

World Class Verilog & SystemVerilog Training

Sunburst Design - Verilog-2001 Design & Best Coding Practices
by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.

Cliff Cummings is the only Verilog & SystemVerilog Trainer who helped develop every IEEE &
Accellera Verilog, Verilog Synthesis and SystemVerilog Standard.

3 Days
50% Lecture, 50% Lab
Basic - Intermediate Level

Course Objective

Simply stated, to give engineers world class Verilog training using award winning materials
developed by renowned Verilog & SystemVerilog Guru, Cliff Cummings

Upon completion of this course, students will:

 have a detailed understanding of the important Verilog-2001 language features
 understand the necessary constructs for

o design, synthesis and verification
o simulation of gate-level netlists

 know how to write and simulate
o complex hardware models
o simple synthesizable models
o self-checking testbenches

 know how to run efficient Verilog simulations
 be immediately productive at modeling and simulating complex Verilog designs

Course Overview

Sunburst Design - Verilog-2001 Design & Best Coding Practices is a 3-day fast-paced intensive
course on the IEEE 1364-2001 Verilog Hardware Description Language and its usage for
hardware design and verification. This course is designed to emphasize important RTL modeling
and efficient testbench techniques while teaching the important Verilog-2001 syntax. Unlike
traditional Verilog courses that start with gate-level design and work towards behavioral coding
styles, the Verilog-2001 Design course focuses on important behavioral design and synthesis
coding styles first, along with high-level verification techniques, to instill and reinforce good
coding habits early and often during the entire 34-day course.

This course includes 40+ slides and a copy of Cliff's first award winning paper on nonblocking
assignments to offer a comprehensive introduction to blocking vs. nonblocking assignments
along with important coding guidelines related to design styles aimed at preventing Verilog
simulation race conditions.

Another 40+ slides help to demonstrate multiple efficient Finite State Machine (FSM) coding
styles. An EISA bus arbiter lab is designed to reinforce FSM concepts developed in class (no
silly traffic-light controllers or soda pop change machines in this course!)

A detailed 600+ page student guide and 49-page Verilog-2001 HDL Quick Reference Guide
supplement the lecture and provide excellent resources for after-class reference. Numerous
exercises and labs reinforce the principles presented, with about 50% of class time devoted to lab
work, culminating with a 4-hour final DSP design lab on the last day of class. The final lab
utilizes all of the techniques learned in earlier labs and reinforces how all aspects of Verilog are
used in a large design project.

Target Audience

Sunburst Design - Verilog-2001 Design & Best Coding Practices is intended for new and self-
taught Verilog design and verification engineers that require a good working knowledge of the
capabilities of the Verilog-2001 language. This is both a design and language class. This course
also fulfills all of the prerequisites for the Sunburst Design - Advanced Verilog-2001 for
Synthesis & Verification course; a course that focuses specifically on Verilog-2001 techniques
for design, synthesis and advanced verification.

Prerequisites (mandatory)

A knowledge of digital design engineering. The ability to create files and efficiently use the
editors on the operating system used in labs. Without the above skills, students cannot fully
benefit from this course. Students will be writing Verilog models for basic and advanced digital
circuits such as adders, multiplexers, flip-flops, and shift registers, barrel shifters and a simple
DSP processor.

The Sunburst Design - Advantage

Who is teaching your "expert" and "advanced" classes? Most companies will not tell you
because their instructors might not have much design experience or may never have participated
on any of the Verilog Standards groups or presented at industry recognized conferences. Go to
our web site and read about the Sunburst Design - Instructors - they are simply the best at what
they do and they have the experience and qualifications to offer

Course Customization? - Sunburst Design courses can be customized to include your
company's coding guidelines or to modify the course for a different audience. Sections can be
added or deleted from a course to meet you company's needs.

Course Syllabus

Comparing this 3-day Class to the 4-day Comprehensive Verilog Class

This 3-day class is intended to cover all of the same important Verilog RTL concepts as the 4-
day class but removes the lecture and labs on infrequently used behavioral topics as well as in-
depth discussion of gate primitives, switch primitives, User Defined Primitives (UDPs) and
specify blocks, which are rarely used in modern Verilog designs. Most Verilog design and
verification engineers are probably better served by this more condensed Verilog Training
course.

Day One

Overview of Verilog Resources

Introduction to Verilog Modeling
- An introduction and overview of major Verilog-2001 modeling basics.

 Modules
 Port and net declarations
 V2K1 ANSI-C style module headers
 Instantiation with positional and named ports
 Procedural blocks: initial & always
 Hierarchy
 Introduction to synthesis design flows
 Power-user guidelines (presented in section 1 - detailed in later sections)

Verilog HDL Syntax & Semantics
- Detailed instruction of important Verilog-2001 (V2K1) language syntax.

