IEEE 1364 Verilog base language has been merged into the
IEEE 1800 SystemVerilog standard

� The target is to have an IEEE 1800-2009 SystemVerilog standard

� The unified Verilog and SystemVerilog standard is called
SystemVerilog, not Verilog!
� The IEEE 1364 Verilog standard will soon be defunct

� First round of balloting was completed in April 2009
� 100% YES votes, but with lots of comments

� Second round of balloting to be conducted in August, 2009
� Addresses all comments made on first ballot

� Official release might slip into 2010 due to IEEE "red tape" process
� A draft of the merged standard is available from the IEEE today

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

4

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

7 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

let Templates
Mantis 1728

� SV-2009 adds a new let construct for defining code templates
� Can replace the (often abused) `define text macros
� Eliminates the problems of `define
� let does not have file order dependencies like `define
� let has a local scope; `define can inadvertently affect other files

module my_chip (…);
import my_templates::*;
…
always_comb begin
check_mutex(read_enable, write_enable);

if (valid_arb(.request(start), .valid(d_ok), .override(abort))) begin

... // do arbitration
end

end
endmodule

package my_templates;
let check_mutex(a, b) = assert(!(a && b));
let valid_arb(request, valid, override) = |(request & valid) || override;

endpackage

Expands to:
assert(!(read_enable && write_enable));
Expands to:
assert(!(read_enable && write_enable));

Expands to:
if (|(start & d_ok) || abort)
Expands to:
if (|(start & d_ok) || abort)

8 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Assertion Checkers
Mantis 1900

� SV-2009 adds assertion checker blocks
� Encapsulates assertions and supporting code in a verification unit
� Provides a mechanism for defining assertion libraries

� Engineers can use checkers without having to learn SVA
package checker_library;
checker check1 (event clk, logic[7:0] a, b);
logic [7:0] sum;
always @(clk) begin
sum <= a + 1’b1;
p0: assert property (sum < `MAX_SUM);

end
p1: assert property (@clk sum < `MAX_SUM);
p2: assert property (@clk a != b);

endchecker
… // other checker definitions

endpackage

A checker can contain (partial list):
• Variables
• Functions
• Assertions
• Initial, always and final procedures
• Generate blocks

A checker can contain (partial list):
• Variables
• Functions
• Assertions
• Initial, always and final procedures
• Generate blocks

module my_chip (…);
check1 check_inputs(posedge clk, in1, in2);
… // functionality of my chip

endmodule

A checker can be:
• Instantiated outside of RTL code
• Embedded within RTL code

A checker can be:
• Instantiated outside of RTL code
• Embedded within RTL code

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

5

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

9 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Assertion Untyped Arguments
Mantis 1601

� SV-2009 adds untyped as an argument data type
� Allows explicitly specifying that the formal argument is untyped in

sequences, properties, and checkers
� Allows mixing typed and untyped arguments in any order
� SV-2005 could have all arguments be untyped, but was

ambiguous about having a mix of typed and untyped
property (bit clk, logic [63:0] a, untyped b, c);
...

endproperty

logic [63:0] data, address;
sequence s1;
req ##1 ack;

endsequence

assert property (mclk, data, s1, address);

Untyped arguments allow assertions
libraries to be more flexible on the

actual argument types

Untyped arguments allow assertions
libraries to be more flexible on the

actual argument types

NOTE: The new let construct can have untyped arguments but the SV-2009 standard
does not permit the untyped keyword with let constructs; This was an oversight in
the syntax that will be corrected in a future version of the standard (see Mantis 2835)

NOTE: The new let construct can have untyped arguments but the SV-2009 standard
does not permit the untyped keyword with let constructs; This was an oversight in
the syntax that will be corrected in a future version of the standard (see Mantis 2835)

10 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Assertion Global Clock
Mantis 1681

� SV-2009 adds the ability to specify a global clock definition
� Simplifies writing assertion definitions for formal verification tools

global clocking @(posedge master_clock); endclocking

• There can only be one
global clock definition in
the entire elaborated model

• Can only be declared in a
module or interface

• There can only be one
global clock definition in
the entire elaborated model

• Can only be declared in a
module or interface

property @($global_clock)
...

endproperty
• In simulation, $global_clock is the event

defined in the global clocking declaration
• In formal verification, $global_clock is

the primary system clock

• In simulation, $global_clock is the event
defined in the global clocking declaration

• In formal verification, $global_clock is
the primary system clock

always @($global_clock) begin
...

end

� $global_clock returns the event expression specified in the
global clocking declaration
� Can be used anywhere that a clocking event can be specified

