
For more information, contact:

Cliff Cummings - cliffc@sunburst-design.com - Sunburst Design, Inc. - 503-641-8446

World Class Verilog & SystemVerilog Training

Sunburst Design - SystemVerilog OVM/UVM Verification Training
by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.

Cliff Cummings is the only Verilog & SystemVerilog Trainer who helped develop every IEEE &

Accellera Verilog, Verilog Synthesis and SystemVerilog Standard.

3 Days

70% Lecture, 30% Lab

Advanced Level

UVM is the unified future of SystemVerilog Verification

The good news is that the Universal Verification Methodology (UVM) is largely the same thing

as the Open Verification Methodology (OVM) with a different first letter and a few

enhancements including capabilities donated from VMM. This course teaches OVM & UVM

noting the minor changes that differentiate the two methodologies.

Course Objective

Make verification engineers knowledgeable, proficient and productive at both OVM (version

2.1.1) or UVM using training materials developed by renowned Verilog & SystemVerilog Guru,

Cliff Cummings.

Upon completion of this course, students will understand:

 SystemVerilog-verification language features

o includes SystemVerilog classes & methods

o includes SystemVerilog virtual classes & virtual methods

o includes SystemVerilog interfaces and virtual interfaces

o includes SystemVerilog constrained random testing

o includes SystemVerilog functional coverage

o includes SystemVerilog stimulus driving and verification sampling strategies

 OVM/UVM-verification language capabilities

o includes OVM/UVM fundamentals and running tests

o includes OVM/UVM base classes and reporting

o includes OVM/UVM creating and properly starting tests

o includes OVM/UVM testbench components and their usage

o includes OVM/UVM transaction objects and their usage

For more information, contact:

Cliff Cummings - cliffc@sunburst-design.com - Sunburst Design, Inc. - 503-641-8446

Course Overview

Sunburst Design - SystemVerilog OVM/UVM Verification Training is a 3-day, fast-paced

intensive course that focuses advanced verification features using SystemVerilog and the

OVM/UVM base class libraries.

Why is OVM/UVM hard to learn?

Many engineers believe they can learn OVM/UVM by picking up and reading a book and the

OVM or UVM User Guide. They quickly discover this is exceptionally difficult to do. To learn

why it is so hard to learn OVM/UVM from existing materials, see the Appendix notes at the end

of this syllabus.

Good OVM/UVM training should address each of the issues that make OVM/UVM materials

difficult to understand (as described in the Appendix notes).

Target Audience

Sunburst Design - SystemVerilog OVM/UVM Verification Training is intended for design &

verification engineers who require an introduction to IEEE SystemVerilog-2005 capabilities.

Prerequisites (mandatory)

This is a very advanced SystemVerilog design class that assumes engineers already have a

good working knowledge of both Verilog and SystemVerilog. Engineers with no prior HDL

training or experience will struggle in this class.

Classroom Details

Training is generally conducted at customer facilities and is sometimes offered as an open-

enrollment training class. For maximum effectiveness, it is recommended to have one

workstation or PC for every two students, with your preferred SystemVerilog simulator licenses

(we often can help provide the simulator and temporary training licenses).

Please contact Cliff Cummings to customize the training materials to meet the needs of your

engineering team.

For more information, contact:

Cliff Cummings - cliffc@sunburst-design.com - Sunburst Design, Inc. - 503-641-8446

Course Syllabus

Day One

OVM/UVM Resources & Introduction

Section Objective: Share OVM/UVM resources - There are conflicting guidelines from multiple

resources regarding OVM/UVM methodologies. When one understands why there are

differences, it is easier to learn from the divergent resources. This section explains the rationale

behind the differing resources.

 OVM/UVM resources

 OVM/UVM introduction

 OVM/UVM conflicting recommendations - why?

Classes & Class Variables

Section Objective: Learn class basics - OVM and UVM are class libraries used to construct

powerful verification environments. Class fundamentals are described in this section.

 SystemVerilog class basics

 Traditional Object Oriented (OO) programming -vs- SystemVerilog Classes

 Class definition & declaration

 Class members (data) & methods (tasks & functions)

 Class handles & using class handles

 Built-in class object constructor - new()

 super & this keywords

 Assigning object handles

 User-defined constructors

 Class extension & inheritance

 Class extension - adding properties & methods

 Class extension - overriding base class methods

 Assigning class handles

 Assigning extended handles to base handles

 Casting base handles to extended handles (technique used in OVM/UVM)

 Chaining new() constructors - illegal new() constructors

 Overriding class methods

 Extending class methods

 Extern methods

 local & protected keywords

For more information, contact:

Cliff Cummings - cliffc@sunburst-design.com - Sunburst Design, Inc. - 503-641-8446

OVM/UVM Overview – First Pass

Section Objective: Learn fundamentals of OVM/UVM testbench development and execution.