 Good formatting = fewer bugs & better documentation
 Comments
 V2K1 attributes
 Identifier names
 Name scopes
 Language tokens
 Numbers and logic values
 Net & variable types
 Scalars & vectors
 Multi-dimensional arrays
 Port declaration styles
 Parameters
 Verilog's 4+ logic values

Design Verification & Running Simulations
- An introduction to writing Verilog testbenches and running Verilog simulations.

 Strength basics
 Simulation times, delays, timescales and time formatting
 Writing Verilog testbenches
 Repeat-loop & forever loop
 Important compiler directives
 Display and formatting commands
 System tasks for simulation control
 Using multiple Verilog source files & Verilog command files
 Running a Verilog simulation
 Lab: basic testbench development

Continuous Assignments & Operators
- Detailed discussion of continuous assignments with design examples, followed by an overview
of Verilog-2001 operators, also with examples.

 Continuous assignments
 Procedural continuous assignments (do not use these!)
 Required net declarations
 ?: conditional operator

Programming Statements & Timescales
- Detailed discussion of blocking and nonblocking assignments, followed by an overview of
Verilog-2001 programming statements with examples. This section concludes with a discussion
of Verilog timescales and their impact on simulation efficiency.

 Verilog operators - arithmetic, bitwise, logical, unary reduction, more
 Sequential & parallel statement groups
 Blocking & nonblocking assignments (introduced)
 Time delays
 Level-sensitive timing controls
 Edge-sensitive timing controls
 Sensitivity lists (V2K1)
 If-else & case statements
 For, while, repeat & forever loops
 Tasks, functions and automatic (V2K1)
 Rise, fall, min, max delays
 `timescale & $timeformat
 Lab: (optional) `timescale & $timeformat capability and efficiency

Day Two

Combinational Logic Modeling
- Behavioral & synthesizable coding styles for modeling combinational logic. Includes multiple
Verilog-2001 enhancements.

 Sensitivity lists
 Continuous assignments
 Procedural combinational blocks
 V2K1 comma-separated and @* sensitivity lists
 Inertial & transport delays
 Correct methods for adding behavioral timing delays

Sequential Logic Modeling
- Behavioral & synthesizable coding styles for modeling sequential logic

 Sensitivity lists
 Flip-flops and latches
 Synchronous and asynchronous inputs
 Where to add timing delays
 Lab: model and verify an 8-bit ALU
 Lab: model and verify a pipeline
 Lab: (optional) extra labs

RAM and ROM Modeling
- Behavioral coding styles for modeling RAMs and ROMs

 Modeling memories
 Array declarations
 System tasks to load memories
 Preferred coding style for read operations
 Preferred coding style for write operations
 Testing bi-directional ports
 Basic timing constraints
 Lab: model and verify a RAM

Structural Netlists
- How to construct a hierarchical Verilog netlist.

 Design hierarchy
 Module instantiation
 Port & net mismatches
 Parameterized models
 Redefining parameters
 V2K1 Multi-dimensional arrays
 Arrays of Instance
 Generate statements
 Lab: model and verify a hierarchical design

Verilog Gates & SDF Timing
- Introduction to gate primitives, User Defined Primitives, specify blocks and SDF back-
annotated timing.

 Component models
 Gate primitives
 Time delays
 User Defined Primitives (UDPs)
 Specify blocks
 Timing checks
 SDF back annotation - $sdf_annotate command
 Optional Lab: SDF Backannotation
 Optional Lab: UDP (User Defined Primitive)

Day Three

Blocking vs. Nonblocking Assignments
- Detailed instruction about Verilog blocking and nonblocking assignments. Detailed description
of how the Verilog event queue works. Coding guidelines using blocking & nonblocking
assignments. After using blocking and nonblocking assignments for two days, now we are ready
to give the details for the guidelines already presented.

 Different types of blocking assignments
 Different types of nonblocking assignments
 Explanation of Verilog event scheduling
 Assignment execution order
 Pipeline examples
 Delay line modeling
 Common misconceptions about nonblocking assignments
 Blocking & nonblocking assignment guidelines

State Machine Design
- Detailed description and guidelines for coding Verilog state machines.

 Moore, Mealy, binary & onehot state machines
 State machine coding style guidelines
 Parameter states vs. `define states (do not use `define)
 Two always block state machine coding style
 One always block state machine coding style
 Three always block, registered output, coding style
 Lab: EISA bus arbiter state machine design

Verilog Wizardry (Lab Intensive Project)
- This is the final project for the course. Students will use all aspects of the Verilog language in
an actual design flow. Students will draw upon what they have learned in the previous two and a
half days to model, simulate and verify a complete Digital Signal Processor design.

 Lab: model and verify a synthesizable Digital Signal Processor

Classroom Details
Training is generally conducted at your facilities. For maximum effectiveness, we recommend
having one workstation or PC for every two students, with licenses for your preferred Verilog
simulator (we often can help provide the simulator and temporary training licenses).

For more information, contact:
Cliff Cummings - cliffc@sunburst-design.com - Sunburst Design, Inc. - 801-960-1996

