

Reset Testing Made Simple with UVM Phases

Brian Hunter, Cavium

Ben Chen, Cavium

Rebecca Lipon, Synopsys, Inc.

Cavium

San Jose, California, USA

www.cavium.com

Synopsys, Inc.

Mountain View, California, USA

www.synopsys.com

ABSTRACT

Reset testing is a crucial element of functional sign-off for any chip. However, correctly syn-

chronizing architectural components of the verification environment to different reset conditions

is difficult. There has been no standard method for making scoreboards, drivers and monitors

enter and exit reset states cleanly, or kill complex stimulus generation processes gracefully; it is

common to see reset testing that does not achieve self-checking autonomy forcing engineers to

rely on inefficient techniques such as visual inspection.

Handling these complexities with a company-wide framework requires a well-coordinated effort

by all team members. UVM’s phase jumping capabilities and its native ability to kill phase-

related threads and sequences now allows companies to deploy a standard model for reset test-

ing. This paper will explore UVM-compliant methodologies and best practices for idle, active,

soft, and multi-domain reset testing based on experience deploying UVM in the networking do-

main.

SNUG 2013 2 Reset Testing Made Simple with UVM Phases

Table of Contents

1. Introduction ... 3

2. Resetting Components .. 3
THE RESET DRIVER .. 3
RESETTING MONITOR COMPONENTS .. 4
COORDINATING THE RESET OF DRIVERS AND SEQUENCER ... 5

AVOIDING THE LETTER X ... 5

3. Reset Testing with Phase Jumps ... 6
IDLE RESET TESTING .. 6
IDLE RESET TESTING WITH RUN COUNT ... 7
ACTIVE RESET TESTING ... 7

SOFT RESET TESTING ... 8

MULTIPLE RESET DOMAINS .. 9

RE-RANDOMIZING AFTER RESET .. 11

4. Conclusion .. 13

5. References ... 13

Table of Figures

Figure 1. Reset Driver Example .. 4

Figure 2. Reset-Aware Monitor Example ... 4

Figure 3. Pre-reset Phase in UVM Agent ... 5

Figure 4. Example of reset_driver task ... 5

Figure 5. Diagram of Idle Reset Testing with Phase Jump ... 6

Figure 6. Idle Reset Test Example .. 7

Figure 7. Diagram of Active Reset Testing with Phase Jump .. 7

Figure 8. Active Reset Test Example ... 8

Figure 9. Scoreboard with Analysis Port for Soft Reset ... 9

Figure 10. Diagram of Multi-Domain Resets ... 9

Figure 11. Multi-domain Reset Example .. 10

Figure 12. Example of Scoreboard Analysis Port for Multi-domain Reset 11

Figure 13. Example of Environment Dependent on Structural Variable from Configuration Class

... 12

Figure 14. Example of Base Test Dependent on Structural Variable from Configuration Class . 12

Figure 15. Example of Configuration Class with Structural Variables .. 13

SNUG 2013 3 Reset Testing Made Simple with UVM Phases

1. Introduction

Reset testing is a crucial element of functional sign-off for any chip. The architectural

components of the entire verification environment need to be correctly synchronized to be made

aware of the reset condition. Scoreboards, drivers and monitors need to be tidied up, and the

complex stimulus generation needs to be killed gracefully.

Handling these complexities with a company-wide framework requires a well-coordinated effort

by all team members and is often incompatible with externally developed IP.

Now with UVM’s phase jumping capabilities and its native ability to kill phase-related threads

and sequences, we can deploy an industry-wide standard model for reset testing. This paper will

explore UVM-compliant methodologies and best practices for idle, active, soft, and multi-

domain reset testing based on experience deploying UVM in the networking domain.

2. Resetting Components

Before exploring how phase jumps can be used in reset testing, you must first prepare the many

UVM components that will be affected.

The Reset Driver

Developing a driver that drives a reset signal high or low is a trivial task. Many test benches skip

this step and use a simple initial block instead. Using a UVM driver, however, permits it to

be in sync with the system wide phases. The following driver drives the active-low reset signal to

which it is attached during the reset_phase, waits a random time, takes the signal out of reset,

and releases its objection.

