

Rev 202201 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

World Class SystemVerilog & UVM Training

Sunburst Design - SystemVerilog UVM Verification Training
by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.

Cliff Cummings is the only Verilog & SystemVerilog Trainer who helped develop every IEEE &
Accellera Verilog, Verilog Synthesis and SystemVerilog Standard.

3 Days
70% Lecture, 30% Lab
Advanced Level

All EDA Vendors agree that UVM is the unified future of SystemVerilog Verification

Course Objective

Complete up to 13 Labs, including 10 full self-checking UVM testbenches. In order for
engineers to become proficient at UVM verification, they need experience coding multiple full,
self-checking UVM testbenches. To accomplish this goal, engineers will use the Sunburst Design
uvmtb_template files to rapidly develop block-level UVM testbenches.

The #1 priority in this course is to have engineers complete and understand as many full UVM
self-checking testbenches as time permits.

As part of the course objective, training will make verification engineers knowledgeable,
proficient and productive at UVM verification, using training materials and UVM template files
developed by renowned Verilog, SystemVerilog & UVM Guru, Cliff Cummings.

Upon completion of this course, students will understand and use:

 SystemVerilog-verification language features
o includes SystemVerilog classes & methods
o includes SystemVerilog virtual classes & virtual methods
o includes SystemVerilog interfaces and virtual interfaces
o includes SystemVerilog constrained random testing

 UVM-verification language capabilities
o includes UVM fundamentals and running/stopping tests
o includes UVM correct messaging
o includes UVM transactions and sequences
o includes UVM testbench components and their usage
o includes UVM scoreboard with predictor, comparator & reporting
o includes UVM template files for rapid UVM testbench development

Rev 202201 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

Course Overview

Sunburst Design - SystemVerilog UVM Verification Training is a 3-day, fast-paced intensive
course that focuses on advanced verification using UVM.

Why is UVM hard to learn?

Many engineers believe they can learn UVM by picking up and reading a book and the UVM
User Guide. They quickly discover this is exceptionally difficult to do. To learn why it is so hard
to learn UVM from existing materials, see the Appendix notes at the end of this syllabus.

Good UVM training should address each of the issues that make UVM materials difficult to
understand (as described in the Appendix notes).

Target Audience

Sunburst Design - SystemVerilog UVM Verification Training is intended for design &
verification engineers who require UVM verification methodology training.

Prerequisites (mandatory)

This is a very advanced SystemVerilog verification class that assumes engineers already have
a good working knowledge of both Verilog and SystemVerilog. Engineers with no prior HDL
training or experience will struggle in this class.

Classroom Details

Training can be conducted at your facilities or remotely over our WebEx account.

For maximum effectiveness, we recommend having one laptop for each student or shared
between two students, with licenses for your preferred Verilog simulator (we often work with
EDA Vendors to help provide the simulator and temporary training licenses).

Course Customization? - For dedicated training for your company, Sunburst Design courses
can be customized to include your company's coding guidelines or to modify the course for a
different audience. Sections can be added or deleted from a course to meet you company's needs.

Rev 202201 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

Course Syllabus
(All scheduled times are estimates only - ~5-10 minute breaks near the top of each hour)

(Lab time is scheduled for "Lunch & Lab" and near the end of the day)

DAY ONE
UVM Resources & Introduction (Includes class introductions – ~30 minutes)
Section Objective: Share UVM resources - There are conflicting guidelines from multiple
resources regarding UVM methodologies. When one understands why there are differences, it is
easier to learn from the divergent resources. This section explains the rationale behind the
differing resources.

 UVM resources
 UVM introduction
 UVM conflicting recommendations - why?

(1) Classes & Class Variables (~1-1/2 hours)
Section Objective: Learn class basics - UVM is a class library used to construct powerful
verification environments. Class fundamentals are described in this section.

 SystemVerilog class basics
 Traditional Object Oriented (OO) programming -vs- SystemVerilog Classes
 Class definition & declaration
 Class members (data) & methods (tasks & functions)
 Class handles & using class handles
 Built-in class object constructor - new()
 super & this keywords
 Assigning object handles
 User-defined constructors
 Class extension & inheritance
 Class extension - adding properties & methods
 Class extension - overriding base class methods
 Assigning class handles
 Assigning extended handles to base handles
 Casting base handles to extended handles (technique used by UVM)
 Chaining new() constructors - illegal new() constructors
 Overriding class methods
 Extending class methods
 Extern methods
 Static methods
 local & protected keywords

Rev 202201 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

(2) UVM Overview First Pass & uvmtb_template files (~1 hour)
Section Objective: Learn fundamentals of UVM testbench development and execution. This
section briefly introduces important UVM fundamentals followed by a lab to help students with
first-pass familiarity and introduction to UVM testbench development. Students will not fully
understand all of the section concepts while creating the first UVM testbench, but it is important
that students do the lab to build a foundation for later learning. Each of the concepts in this
section will be taught a second time with greater detail in later sections. Engineers will learn
more quickly after they have experienced the lab techniques at least once before exploring
advanced UVM concepts. This section also introduces the uvmtb_template files for rapid UVM
testbench development.