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

6

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

11 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Assertion Past & Future Values
Mantis 1682

� SV-2009 adds functions that return the nearest past or future
value of a signal as sampled by the global clock
� One clock cycle in the past
� $past_gclk, $rose_gclk, $fell_gclk, $stable_gclk,
$changed_gclk

� One clock cycle in the future
� $future_gclk, $rising_gclk, $falling_gclk,
$steady_gclk, $changing_gclk

Verify that data only changes
on a falling edge of clock

Verify that data only changes
on a falling edge of clock

assert property (
@$global_clock
$changing_gclk(data) |-> $falling_gclk(clock)

) else $error("data is not stable");

12 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Inferred Assertion Functions
Mantis 1674

� SV-2009 adds the ability to query for information than an assertion
might have inferred from context
� $inferred_clock, $inferred_disable, $inferred_enable

assert property (p_triggers(in1, in2));

default clocking @(negedge clk1); endclocking
default disable rst1;
property p_triggers(a, b, clk = $inferred_clock, rst = $inferred_disable);
@clk disable iff (rst) a |=> b;

endproperty

always @(posedge clk3) begin
if (rst3) ... ;
else assert property (p_triggers(in1, in2));

end

assert property (p_triggers(in1, in2,
posedge clk2));

Assertion libraries can use inferred
signals if no actual signal is passed in
Assertion libraries can use inferred

signals if no actual signal is passed in

This property expands to:
@(posedge clk3) disable iff (rst3)
in1 ##1 in2;

This property expands to:
@(posedge clk3) disable iff (rst3)
in1 ##1 in2;

This property expands to:
@(negedge clk1) disable iff (rst1)
in1 ##1 in2;

This property expands to:
@(negedge clk1) disable iff (rst1)
in1 ##1 in2;

This property expands to:
@(posedge clk2) disable iff (1'b0)
in1 ##1 in2;

This property expands to:
@(posedge clk2) disable iff (1'b0)
in1 ##1 in2;

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

7

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

13 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Assertion Abort Operators
Mantis 1674, 2100

� SV-2009 adds a mechanism to abort a property during evaluation
� Asynchronous aborts: tested throughout the property evaluation
� reject_on — If during the property evaluation, the abort condition

becomes true, then the property aborts with a failure
� accept_on — If during the property evaluation, the abort condition

becomes true, then the property aborts with a success
� Synchronous aborts: tested each clock event during evaluation
� sync_reject_on — If during the property evaluation, the abort

condition becomes true, then the property aborts with a failure
� sync_accept_on — If during the property evaluation, the abort

condition becomes true, then the property aborts with a success
assert property (@(posedge clk) go ##1 get[*2] |-> reject_on(stop) put[->2]);

Whenever go is high, followed by two occurrences of get being high, then stop
cannot be high until after put goes true twice (not necessarily consecutive)

The assertion aborts with a failure the moment stop goes true

Whenever go is high, followed by two occurrences of get being high, then stop
cannot be high until after put goes true twice (not necessarily consecutive)

The assertion aborts with a failure the moment stop goes true

14 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Strong and Weak Assertions
Mantis 1932

� SV-2009 adds the concept of strong and weak assertions
� Provides formal verification with additional information
� Helps prevent simulation assertions that do not simulate efficiently

assert property (@(posedge clk) req |-> strong(##[1:3] ack));

assert property (@(posedge clk) req |-> weak(##[1:3] ack));

// enable must remain true throughout simulation
assert property (@(posedge clk) enable);

In SVA-2005 this is a Gotcha! The assertion defaults to strong,
and can have a negative impact on simulation performance

In SVA-2005 this is a Gotcha! The assertion defaults to strong,
and can have a negative impact on simulation performance

� Not fully backward compatible with SystemVerilog-2005!
� The default in 2005 was that all assertions were strong
� The default in 2009 is that all assertions are weak unless

specified as strong
� Weak is the better behavior and avoids inadvertent gotchas

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

8

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

15 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Assertion Temporal Logic Operators
Mantis 1932

� SV-2009 adds Linear Temporal Logic (LTL) operators
� nexttime, s_nexttime
� until, s_until
� until_with, s_until_with
� implies
� always, s_always
� eventually, s_eventually
� #-#, #=#