// class: rst_drv_c

class rst_drv_c extends uvm_driver;

 `uvm_component_utils_begin(rst_drv_c)

 `uvm_field_string(intf_name, UVM_ALL_ON)

 `uvm_field_int(reset_time_ps, UVM_ALL_ON | UVM_DEC)

 `uvm_component_utils_end

 // var: intf_name

 string intf_name = "rst_i";

 // var: reset_time_ps

 // The length of time, in ps, that reset will stay active

 rand int reset_time_ps;

 // Base constraints

 constraint rst_cnstr { reset_time_ps inside {[1:1000000]}; }

 // var: rst_vi

 // Reset virtual interface

 virtual rst_intf rst_vi;

 function new(string name="rst_drv", uvm_component parent=null);

 super.new(name, parent);

 endfunction : new

SNUG 2013 4 Reset Testing Made Simple with UVM Phases

 virtual function void build_phase(uvm_phase phase);

 super.build_phase(phase);

 // get the interface

 uvm_resource_db#(virtual rst_intf)::read_by_name("rst_intf", intf_name, rst_vi)

 endfunction : build_phase

 virtual task reset_phase(uvm_phase phase);

 phase.raise_objection(this);

 rst_vi.rst_n <= 0;

 #(reset_time_ps * 1ps);

 rst_vi.rst_n <= 1;

 phase.drop_objection(this);

 endtask : reset_phase

endclass : rst_drv_c

Figure 1. Reset Driver Example

One could further generalize the driver by making it configurable for active-high resets, by

having it drive X during the pre_reset_phase, or in other ways that suit your organization's

needs.

Resetting Monitor Components

Components such as monitors that attach to signaling interfaces should be designed to be phase-

independent because they are intended to mimic other real devices in the system. These

components should watch the reset signal associated with their interface and reset themselves

accordingly. A typical pattern for this is shown in the example monitor’s run_phase below.

class mon_c extends uvm_monitor;

 `uvm_component_utils(mon_c)

 ...

 virtual task run_phase(uvm_phase phase);

 forever begin

 @(posedge my_vi.rst_n);

 fork

 monitor_items();

 join_none

 @(negedge my_vi.rst_n);

 disable fork;

 cleanup();

 end

 endtask : run_phase

 virtual task monitor_items();

 forever begin

 …

 end

 endtask : monitor_items()

endclass : mon_c

Figure 2. Reset-Aware Monitor Example

The run phase first waits for the positive edge of the rst_n signal to indicate that reset is

complete. The monitor_items task and any other supporting tasks are designed to run in

forever loops. Upon seeing the negative edge of the active-low reset signal, the disable fork

SNUG 2013 5 Reset Testing Made Simple with UVM Phases

statement will kill the monitor_items task and the cleanup function will reset any of the class’s

fields which track state. The whole task is wrapped in a forever block so that it loops back and is

able to monitor more items once the reset event is finished.

Coordinating the Reset of Drivers and Sequencer

You may find that the driver, the sequencer, and their currently running sequences will squawk

with errors if they are not synchronized properly. UVM requires that the sequencer first stop its

sequences and then the driver must be certain to not call item_done on any outstanding sequences.

However, the order that a simulator executes threads in the various components is indeterminate.

To synchronize these operations, the containing agent has a pre_reset_phase such as the

following:

class agent_c extends uvm_agent;

 `uvm_component_utils(agent_c)

 sqr_c sqr;

 drv_c drv;

 ...

 virtual task pre_reset_phase(uvm_phase phase);

 if(sqr && drv) begin

 sqr.stop_sequences();

 ->drv.reset_driver;

 end

 endtask : pre_reset_phase

endclass : agent_c

Figure 3. Pre-reset Phase in UVM Agent

In this design pattern the driver contains an event called reset_driver that immediately kicks

out of the driver’s item-handling task(s). The driver’s run_phase is similar to that of the

monitor, but waits on the reset_driver event instead:

class drv_c extends uvm_driver;