 UVM transactions (data)
 Components (testbench components)
 Display command
 Top module DUT, interface, interface wrapper
 Testbench classes: environment, sequencer, driver, monitor, virtual interface
 Test classes
 Running tests using +UVM_TESTNAME command line switch
 Stopping tests using raised & dropped objections
 uvmtb_template files
 The 8 template files that require modification for simple block-level verification
 LAB - UVM Common Errors
 LAB - UVM First Testbench - Testing a Counter (Full UVM self-checking testbench #1)

(LUNCH & LAB: ~1 hour 30 minutes)

(3) Virtual Classes, Virtual Methods and Virtual Interfaces (~1 hour)
Section Objective: Learn fundamentals of virtual classes/methods/interfaces - Virtual classes
enable the creation of a set of base classes that provide a template for advanced verification
environments. UVM is a base class library made up of mostly virtual classes that the user
extends to create a reusable testbench environment. Virtual methods allow run-time base-method
replacement that is a vital part of the UVM strategy (polymorphism).

 Introduction to Virtual - three types of "virtual"
 Virtual/abstract classes
 Legal & illegal virtual class usage
 Virtual class methods & restrictions
 Virtual Methods and rules
 Virtual -vs- non-virtual method override rules
 Why use virtual methods?
 Polymorphism using virtual methods
 Pure virtual methods (SystemVerilog-2009 update - used by UVM)
 Interfaces and virtual interfaces for UVM testbench development
 Passing type parameters

Rev 202201 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

(4) Constrained Random Testing and Functional Coverage Part I (~1 hour)
Section Objective: Introduction to class variable randomization and setting randomization
constraints - UVM uses classes and constrained random variables for the construction of
constrained random testing environments. Introduction to functional coverage including
covergroups and coverpoints. An introduction to constrained random testing and functional
coverage are described in this section.

 Directed -vs- random testing
 rand & randc class variables
 randomize() method - Randomizing class variables
 pre_randomize()/post_randomize() methods
 randomize ... with
 rand_mode()
 Randomization constraints
 Simple constraints
 Constraints blocks
 Important constraint rules
 Constraint distribution & set membership - dist & inside
 Constraint distribution operators
 External constraints & usage rules
 LAB - Random Variables & Randomization (Full UVM self-checking testbenches #2-3)
 LAB - Constrained Random Stimulus (Full UVM self-checking testbench #4)

(5) UVM Base Classes & Reporting (UVM print/display commands) (~1 hour)
Section Objective: Learn about UVM base classes and basic display and reporting commands.
3-day class includes introduction to SystemVerilog dynamic & associative arrays.

 SystemVerilog dynamic arrays
 SystemVerilog associative arrays
 UVM Base Classes
 Introduction to UVM core base classes, `include files and macros
 Block diagram of DUT-testbench structure
 UVM verification components
 UVM components and objects
 UVM transactions (passing UVM data & methods - dynamic class objects)
 UVM factory basics
 Reporting methods & arguments
 Reporting macros and why they are preferred
 UVM_VERBOSITY explained
 Why the UVM User Guide, Reference Manual and Books get VERBOSITY wrong!
 LAB - UVM Messaging

Rev 202201 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

DAY TWO
(6) UVM Transaction Base Classes, Sequences & Tests (~2 hours)
Section Objective: Learn to use and manipulate UVM transactions. This section shows why
transactions are classes and not structs. This section also shows the two common techniques to
define standard transaction methods, as well as the two common techniques to execute
transactions and sequences, along with pros, cons and benchmarks of each method. This section
then shows techniques to define and run sequences and tests.

 Why classes -vs- structs?
 Dynamic transaction classes
 `uvm_object_utils macro
 uvm_sequence_item -vs- uvm_transaction
 Standard transaction methods
 do_copy, do_compare and other do_methods
 Field macros
 Randomizable data members
 Randomizable knobs
 Randomization constraints
 uvm_object constructors
 UVM sequence body task
 start_item(tx) - finish_item(tx)
 `uvm_do macros
 randomize() the transaction
 randomize() the transaction with inline constraints
 UVM sequences of uvm_sequence_item and uvm_sequence
 Running UVM tests

(7) Top Module & DUT (~1 hour)
Section Objective: Learn how to connect a UVM class-based testbench to an actual Design
Under Test (DUT) - This section explains the role that interfaces, virtual interfaces,
configuration tables and the UVM configuration database play in a testbench environment.