This section briefly introduces important OVM/UVM fundamentals followed by a lab to help

students become familiar with OVM/UVM concepts. Students will not fully understand all of the

concepts in this section, but it is important that students do the lab to build a foundation for later

learning. Each of the concepts in this section will be taught with greater detail in later sections.

Engineers will learn more quickly after they have experienced the lab techniques at least once

before tackling advanced OVM/UVM concepts.

 OVM/UVM transactions (data)

 Components (testbench components)

 Display command

 Top module DUT, interface, interface wrapper

 Testbench classes: environment, sequencer, driver, monitor, virtual interface

 Test classes

 Running tests using +OVM_TESTNAME command line switch

 First OVM/UVM Lab

Virtual Classes, Virtual Methods and Virtual Interfaces

Section Objective: Learn fundamentals of virtual classes/methods/interfaces - Virtual classes

enable the creation of a set of base classes that provide a template for advanced verification

environments. OVM/UVM is a base class library made up of mostly virtual classes that the user

extends to create a reusable testbench environment. Virtual methods allow run-time base-method

replacement that is a vital part of the OVM/UVM strategy (polymorphism).

 Introduction to Virtual - three types of "virtual"

 Virtual/abstract classes

 Legal & illegal virtual class usage

 Virtual class methods & restrictions

 Virtual Methods and rules

 Virtual -vs- non-virtual method override rules

 Why use virtual methods?

 Polymorphism using virtual methods

 Pure virtual methods (SystemVerilog-2009 update - used by OVM/UVM)

 Pure constraints (SystemVerilog-2009 update)

 Passing type parameters

For more information, contact:

Cliff Cummings - cliffc@sunburst-design.com - Sunburst Design, Inc. - 503-641-8446

Random & Constrained Random Class Variables

Section Objective: Learn about class variable randomization and setting constraints on that

randomization - OVM and UVM use classes and constrained random variables for the

construction of constrained random testing environments. Randomization and constraint

fundamentals are described in this section.

 Directed -vs- random testing

 rand & randc class variables

 randomize() method - Randomizing class variables

 pre_randomize()/post_randomize() methods

 randomize ... with

 rand_mode()

 Randomization constraints

 Simple constraints

 Constraints blocks

 Important constraint rules

 Constraint distribution & set membership - dist & inside

 Constraint distribution operators

 External constraints & usage rules

OVM/UVM Base Classes & Reporting (standard OVM/UVM print/display commands)

Section Objective: Learn about OVM/UVM base classes and basic display and reporting

commands.

 OVM/UVM Base Classes

 Introduction to OVM/UVM core base classes, `include files and macros

 Block diagram of DUT-testbench structure

 OVM/UVM verification components

 OVM/UVM components and objects

 OVM/UVM transactions (passing OVM/UVM data & methods - dynamic class objects)

 OVM/UVM factory basics

 Reporting methods & arguments

 How to set OVM/UVM-reporting configurations

 Reporting - file I/O

For more information, contact:

Cliff Cummings - cliffc@sunburst-design.com - Sunburst Design, Inc. - 503-641-8446

Day Two

OVM/UVM Transaction Base Classes

Section Objective: Learn to use and manipulate OVM/UVM transactions - This section answers

important questions related to transactions including the basic question, why do transactions

have to be classes?

 Why classes -vs- structs?

 Dynamic transaction classes

 `OVM/UVM_object_utils macro

 OVM/UVM_sequence_item -vs- OVM/UVM_transaction

 Field macros

 Randomizable data members

 Randomizable knobs

 Randomization constraints

 OVM/UVM_object constructors

 OVM/UVM sequence body task

 start_item(tx) - finish_item(tx)

 randomize() the transaction

 randomize() the transaction with inline constraints

 OVM/UVM sequences of OVM/UVM_sequence_item and OVM/UVM_sequence

Top Module & DUT

Section Objective: Learn how to connect an OVM/UVM class-based testbench to an actual

Design Under Test (DUT) - This section explains the role that interfaces, virtual interfaces and

configuration tables play in a testbench environment.