 `uvm_component_utils(drv_c)

 event reset_driver;

 ...

 virtual task run_phase(uvm_phase phase);

 forever begin

 @(posedge my_vi.rst_n);

 fork

 driver();

 join_none

 @(reset_driver);

 disable fork;

 cleanup();

 end

 endtask : run_phase

 virtual task driver();

 forever begin

 ...

 end

 endtask : driver

endclass : drv_c

Figure 4. Example of Handling Reset in a Driver

SNUG 2013 6 Reset Testing Made Simple with UVM Phases

Avoiding the Letter X

One thing to note about all reset testing is that while it is perfectly reasonable to set the reset and

the clock to X at time zero, you may get into trouble if you do this during subsequent reset

phases. Cavium’s global environment artificially suppresses all RTL errors and warnings at time

zero and keeps them suppressed until the end of the pre-reset phase. When you begin setting

clocks and/or resets to X, these X values propagate throughout the design at an indeterminate

rate and the assertions throughout the design whose errors were previously suppressed may now

suddenly trigger, causing tests to fail.

3. Reset Testing with Phase Jumps

Idle Reset Testing

The simplest form of reset testing is idle testing. When all stimulus has drained out of the

device, all scoreboards are quiet, and everything has quiesced, send the device back into reset

and do it all over again.

Figure 5. Diagram of Idle Reset Testing with Phase Jump

This testing is made easy because the manner in which the DUT reacts should be highly

predictable. Just about all testbenches should be able to implement this manner of testing with a

test that looks similar to the one shown here:

class idle_reset_test_c extends basic_test_c;

 `uvm_component_utils(idle_reset_test_c)

 // field: run_count

 // The number of times the test has run so far

 int run_count;

 function new(string name="idle_reset", uvm_component parent=null);

 super.new(name, parent);

 endfunction : new

 virtual function void phase_ready_to_end(uvm_phase phase);

 super.phase_ready_to_end(phase);

 if(phase.get_imp() == uvm_shutdown_phase::get()) begin

 if(run_count == 0) begin

 phase.jump(uvm_pre_reset_phase::get());

 run_count++;

 end

 end

 endfunction : phase_ready_to_end

SNUG 2013 7 Reset Testing Made Simple with UVM Phases

endclass : idle_reset_test_c

Figure 6. Idle Reset Test Example

During the final_phase, the test executes a phase jump back to the pre_reset_phase. This triggers

the reset driver shown above (rst_drv_c) to apply the reset signal and all run-time phases are run

through again.

Idle Reset Testing with Run Count

At Cavium, we provide a global environment that provides facilities that must be present in all

test benches. Cavium’s global environment has been outfitted with an automatic way to perform

idle reset testing. The test writer must merely set its run_count variable to a value higher than 1,

and the test bench automatically runs through all the run-time phases that number of times.

Active Reset Testing

Applying a reset signal while stimulus traffic is flying throughout the DUT is also fairly

straightforward due to UVM’s phase jumping technique. The complexity lies in how each UVM

component reacts to reset.

Figure 7. Diagram of Active Reset Testing with Phase Jump

First, here is an example active reset test:

class active_reset_test_c extends basic_test_c;

 `uvm_component_utils(active_reset_test_c)

 // field: hit_reset

 // Clear this after the reset event to ensure that it only happens once

 bit hit_reset = 1;

 // field: reset_delay_ns

 // The amount of time, in ns, before applying reset during the main phase

 int unsigned reset_delay_ns;

 function new(string name="active_reset", uvm_component parent=null);

 super.new(name, parent);

 endfunction : new

 // Ensure that the register block is reset

 virtual task reset_phase(uvm_phase phase);

 reg_block.REG_BLOCK.reset("HARD");

 endtask : reset_phase

 virtual task main_phase(uvm_phase phase);

 fork

 super.main_phase(phase);

 join_none

SNUG 2013 8 Reset Testing Made Simple with UVM Phases

 if(hit_reset) begin

 phase.raise_objection(this);

 std::randomize(reset_delay_ns) with { reset_delay_ns inside {[1000:4000]}; };