 Top module
 DUT (Design Under Test)
 DUT Interface
 Connecting DUT to DUT interface
 DUT interface handle
 uvm_config_db#(type) set/get (new/easier method to store the DUT interface handle)
 Configuration tables
 set/get_config_object (old method to store the DUT interface handle)
 Virtual interfaces for verification
 LAB - UVM Agent (Sqr-Drv-Mon) (Full UVM self-checking testbench #5)

(LUNCH & LAB: ~1 hour 30 minutes)

Rev 202201 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

(8) UVM Testbench Agent – Sequencer / Driver / Monitor (~1 hour 30 minutes)
Section Objective: 3/4-day class includes introduction to SystemVerilog queues. Learn to use
UVM environments, agents, sequencers, drivers, and monitors - Setting up the driver is a critical
step. The class-based driver must drive the module-based DUT through a virtual interface that
drives a real interface. UVM uses monitors to sample DUT signals through the virtual interface
and captures the transaction that is then broadcast through an analysis port to a scoreboard and
coverage collector.

 UVM components to build the testbench structure
 UVM testbench structure (quasi-static class objects)
 `uvm_component_utils macros
 uvm_component constructors
 UVM components connected through ports & exports
 Testbench driver (get-port configuration)
 Managing the virtual interface - config table - required dynamic casting
 Testbench sequencer (get-export configuration)
 Testbench agent & environment
 User-defined testbench package
 UVM analysis ports
 Analysis port broadcast command
 UVM monitors with analysis ports
 UVM agents with analysis ports
 Active and passive agents
 uvm_subscriber with analysis export
 Connecting a coverage collector using an analysis export
 LAB – FIFO Gray Code Pointer - (Full UVM self-checking testbench #6)

(9) UVM Scoreboards - Part I (~1 hour)
Section Objective: Learn two techniques for creating self-checking scoreboards. The first
scoreboard technique uses pre-coded scoreboard wrapper, predictor with extern calc-expected
function, and pre-coded comparator with 2 uvm_tlm_analysis_fifos. The first technique only
requires completion of the extern calc_expected function.

 SystemVerilog queues
 SystemVerilog mailboxes
 uvm_tlm_fifo
 uvm_tlm_analysis_fifo
 What is the job of the scoreboard
 Scoreboard architecture #1
 Pre-coded scoreboard wrapper and predictor
 Extern calc_exp function - requires user to complete this function
 Pre-coded comparator with 2 uvm_tlm_analysis_fifos
 LAB – UVM Scoreboard Style #1 - Barrel Shifter - (Full UVM testbench lab #7)
 LAB – UVM Scoreboard Style #1 - Pipeline Design - (Full UVM testbench lab #8)

Rev 202201 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

DAY THREE
(10) UVM Scoreboards - Part II (~45 minutes)
Section Objective: The second scoreboard technique is commonly shown in literature and uses 2
uvm_analysis_imp_ports and 2 uvm_tlm_fifos, which requires the use of special macros. This
section starts off with a tutorial about SystemVerilog queues & mailboxes, then describes the
uvm_tlm_fifos and how they are used. Then the second scoreboard technique is described.

 Scoreboard architecture #2
 Multiple analysis implementation ports
 `uvm_analysis_imp_decl macros
 LAB – UVM Scoreboard Style #2 - 2 Analysis Imp Ports - (Full UVM testbench lab #9)

(11) Fork-Join & Advanced UVM Sequence Generation (~1 hour 15 minutes)
Section Objective: Learn advanced sequence generation techniques - New fork-join capabilities
were added to SystemVerilog and they are commonly used by advanced UVM sequence
generation environments.

 New SystemVerilog fork-join processes
 UVM virtual sequences
 Virtual sequencers & virtual sequences requirements
 m_sequencer, p_sequencer, `uvm_declare_p_sequencer
 Virtual sequence base class details
 Common test_base
 Starting virtual sequences
 Multi-bus virtual sequencer example
 LAB - Virtual Sequencer & Sequences

 (LUNCH & LAB: ~1 hour 30 minutes)

Rev 202201 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

(12) Clocking Blocks and Verification Timing (~1 hour)
Section Objective: Learn important stimulus and verification timing issues and techniques -
SystemVerilog clocking blocks help control timing for UVM verification environments.

 Testbench stimulus/verification vector timing strategies
 #1step sampling
 Clocking blocks
 Clocking skews
 Default clocking block cycles
 Clocking block scheduling
 UVM usage of clocking blocks in an interface
 UVM driver timing using clocking blocks
 UVM signal sampling using clocking blocks

(13) Transaction Level Modeling (TLM) Basics (~45 minutes)
Section Objective: Transaction Level Modeling (TLM) is taught after it has been used the first
two days of UVM training. This section shows how transactions are passed between classes
through ports, exports, put-configurations, get-configurations and transport configurations.