 Top module

 DUT (Design Under Test)

 DUT Interface

 Connecting DUT to DUT interface

 DUT interface handle

 DUT interface wrapper (class-based wrapper)

 Configuration tables

 set/get_config_object (storing the DUT interface handle)

 Virtual interfaces for verification

For more information, contact:

Cliff Cummings - cliffc@sunburst-design.com - Sunburst Design, Inc. - 503-641-8446

OVM/UVM Testbench Driver-Components

Section Objective: Learn to use OVM/UVM drivers, sequencers, agents and environments -

Setting up the driver is a critical step. The class-based driver must drive the module-based DUT

through a virtual interface that drives a real interface.

 OVM/UVM components to build the testbench structure

 OVM/UVM testbench structure (quasi-static class objects)

 `ovm/uvm_component_utils macros

 OVM/UVM_component constructors

 OVM/UVM components connected through ports & exports

 Testbench driver (get-port configuration)

 Managing the virtual interface - config table - required dynamic casting

 Testbench sequencer (get-export configuration)

 Testbench agent & environment

 User-defined testbench package

OVM/UVM Testbench Monitor, Analysis Ports & Checkers

Section Objective: Learn to use OVM/UVM monitors, analysis ports and checkers - OVM/UVM

uses monitors, analysis ports and checkers (and scoreboards) to capture DUT outputs and

analyze the outputs using functional coverage for correctness and completeness.

 OVM/UVM testbench components to capture and examine outputs

 OVM/UVM checkers and functional coverage collection through analysis ports

 Testbench monitor in the testbench agent

 Why do we need copy and compare methods?

 Checkers and scoreboards

 Functional coverage collector basics

Fundamentals of Running & Stopping OVM/UVM Tests

Section Objective: Learn proper methods to start and gracefully terminate OVM/UVM tests.

This is a poorly documented topic in existing reference materials. Guidelines are presented to

help properly stop tests using standard OVM/UVM techniques.

 Including OVM/UVM source files, base classes and macros

 Importing ovm_pkg/uvm_pkg

 run_test() fundamentals

 OVM/UVM phase basics

 Recommended ovm.f/uvm.f and run.f command files (Compilation)

 Selecting tests using +OVM/UVM_TESTNAME command line switch (Simulation)

 Declaring environments in tests

 OVM/UVM_component (test) constructors

 Test - run task & sequencer startup

 global_stop_request

 OVM/UVM_test_done objection

For more information, contact:

Cliff Cummings - cliffc@sunburst-design.com - Sunburst Design, Inc. - 503-641-8446

Day Three

OVM/UVM Factory, Constructors & Transaction Level Modeling (TLM) Basics

Section Objective: Learn the basics of OVM/UVM factories, registration, class construction and

introduce the concept of factory overrides. This section will show why factories are important to

OVM/UVM testbenches and discuss new() -vs- type_id::create() methods. This section also

details how transactions are passed between classes through the use of ports, exports, put-

configurations, get-configurations and transport configurations

 OVM/UVM factory basics

 Why is a factory used in OVM/UVM

 What is needed to use the factory

 new() -vs- type_id::create() construction

 Component and data lookup from the factory

 Running without re-compilation

 Tests can make substitutions without changing the testbench source code

 Introduction to factory overrides

 TLM ports & exports

 Why "ports" and "exports"

 TLM put, get and transport configurations

 Transaction-level control flow

 Transaction-level data flow

 Transaction-level transaction type

 Put configurations

 Get configurations

 Transport configurations

Clocking Blocks and Verification Timing

Section Objective: Learn important stimulus and verification timing issues and techniques -

SystemVerilog clocking blocks help control timing for advanced OVM/UVM verification

environments.

 Testbench stimulus/verification vector timing strategies

 #1step sampling

 Clocking blocks

 Clocking skews

 Default clocking block cycles

 Clocking block scheduling

 OVM/UVM usage of clocking blocks in an interface

 OVM/UVM driver timing using clocking blocks

 OVM/UVM signal sampling using clocking blocks

For more information, contact:

Cliff Cummings - cliffc@sunburst-design.com - Sunburst Design, Inc. - 503-641-8446

Functional Coverage

Section Objective: Learn functional coverage fundamentals - Functional coverage is used to

track what has been tested. Functional coverage is used to help answer the question, "are we

done testing?"

 Code coverage -vs- functional coverage

 Covergroups & coverpoints

 Auto-bins & user-named bins

 User-named array of bins

 Cross coverage

 Covergroup.sample() method

 Transition bins

 Coverage options & coverage capabilities

Fork-Join Enhancements and Advanced OVM/UVM Sequence Generation

Section Objective: Learn advanced sequence generation techniques - New fork-join capabilities

were added to SystemVerilog and they are commonly used by advanced OVM/UVM sequence

generation environments.

