
World Class Verilog & SystemVerilog Training

The Sunburst Design - "Where's Waldo" Principle of Verilog Coding
by Cliff Cummings of Sunburst Design - www.sunburst-design.com

Rev 1.0 1 Last Updated - 03/25/2007

I am a big fan of very concise coding. In general (but not always), the shorter the code,
the better. The more code I can see, nicely spaced and formatted on one page, the easier
it is to understand the intent of the design or verification code.

In my opinion, any extra begin-ends that often consume one or two extra lines of code,
and the recently popular "// end-always" style of end-comment tags unnecessarily add
clutter to the code and just give your eyes more to scan over before finding and
recognizing the important details.

I call this the "Where's Waldo" Principle based on the child puzzle-books of the same
name. Even though Waldo is dressed in a bright red and white stripped shirt, when he is
surrounded by enough additional clutter, he is hard to find. Just as Waldo is hard to find
when surrounded by clutter, simple RTL coding bugs can be obscured when surrounded
by poorly spaced and formatted RTL code and silly comments that state the obvious.

I have often debugged RTL code by simply reformatting it and removing the silly
comments from the code without ever running a simulation.

World Class Verilog & SystemVerilog Training

The Sunburst Design - "Where's Waldo" Principle of Verilog Coding
by Cliff Cummings of Sunburst Design - www.sunburst-design.com

Rev 1.0 2 Last Updated - 03/25/2007

Example DFF (11 lines of code, 129 characters) - verbose and poor spacing:

always @(posedge clk or negedge rst_n)
 begin
 if (!rst_n)
 begin
 q <= 0;
 end // end-if-begin
 else
 begin
 q <= d;
 end // end-else-begin
 end // end-always-begin

The always-block begin-end actually encourages a flawed RTL coding style. If
extra code is added after the first begin statement, synthesis will fail.

Example DFF (3 lines of code, 57 characters) - simple, concise and well-spaced:

always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 0;
 else q <= d;

Note how q-assignments are placed in a well-spaced column for easy recognition.