 #(reset_delay_ns * 1ns);

 phase.drop_objection(this);

 phase.get_objection().set_report_severity_id_override(UVM_WARNING, "OBJTN_CLEAR", UVM_INFO);

 phase.jump(uvm_pre_reset_phase::get());

 hit_reset = 0;

 end

 endtask : main_phase

endclass : active_reset_test_c

Figure 8. Active Reset Test Example

The fork..join_none construct allows the basic test’s main_phase to run as normal, in case it does

anything important.

When a phase jump occurs, all running phase tasks, their children, and all of their local variables

will be wiped clean. Also scrubbed away are any running sequences that were not launched

during the run_phase. Components such as scoreboards that retain some state in their fields

will need to clear themselves anytime they enter the pre-reset or reset phases.

Because UVM’s phase objection emits a warning when a phase jump occurs, the code suppresses

this warning using the objection’s set_report_severity_id_override function.

Soft Reset Testing

Your company’s definition of soft reset may vary but typically it involves register writes that are

meant to clear the device under test in some way. Assuming that a device’s expected behavior

during a soft reset is very much the same as a hard reset, the use of the phase jump to the reset

phase is the best course of action as it leads to minimal changes to what works. In that case, the

only difference between the soft reset and an active hard reset is that the reset driver must be

disabled and replaced by a register write instead.

More challenging is the soft reset that differs from a hard reset in some way. Perhaps packets

that are in flight continue to their completion; or interrupts continue to be serviced; or state

machines are forced to idle but buffers are not emptied. There are so many ways that a soft reset

might differentiate itself from a hard reset that it is impossible to provide a foolproof design

pattern for all occasions.

However, if a phase jump is not the desired solution then the use of an analysis port to broadcast

the event to interested components is best. The following is a scoreboard that marks all

outstanding packets as unpredictable upon receipt of a soft reset event via its

write_soft_reset method. The use of a ternary prediction algorithm in such cases can be

very useful as it may be impossible to predict what will happen to in-flight traffic, but the

environment still must check that future traffic completes successfully.

class sb_c extends uvm_scoreboard;

 `uvm_component_utils(sb_c)

 uvm_analysis_imp_soft_reset #(bit) soft_reset_imp;

SNUG 2013 9 Reset Testing Made Simple with UVM Phases

 uvm_analysis_imp_rcvd_pkt #(pkt_c) rcvd_pkt_imp;

 pkt_c exp_pkts[$];

 ...

 function void write_soft_reset(bit _reset);

 // mark all outstanding packets as unpredictable

 foreach(exp_pkts[num])

 exp_pkts[num].unpredictable = 1;

 endfunction : write_soft_reset

 function void write_rcvd_pkt(pkt_c _pkt);

 pkt_c exp_pkt = exp_pkts.pop_front();

 if(exp_pkt.unpredictable)

 return;

 else if(exp_pkt.compare(_pkt) == 0)

 `uvm_error(get_full_name(), “Packet Miscompare.”)

 endfunction : write_rcvd_pkt

endclass : sb_c

Figure 9. Scoreboard with Analysis Port for Soft Reset

Multiple Reset Domains

Just as the RTL can have multiple reset domains, so too can testbench components. By

establishing different domains and assigning them to different components, you can jump one

domain’s phases without changing others.

Figure 10. Diagram of Multi-Domain Resets

The diagram above shows how the agent and RTL blocks in the pink “P” domain can undergo an

active reset, while the agents corresponding to the blue “B” domain continue on their merry way.

SNUG 2013 10 Reset Testing Made Simple with UVM Phases

How much domain resets affect the entries in the scoreboard depends upon the architecture of

the environment. It is likely that the reset event would need to be communicated to the

scoreboard in some fashion.