 New SystemVerilog fork-join processes

 OVM/UVM virtual sequences

 Advanced OVM/UVM sequence generation

Comparing Macros to Methods (time permitting)

Section Objective: Learn about OVM/UVM guideline differences - Many engineers believe they

can learn OVM/UVM by picking up and reading a book and the OVM/UVM User Guide. They

quickly discover this is exceptionally difficult to do. This section details different guidelines

presented by different sources and the ease-of-use versus simulation-efficiency trade-offs.

 Which macros are universally recommended

 Which macros are less simulation efficient

 Macro-ease -vs- method-efficiency

 Field automation macros -vs- Implementing do_copy()/do_compare()

 OVM/UVM sequences and sequencers

 `OVM/UVM_sequencer_utils -vs- ` ovm/uvm_component_utils (ease -vs- efficiency)

 start_item()/finish_item() -vs-`OVM/UVM_do & `OVM/UVM_do_with

 sequence.start(sequencer) method -vs- Sequence list and default sequence

 Configurations

 set/get_config_object (recommended)

 set/get_config_int (pros & cons)

 set/get_config_string (pros & cons)

For more information, contact:

Cliff Cummings - cliffc@sunburst-design.com - Sunburst Design, Inc. - 503-641-8446

APPENDIX

Why is OVM/UVM hard to learn?

Many engineers believe they can learn OVM/UVM by picking up and reading a book and the OVM or

UVM User Guide. They quickly discover this is exceptionally difficult to do. Why is it so hard to learn

OVM/UVM from existing materials?

Through years of experience, Sunburst Design has identified the following reasons why engineers

struggle with existing OVM/UVM tutorial materials:

1) The OVM User Guide was written by Cadence and teaches Cadence recommended methods, which

includes the use of a large number of OVM macros.

2) The OVM tutorials on VerificationAcademy.org are shown using Mentor recommended methods,

which includes the use of fewer OVM macros and more OVM method calls.

3) The OVM Cookbook was written by Mentor employees and is based on an earlier version of OVM

(the latest techniques are not shown in the book).

4) The above User Guide, tutorials and Cookbook do not acknowledge or explain the alternate methods,

so users are left to draw erroneous conclusions that some of the methods shown are flawed, which is

not true. Learners need to be taught the pros and cons of the alternate methods so that they understand

why there are differences in the various methods presented.

5) All the people who have written OVM materials are really, really smart software engineers who

assume that engineers already understand SystemVerilog syntax and semantics, object oriented

programming and polymorphism semantics, and they don't know how teach these concepts to

beginners.

6) Many of those who have written OVM materials are software engineers who do not have a strong

grasp of good hardware design practices, and it shows in many of the examples.

7) The OVM User Guide (chapter 2) and the OVM Cookbook (chapter 3) introduce Transaction Level

Modeling (TLM) concepts, including put, get and transport communication, but do a poor job of tying

the concepts into the rest of the OVM materials. Engineers often wonder why TLM was introduced in

these texts.

8) All OVM materials show the driver on the right and the monitor on the left (right to left data-flow

inside of the agent). This contradicts known good hardware block diagramming methods (data should

flow from left to right in block diagrams) and adds an unnecessary level of confusion to the learning

process for those who are familiar with good block diagramming techniques.

9) There is a huge shortage of complete simple examples. Most of the publicly available example code is

in abbreviated code-snippet form, leaving the new user to guess what is missing. Finding full

examples in the materials is rare. One notable example shows OVM used on a large VHDL design,

which introduces yet another unknown to the learning process.

10) Of course, you must understand classes, class-extension, virtual classes, virtual methods, dynamic

casting, polymorphism, randomization, constraints, covergroups, coverpoints, interfaces and virtual

interfaces before you can learn OVM. Too many engineers try to learn OVM without a full

understanding of these SystemVerilog fundamentals (this is not the fault of OVM authors).

11) Classes are applied as stimulus and sampled for verification. Existing materials do not explain why

classes are used instead of structs?

12) Interfaces, virtual interfaces and their recommend usage-models are somewhat buried in the materials

and are poorly explained (most authors assume you understand these concepts without much

explanation - they are wrong).

13) There are a significant number of typos and mistakes sprinkled throughout the materials and

examples. The mistakes leave the learner to try to figure out which coding styles are correct and

which have typos.

Sunburst Design OVM/UVM training addresses each of these issues.