� Allows for generic templates in assertion libraries
� Allows for both weak and strong operations

property p1;
nexttime a;

endproperty

If the clock ticks once more, then a shall
be true at the next clock tick

If the clock ticks once more, then a shall
be true at the next clock tick

property p2;
s_nexttime a;

endproperty

The clock shall tick once more and a
shall be true at the next clock tick

The clock shall tick once more and a
shall be true at the next clock tick

16 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

New Assertion Operators
Mantis 1456, 1758

� SV-2009 adds 4 PSL-like assertion shortcut operators
property pReqAck;
@(posedge clock)
ena |-> ##[+] req[+] ack;

endproperty

� ##[+] is short for the operation ##[1:$]
� ##[*] is short for the operation ##[0:$]
� req[+] is short for the operation req[*1:$]
� req[*] is short for the operation req[*0:$]

� ##[+] is short for the operation ##[1:$]
� ##[*] is short for the operation ##[0:$]
� req[+] is short for the operation req[*1:$]
� req[*] is short for the operation req[*0:$]

� SV-2009 adds logical implication and a equivalence operators
� These operators can be used anywhere, not just in assertions

always_comb begin
a_implies_b = (a -> b);
a_equiv_b = (a <-> b);

end

The implication and equivalence operators return true or false
� -> is short for the operation (!a || b)
� <-> is short for the operation ((a -> b) && (b -> a))

The implication and equivalence operators return true or false
� -> is short for the operation (!a || b)
� <-> is short for the operation ((a -> b) && (b -> a))

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

9

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

17 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Assertion Case Statement and
Value Change Function
Mantis 2173, 1677

� SV-2009 adds the ability to use case statements in properties
� Provides an intuitive coding style for complex assertions

property p_delay(logic [1:0] delay);
@(posedge clock)
case (delay)
2'd0: a && b;
2'd1: a ##2 b;
2'd2: a ##4 b;
2'd3: a ##8 b;
default: 0; // cause a failure if delay has x or z values

endcase
endproperty

� SV-2009 adds a $changed value sample function
� Returns true if an expression changed value during a clock cycle
� Can be used in assertions and other verification code

assert property (counter_enable |-> ##1 $changed(count));

18 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Multi-Clock Assertion Enhancements
Mantis 1683, 1731

� SV-2009 allows the operators ##0, |-> and if...else to be used
in multiple-clock properties
� SV-2005 only allowed these operators with single-clock assertions

property p1;
@(posedge clk0)
if (b) @(posedge clk1) s1
else @(posedge clk2) s2

endproperty

•b is checked at posedge clk0
• If b is true then s1 is checked at the nearest,

possibly overlapping posedge clk1
• Else s2 is checked at the nearest non-strictly

subsequent posedge clk2

•b is checked at posedge clk0
• If b is true then s1 is checked at the nearest,

possibly overlapping posedge clk1
• Else s2 is checked at the nearest non-strictly

subsequent posedge clk2

� SV-2009 allows $rose, $fell, $stable and $changed functions
to be specified with a different clock than the assertion
� Adds an optional second argument that specifies the clock

property p2;
@(posedge clk1) en && $rose(req, @(posedge clk2)) |=> gnt

endproperty

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

10

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

19 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Assertion Action Block Controls
Mantis 1361

� SV-2009 adds new system tasks:
� $assertpassoff — turn off execution of pass statements
� $assertpasson — turn on execution of pass statements
� $assertfailoff — turn off execution of fail statements
� $assertfailon — turn on execution of fail statements
� $assertvacuousoff — turn off execution of pass statements

when assertion is a vacuous success
� $assertnonvacuouson — turn on execution of pass

statements when assertion is a true success
a1: assert property (pReqAck)
$info(“pReqAck passed”);

else
$error(“pReqAck failed”);

initial $assertvacuousoff(a1);

By default, the “pass” action block will execute
for both success and vacuous success

By default, the “pass” action block will execute
for both success and vacuous success

Turn off action block execution
for vacuous successes

Turn off action block execution
for vacuous successes

20 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Assertion Variable Initialization
Mantis 1668

� SV-2009 allows assertion local variables to be initialized at the
time of declaration
� In SV-2005, local variables could only be initialized as part of an

expression evaluation in the sequence

property pipeline;
transaction_t pipe_in = data_in;
@(posedge clk) en |-> ##6 data_out == pipe_in;

endproperty

local variable pipe_in is initialized
when assertion thread starts

local variable pipe_in is initialized
when assertion thread starts

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

11

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

21 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Procedural Concurrent Assertions
Mantis 2398, 1995