Setting up and assigning domains is a snap. The following code shows how it would be done for

the above scenario.

class domain_reset_test_c extends basic_test_c;

 `uvm_component_utils(domain_reset_test_c)

 // field: p_domain

 // A UVM domain that will undergo reset in the middle of the main phase

 uvm_domain p_domain;

 // field: reset_delay_ns

 // The amount of time, in ns, before applying reset during the main phase

 rand int reset_delay_ns;

 constraint delay_cnstr { reset_delay_ns inside {[100:1000]}; }

 function new(string name="domain_reset", uvm_component parent=null);

 super.new(name, parent);

 endfunction : new

 virtual function void build_phase(uvm_phase phase);

 super.build_phase(phase);

 p_domain = new("p_domain");

 // assign the p_agent, and all its sub-components, to the p_domain

 p_agent.set_domain(p_domain, .hier(1));

 endfunction : build_phase

 virtual task main_phase(uvm_phase phase);

 fork

 super.main_phase(phase);

 join_none

 if(run_count == 0) begin

 phase.raise_objection(this);

 randomize();

 #(reset_delay_ns * 1ns);

 phase.drop_objection(this);

 phase.get_objection().set_report_severity_id_override(UVM_WARNING, "OBJTN_CLEAR", UVM_INFO);

 p_domain.jump(uvm_pre_reset_phase::get());

 run_count++;

 // tell scoreboard that a reset occurred

 -> scoreboard.p_domain_reset;

 end

 endtask : main_phase

endclass : domain_reset_test_c

Figure 11. Multi-domain Reset Example

This test resembles the active reset test except for a few important differences. By default, all

components (including this test) are assigned to the UVM domain. This test creates a second

domain (p_domain) and assigns the p_agent and all its sub-components to this new domain.

The remaining components stay within the UVM domain.

As the simulation progresses through to the main phase, both domains remain synchronized,

until the test tells the p_domain to jump back to the pre-reset phase. As with soft resets, an

analysis imp can alert interested components such as scoreboards.

SNUG 2013 11 Reset Testing Made Simple with UVM Phases

class sb_c extends uvm_scoreboard;

 `uvm_component_utils(sb_c)

 uvm_analysis_port_p_reset#(bit) p_reset_port;

 function new(string name, uvm_component parent=null);

 super.new(name, parent);

 p_reset_port = new(“p_reset_port”, this);

 endfunction : new

 function void write_p_reset(bit _reset);

 // “clean up” entries in the p_domain

 endfunction : write_p_reset

...

Figure 12. Example of Scoreboard Analysis Port for Multi-domain Reset

Layered stimulus may also merit adding a new phase domain to your environment. One such

example is the layered stimulus inherent to a MAC in a resilient system. The testbench may

simulate a link-level reset but keep intact those packets that are in-flight at the logical level. Or,

your environment might try to maintain TCP connections in a self-healing mesh network.

Re-Randomizing After Reset

Upon resetting the device, you will probably want to re-randomize the DUT’s configuration

registers to re-simulate in a different mode. However, if you are tempted to re-randomize and re-

create the component hierarchy, then you are out of luck. The UVM1.1 environment cannot

jump back to each component’s build phase. If your testbench builds components based upon

random conditions, then the first run-through must have an identical architecture as all

subsequent runs. Likewise, if the environment architecture is somehow dependent on the DUT’s

configuration registers, then any re-randomization must be constrained accordingly.

By identifying and separating those random variables that must maintain their values across

resets you can effectively re-randomize the system over and over again. We call these variables

structural variables.

In the example environment below, the mode variable in the configuration object is a structural

variable because the type of agent that is built depends upon its value.

class env_c extends uvm_env;

 `uvm_component_utils_begin(env_c)

 `uvm_field_object(cfg, UVM_REFERENCE)

 `uvm_component_utils_end

 // var: agent

 // Base class of the agent that will be created

 agent_c agent;

 // var: cfg

 // Configuration object holding many random variables

 cfg_c cfg;

 function new(string name=”env”, uvm_component parent=null);

 super.new(name, parent);

 endfunction : new

 virtual function void build_phase(uvm_phase phase);

 super.build_phase(phase);