 TLM ports & exports
 Why "ports" and "exports"
 TLM put, get and transport configurations
 Transaction-level control flow
 Transaction-level data flow
 Transaction-level transaction type
 Put configurations
 Get configurations
 Transport configurations

(14) UVM Factory & Constructors (~45 minutes)
Section Objective: Learn the basics of UVM factories, registration, class construction and
introduce the concept of factory overrides. This section will show why factories are important to
UVM testbenches and describe differences between new() -vs- type_id::create() methods.

 UVM factory basics
 Why is a factory used in UVM
 What is needed to use the factory
 new() -vs- type_id::create() construction
 Component and data lookup from the factory
 Running without re-compilation
 Tests can make substitutions without changing the testbench source code
 Introduction to factory overrides

Rev 202201 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

(15) Constrained Random Testing and Functional Coverage Part II (~1 hour)
Section Objective: Learn functional coverage fundamentals - Functional coverage is used to
track what has been tested. Functional coverage is used to help answer the question, "are we
done testing?" This section includes cover statements & compares them to covergroup coverage.

 Code coverage -vs- functional coverage
 Covergroups & coverpoints
 Auto-bins & user-named bins
 User-named array of bins
 Cross coverage
 Covergroup.sample() method
 Transition bins
 Coverage options & coverage capabilities
 Comparing cover to covergroup coverage
 LAB – UVM Functional Coverage - (Full UVM testbench lab #10)

Rev 202201 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

APPENDIX - Why are OVM & UVM hard to learn?

Many engineers believe they can learn UVM by picking up and reading a book and the OVM or UVM
User Guide. They quickly discover this is exceptionally difficult to do. Why is it so hard to learn UVM
from existing materials?

Through years of experience, Sunburst Design has identified the following reasons why engineers
struggle with existing UVM tutorial materials:

1) The OVM User Guide was written by Cadence and teaches Cadence recommended methods, which
includes the use of a large number of OVM macros.

2) The OVM tutorials on VerificationAcademy.org are shown using Mentor recommended methods,
which includes the use of fewer OVM macros and more OVM method calls.

3) The OVM Cookbook was written by Mentor employees and is based on an earlier version of OVM
(the latest techniques are not shown in the book).

4) The above User Guide, tutorials and Cookbook do not acknowledge or explain the alternate methods,
so users are left to draw erroneous conclusions that some of the methods shown are flawed, which is
not true. Learners need to be taught the pros and cons of the alternate methods so that they understand
why there are differences in the various methods presented.

5) All the people who have written OVM materials are really, really smart software engineers who
assume that engineers already understand SystemVerilog syntax and semantics, object oriented
programming and polymorphism semantics, and they don't know how teach these concepts to
beginners.

6) Many of those who have written OVM materials are software engineers who do not have a strong
grasp of good hardware design practices, and it shows in many of the examples.

7) The OVM User Guide (chapter 2) and the OVM Cookbook (chapter 3) introduce Transaction Level
Modeling (TLM) concepts, including put, get and transport communication, but do a poor job of tying
the concepts into the rest of the OVM materials. Engineers often wonder why TLM was introduced in
these texts.

8) All OVM materials show the driver on the right and the monitor on the left (right to left data-flow
inside of the agent). This contradicts known good hardware block diagramming methods (data should
flow from left to right in block diagrams) and adds an unnecessary level of confusion to the learning
process for those who are familiar with good block diagramming techniques.

9) There is a huge shortage of complete simple examples. Most of the publicly available example code is
in abbreviated code-snippet form, leaving the new user to guess what is missing. Finding full
examples in the materials is rare. One notable example shows OVM used on a large VHDL design,
which introduces yet another unknown to the learning process.

10) Of course, you must understand classes, class-extension, virtual classes, virtual methods, dynamic
casting, polymorphism, randomization, constraints, covergroups, coverpoints, interfaces and virtual
interfaces before you can learn OVM. Too many engineers try to learn OVM without a full
understanding of these SystemVerilog fundamentals (this is not the fault of OVM authors).

11) Classes are applied as stimulus and sampled for verification. Existing materials do not explain why
classes are used instead of structs?

12) Interfaces, virtual interfaces and their recommend usage-models are somewhat buried in the materials
and are poorly explained (most authors assume you understand these concepts without much
explanation - they are wrong).

13) There are a significant number of typos and mistakes sprinkled throughout the materials and
examples. The mistakes leave the learner to try to figure out which coding styles are correct and
which have typos.

Sunburst Design UVM training addresses each of these issues.