� SV-2009 clarifies the inference and semantic rules of concurrent
assertions embedded within procedural blocks

property p1;
a ##1 b ##1 c;

endproperty

always @(posedge clk) begin
if (!rstN) q <= '0;
else if (ena) begin
q <= d;
assert property (p1);

end
end

Inference rules for clock, disable and
enable conditions are well defined

Inference rules for clock, disable and
enable conditions are well defined

Simulation semantic rules are
well defined

Simulation semantic rules are
well defined

� SV-2009 add the ability to use procedural concurrent assertions
within loops (illegal in SV-2005)

always @(posedge clk)
for (i=0; i<MAXI; i=i+1) begin
...
assert property (p1);

end

22 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Triggered Method in Sequences
Mantis 2415

� SV-2009 merges the capabilities of the assertion .matched and
.triggered methods
� .matched tests for sequence completion in sequences
� .triggered tests for sequence completion in procedural blocks
� In SV-2009, .triggered can be used both ways
� The .matched method is deprecated in SV-2009

`define TRUE 1
sequence qRequest;
@(posedge clk1) req ##1 `TRUE[*1:6];

endsequence: qRequest

property pReqCausedAck;
@(posedge clk2) ack |-> qRequest.triggered;

endproperty: pReqCausedAck

ack must be preceded by a req within 1 to 6 clock cycles;
ack and req are in different clock domains

ack must be preceded by a req within 1 to 6 clock cycles;
ack and req are in different clock domains

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

12

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

23 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Assume, Cover and Restrict
Assertion Statements
Mantis 1460, 1726, 1806

� SV-2009 adds action blocks to assume statements
� assume property (property_spec) action_block

� Makes the syntax for assume statements consistent with
concurrent assert and cover statements

restrict property (@(posedge clk) mode == 0);

� SV-2009 adds a restrict statements
� restrict property (property_spec);

� Restricts the value state space used by formal verification tools
� Ignored by simulators

� SV-2009 adds immediate cover and assume statements
� cover (expression) action_block
� assume (expression) action_block

� Makes the syntax for assume statements consistent with assert
and cover statements

24 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Deferred Immediate Assertions
Mantis 2005

� SV-2009 adds "deferred immediate assertions"
� assert #0 (expression) action_block
� assume #0 (expression) action_block
� cover #0 (expression) action_block

� Only the last assertion evaluation is used if the assertion is
executed multiple times in the same time step
� Prevents erroneous assertion messages

assign not_a = !a;

always_comb begin
a1: assert (not_a != a);
a2: assert #0 (not_a != a);

end

Simple immediate assertion
could trigger on a glitch as a

and not_a change values

Simple immediate assertion
could trigger on a glitch as a

and not_a change values

Deferred immediate assertion
evaluates after a and not_a
have stabilized in a time step

Deferred immediate assertion
evaluates after a and not_a
have stabilized in a time step

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

13

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

25 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

Assertions at Elaboration Time
Mantis 1769

� SV-2009 adds the ability to print assertion severity messages at
elaboration time, before simulation starts running
� When $fatal, $error, $warning or $info are used outside of

an assertion or procedural block, they are executed at elaboration
� Can be called as a stand-alone statement
� Can be called from within a generate block

� Can be used to check the validity of parameter definitions
module my_chip #(parameter N = 1)

(input [N-1:0] in,
output [N-1:0] out);

generate
if ((N < 1) || (N > 8))
$fatal(1, "Parameter N has an invalid value of %0d", N);

endgenerate
...

endmodule

26 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

New Keywords

� SystemVerilog-2009 reserves several additional keywords
accept_on
checker
endchecker
eventually
global
implies

let
nexttime
reject_on
restrict
s_always
s_eventually

s_nexttime
s_until
s_until_with
strong
sync_accept_on
sync_reject_on

unique0
until
until_with
untyped
weak

� SV-2009 adds a new argument to `begin_keywords
� Maintains keyword backward compatibility with previous versions

of the Verilog and SystemVerilog standard

`begin_keywords "1800-2005"
module old_chip (...);
...

endmodule
`end_keywords

`begin_keywords "1800-2009"
module new_chip (...);
...

endmodule
`end_keywords

SystemVerilog Is Getting Even Better!
An Update on the Proposed 2009 SystemVerilog Standard, Part II

by Sutherland HDL, Inc., Portland, Oregon

14

© 2009 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

27 of 27SystemVerilog-2009: SystemVerilog Gets Even Better!© 2009, Sutherland HDL, Inc.

But Wait…There’s More!

� Only the more notable enhancements have been presented
� There are hundreds of "behind the curtains" enhancements
� Clarify ambiguities in the SystemVerilog-2005 standard
� Additional examples
� Editorial corrections
� VPI support for all aspects of SystemVerilog-2009

� Expert SystemVerilog training is available!
� Sunburst Design and Sutherland HDL might not

agree on who has the best SystemVerilog
training, but…
� You will be a winner with training from

either company!