SNUG 2013 12 Reset Testing Made Simple with UVM Phases

 case(cfg.mode):

 XAUI: agent = xaui_agent_c::type_id::create(“agent”, this);

 RXAUI: agent = rxaui_agent_c::type_id::create(“agent”, this);

 SGMII: agent = sgmii_agent_c::type_id::create(“agent”, this);

 endcase

 endfunction : build_phase

 ...

endclass : env_c

Figure 13. Example of Environment dependent on Structural Variable from Configuration Class

The base test that creates both the environment and the random configuration class stabilizes the

cfg class’s structural variable after its initial randomization, but permits the re-randomization of

the cfg class whenever a pre_reset_phase occurs. This allows the other controls and environment

knobs that populate the cfg class to have different values during every pass without affecting the

environment architecture. We choose to perform this functionality in a virtual function, so that

descendent tests may vary constraint modes as necessary.

class base_test_c extends uvm_test;

 `uvm_component_utils(test_c)

 rand cfg_c cfg;

 env_c env;

 reg_block_c reg_block;

 virtual function void build_phase(uvm_phase phase);

 super.build_phase(phase);

 // create the reg_block

 reg_block = reg_block_c::type_id::create(“reg_block”, this);

 // create and randomize cfg class

 cfg = cfg_c::type_id::create(“cfg”);

 cfg.reg_block = reg_block;

 randomize_cfg();

 // create env and populate its reference to the cfg class

 env = env_c::type_id::create(“env”, this);

 uvm_config_db#(uvm_object)::set(this, “env”, “cfg”, cfg);

 endfunction : build_phase

 // randomize cfg, but afterwards tell structural variables to be stable

 function void randomize_cfg();

 randomize();

 cfg.mode.rand_mode(0);

 endfunction : randomize_cfg

 // re-randomize all of the test knobs during a reset

 virtual task pre_reset_phase(uvm_phase phase);

 randomize_cfg();

 endtask : pre_reset_phase

endclass : base_test_c

Figure 14. Example of Base Test dependent on Structural Variable from Configuration Class

The configuration class contains both the random mode variable and the DUT’s CSR register

block, given to it by the test.

class cfg_c extends uvm_object;

 `uvm_object_utils(cfg_c)

 rand reg_block_c reg_block;

 rand mode_e mode;

SNUG 2013 13 Reset Testing Made Simple with UVM Phases

 // ensure that the device’s mode always lines up with the chosen mode

 constraint mac_mode_cnstr {

 cfg.reg_block.MAC_MODE.value == mode;

 }

 function new(string name=”cfg”);

 super.new(name);

 endfunction : new

endclass : cfg_c

Figure 15. Example of Configuration Class with Structural Variables

With this framework, the DUT can be reset and re-configured multiple times in a single

simulation.

4. Conclusion

UVM’s phase-jumping and native ability to kill phase-related threads and sequences has enabled

a standard methodology for reset testing. In this paper we detailed a UVM-compliant framework

for how to make scoreboards, drivers and monitors enter and exit reset states cleanly, as well as

kill complex stimulus generation processes gracefully. This paper also proposed a UVM-

compliant method for idle, active, soft, and multi-domain reset testing with examples from the

networking domain. We hope to see these methods deployed on internally and externally devel-

oped IP for easier integration and validation of chips.

As with any open standard, UVM will continue to evolve. The Accellera committee has identi-

fied that the phasing mechanism may change in future releases. While nothing formal is

proposed, we hope adherence to backward compatibility will ensure that jumps backward in

time, and jumps forward (to the extract phase at a minimum) are maintained. We view this

functionality as critical as detailed throughout this paper. Of course if the UVM standards

committee does deprecate functionality pertaining to run-time phases and phase jumping, it will

be because a different mechanism has been added to the standard and if that occurs we look

forward to revisiting the topic of reset testing utilizing the state-of-the-art methodologies at that

time.

5. References
[1] All code was simulated on VCS F-2011.12-3 and G-2012.09-2 versions, with UVM version 1.1b.

